Name:	CISC 203 Discrete Mathematics for Somputing Science
Student Number: $ـ$	Test 3, Fall 2011
Professor Mary McCollam	

This test is 50 minutes long and there are 40 marks. Please write in pen and only in the box marked "Answer". This is a closed-book exam. No computers or calculators are allowed.

NOTES:

* Justify your answers * to all of the problems (give explanation or show work).

All solutions with factorials only need to be reduced to factorial form, e.g., $12!5!$
$2!4!$

Question 1: [10 marks]

a) How many people are needed to guarantee that at least two were born on the same day of the week and in the same month (perhaps in different years)?

Hint: Use the Pigeonhole principle.

Answer:

Using the pigeonhole principle, we need $12 \cdot 7+1=85$ people,
since there are 12 months and 7 days, so $12 \cdot 7$ month/day categories in which to distribute the people
b) How many bit strings of length 9 either start with 000 or end with 1111 ?

Answer:

$2^{6}+2^{5}-2^{2}$

This is the number of bit strings of length 9 that start with $000+$ the number that end with 1111 minus the number that both start with 000 and end with 1111

Thus we're using the inclusion-exclusion principle with the sum rule

Question 2: [10 marks] By algebraic manipulation, show that if n is a positive integer, then $C(2 n, 2)=2 \times C(n, 2)+n^{2}$

Answer:

$C(2 n, 2)=\frac{(2 n)!}{2!(2 n-2)!}=\frac{(2 n)(2 n-1)(2 n-2) \ldots(2)(1)}{(2)(2 n-2)(2 n-3) \ldots(2)(1)}=\frac{(2 n)(2 n-1)}{2}=n(2 n-1)$
$2 C(n, 2)+n^{2}=\frac{(2) n!}{2!(n-2)!}+n^{2}=\frac{(2)(n)(n-1)(n-2) \ldots(1)}{(2)(n-2)(n-3) \ldots(1)}+n^{2}=n(n-1)+n^{2}=n(2 n-1)$

Question 3: [10 marks]

a) If there are seven women and nine men on the faculty in the mathematics department at a school, how many ways are there to select a committee of four members of the department if at least one man must be on the committee?

Answer:

There are $C(16,4)$ ways to select a committee if there are no restrictions.
There are $\mathrm{C}(7,4)$ ways to select a committee from just the 7 women.
Therefore there are $C(16,4)-C(7,4)=\frac{16!}{4!12!}-\frac{7!}{4!3!}$
ways to select a committee with at least one woman.
b) If we have a standard deck of 52 playing cards, and we are dealing 5 cards to a player in a poker game, how many ways are there to deal a 5-card hand that consists of a full house?
A full house means that there are two matching cards of one value (a pair) and three matching cards of a different value, for example: 4४,4\&,5\&,5ヶ,5\&

Answer:

Choose the value of the pair: $C(13,1)$
Choose the suit of the pair: $C(4,2)$
Choose the value of the triple from the remaining 12 values: $C(12,1)$
Choose the suit of the triple: $C(4,3)$
Total: $\mathrm{C}(13,1) \cdot \mathrm{C}(4,2) \cdot \mathrm{C}(12,1) \cdot \mathrm{C}(4,3)=13 \cdot 4!/(2!2!) \cdot 12 \cdot 4$

Question 4: [10 marks]

a) A croissant shop has plain bagels, onion bagels, poppy seed bagels, pumpernickel bagels, egg bagels, sesame seed bagels, and raisin bagels. How many ways are there to choose two dozen bagels with at least two of each kind?

Answer:

First, pick the two of each kind. This leaves 10 left to pick without restriction and with repetitions allowed, which is

$$
\begin{aligned}
C(7+10-1,10) & =C(16,10) \\
& =\frac{16!}{10!6!}
\end{aligned}
$$

b) How many different strings of length 14 can be made that contain 3 As, 4 Es, 2 Ms, 2 Os, 1 P, and 2 Ts?

Answer:

$14!$ \qquad , since this is a problem of permutations with repetitions $3!4$! 2! 2! 1! 2!

