Name:___Solutions___	CISC 203 Discrete Mathematics for Computing Science
Student Number: __ Test 4, Fall 2011	
Professor Mary McCollam	

Please write in pen and only in the box marked "Answer".
This is a closed-book exam. No computers or calculators are allowed.

Question 1: [10 marks]

Suppose a computer worm replicates itself once an hour, so that the total number of copies of the worm in a system doubles every hour (assume its growth is unchecked).

Answer:

i) [3 marks] Set up a recurrence relation, W_{n}, for the number of copies of the worm after n hours have elapsed.

$$
w_{n}=2 \cdot w_{n-1}
$$

ii) [5 marks] Find an explicit formula for the number of copies of the worm after n hours have elapsed if 10 copies of the worm are released initially.

$$
\begin{aligned}
& w_{o}=10=2^{0} \cdot 10 \\
& w_{1}=20=2^{1} \cdot 10 \\
& w_{2}=40=2^{2} \cdot 10 \\
& w_{4}=80=2^{3} \cdot 10 \\
& \cdots \\
& w_{n}=2^{n} \cdot 10
\end{aligned}
$$

iii) [2 marks] If 10 copies of the worm are released initially, how many copies of the worm will there be after 10 hours?

$$
W_{10}=2^{10} \cdot 10=10,240
$$

Question 2: [10 marks]

a) [6 marks] Determine whether the relation R on the set of all real numbers is symmetric, antisymmetric, or transitive where $(x, y) \in R$ if and only if $x=1$ or $\mathrm{y}=1$.
Justify each answer with a brief explanation.

Answer:

R is symmetric since if $\mathrm{x}=1$ or $\mathrm{y}=1$ then $\mathrm{y}=1$ or $\mathrm{x}=1$

Not antisymmetric, since, for example, both $(1,5)$ and $(5,1)$ are in R

Not transitive, since for example $(8,1)$ and $(1,8)$ are in R, but $(8,8)$ is not in R
b) [4 marks] Determine whether the relation R represented by this directed graph is reflexive, symmetric, antisymmetric and/or transitive. Justify each answer with a brief explanation.

Answer:

Not reflexive since there is not a loop at every vertex, for example vertices band d

Not symmetric since, for example, there is an edge from d to c , but no edge from c to d

Not antisymmetric since, for example, there is an edge from a to e and one from e to a

Not transitive since, for example, there is an edge from e to d and from d to c, but there is no edge from e to c

Question 3: [10 marks \}

a) [5 marks] Suppose that \boldsymbol{R} and \boldsymbol{S} are reflexive relations on a set \mathcal{A}. Prove that $S^{\circ} \boldsymbol{R}$ is reflexive. Recall that $\boldsymbol{S} \circ \boldsymbol{R}$ is the composite of \boldsymbol{R} and \boldsymbol{S}.

Answer:

By the definition of $\boldsymbol{S} \circ \boldsymbol{R}$, if $(a, b) \in \mathrm{R}$ and $(b, c) \in \mathrm{S}$, then $(a, c) \in \boldsymbol{S} \circ \boldsymbol{R}$
Therefore, since it is true that for all $a \in \mathcal{A},(a, a) \in R$ and $(a, a) \in S$, since R and S are reflexive, then it is true that for all $a \in \mathcal{A},(a, a) \in S \circ R$

Therefore $S \circ R$ is reflexive.
b) [5 marks] Let S be the set of subroutines of a computer program (i.e., functions in Python, methods in Java). Define the relation \boldsymbol{R} by $P R Q$ if subroutine P contains a call to subroutine Q, so Q might be called during the execution of P.

Answer:

i) [1 mark] For which type of subroutine P does (P, P) belong to \boldsymbol{R} ?
P is recursive
ii) [2 marks] Describe the relation \boldsymbol{R}^{2}
(P, Q) is in R^{2} if subroutine P calls a subroutine that calls subroutine Q, where "calls" means "contains a call to"
ii) [2 marks] Describe the transitive closure of \boldsymbol{R}
(P, Q) is in R^{*} if there is some sequence of calls such that P calls a subroutine that calls a subroutine that calls ... that calls Q, where "calls" means "contains a call to"

Question 4: [10 marks]

Let R be the following relation on the set $\{3,4,5\}$:

$$
\{(3,3),(3,4),(4,5),(5,4)\}
$$

Use the $\mathbf{0 - 1}$ matrix representation for relations to find the transitive closure of \boldsymbol{R}. Show the formula used to find the transitive closure of \boldsymbol{R} from its $0-1$ matrix representation and show the matrices in the intermediate steps in the algorithm, as well as the result matrix.

Answer:
Since M_{R} is a 3×3 matrix, the formula for its transitive closure is: $M_{R^{*}}=M_{R} \vee M_{R}{ }^{[2]} \vee M_{R}{ }^{[3]}$
$M_{R}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right] \quad M_{R}{ }^{[2]}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad M_{R}{ }^{[3]}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

So, $M_{R^{*}}=M_{R} \vee M_{R}{ }^{[2]} \vee M_{R^{[3]}}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$

