Name:Solutions	CISC 203 Discrete Mathematics for Computing Science
Student Number:	Test 4, Fall 2011
	Professor Mary McCollam

Please write in pen and only in the box marked "Answer".

This is a closed-book exam. No computers or calculators are allowed.

Question 1: [10 marks]

Suppose a computer worm replicates itself once an hour, so that the total number of copies of the worm in a system doubles every hour (assume its growth is unchecked).

Answer:

i) [3 marks] Set up a recurrence relation, W_n , for the number of copies of the worm after n hours have elapsed.

$$W_n = 2 \cdot W_{n-1}$$

ii) [5 marks] Find an explicit formula for the number of copies of the worm after n hours have elapsed if 10 copies of the worm are released initially.

$$W_0 = 10 = 2^0 \cdot 10$$

 $W_1 = 20 = 2^1 \cdot 10$
 $W_2 = 40 = 2^2 \cdot 10$
 $W_4 = 80 = 2^3 \cdot 10$
...
 $W_n = 2^n \cdot 10$

iii) [2 marks] If 10 copies of the worm are released initially, how many copies of the worm will there be after 10 hours?

$$W_{10} = 2^{10} \cdot 10 = 10,240$$

Question 2: [10 marks]

a) [6 marks] Determine whether the relation R on the set of all real numbers is symmetric, antisymmetric, or transitive where $(x,y) \in R$ if and only if x = 1 or y = 1. Justify each answer with a brief explanation.

Answer:	
<i>R</i> is symmetric since if $x = 1$ or $y = 1$ then $y = 1$ or $x = 1$	
Not antisymmetric, since, for example, both $(1,5)$ and $(5,1)$ are in R	
Not transitive, since for example (8,1) and (1,8) are in R, but (8,8) is not in R	
b) [4 marke] Determine whether the relation \mathcal{B}	

b) [4 marks] Determine whether the relation *R* represented by this directed graph is reflexive, symmetric, antisymmetric and/or transitive. Justify each answer with a brief explanation.

Answer:

Not reflexive since there is not a loop at every vertex, for example vertices b and d

Not symmetric since, for example, there is an edge from d to c, but no edge from c to d

Not antisymmetric since, for example, there is an edge from a to e and one from e to a

Not transitive since, for example, there is an edge from e to d and from d to c, but there is no edge from e to c

Question 3: [10 marks}

a) [5 marks] Suppose that **R** and **S** are reflexive relations on a set A. Prove that **S** \circ **R** is reflexive. Recall that **S** \circ **R** is the composite of **R** and **S**.

Answer:

By the definition of **S** • **R**, if $(a,b) \in \mathbb{R}$ and $(b,c) \in \mathbb{S}$, then $(a,c) \in \mathbb{S} \circ \mathbb{R}$

Therefore, since it is true that for all $a \in A$, $(a,a) \in R$ and $(a,a) \in S$, since R and S are reflexive, then it is true that for all $a \in A$, $(a,a) \in S \circ R$

Therefore **S** • **R** is reflexive.

b) [5 marks] Let **S** be the set of subroutines of a computer program (i.e., functions in Python, methods in Java). Define the relation \mathbf{R} by P \mathbf{R} Q if subroutine P contains a call to subroutine Q, so Q might be called during the execution of P.

Answer:

i) [1 mark] For which type of subroutine P does (P,P) belong to R?

P is recursive

ii) [2 marks] Describe the relation R²

(P,Q) is in \pmb{R}^2 if subroutine P calls a subroutine that calls subroutine Q, where "calls" means "contains a call to"

ii) [2 marks] Describe the transitive closure of R

(P,Q) is in \mathbf{R}^* if there is some sequence of calls such that P calls a subroutine that calls a subroutine that calls ... that calls Q, where "calls" means "contains a call to"

Question 4: [10 marks]

Let R be the following relation on the set { 3,4,5 }:

$$\{ (3,3), (3,4), (4,5), (5,4) \}$$

Use the **0-1 matrix** representation for relations to find the transitive closure of \mathbf{R} . Show the formula used to find the transitive closure of \mathbf{R} from its 0-1 matrix representation and show the matrices in the intermediate steps in the algorithm, as well as the result matrix.

