| Name:___ SOLUTIONS | CISC 203 |
| :---: | :---: |
|  | Discrete Mathematics for |
|  | Computing |
|  | Test 5 |
|  | Fall 2011 |
|  | Professor Mary McCollam |

## Please write in pen and only in the box marked "Answer".

This is a closed-book exam. No computers or calculators are allowed.

## Question 1: [10 marks]

( a ) Let $R$ be the relation on the set of ordered pairs of positive integers such that $((a, b),(c, d)) \in R$ if and only if $a d=b c$. Show that $R$ is an equivalence relation.

## Answer:

$R$ is reflexive since $((a, b),(a, b)) \in R$ because $a b=b a$
$R$ is symmetric since if $((a, b),(c, d)) \in R$ then $a d=b c$, which also means that $c b=d a$, so $((\mathrm{c}, \mathrm{d}),(\mathrm{a}, \mathrm{b})) \in R$
$R$ is also transitive. If $((\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d})) \in R$ and $((\mathrm{c}, \mathrm{d}),(\mathrm{e}, \mathrm{f})) \in R$, then $\mathrm{ad}=\mathrm{bc}$ and $\mathrm{cf}=\mathrm{de}$. Multiplying these equations gives acdf = bcde, which also means that $\mathrm{af}=\mathrm{be}$, so $((\mathrm{a}, \mathrm{b}),(\mathrm{e}, \mathrm{f})) \in R$

Since $R$ is reflexive, symmetric, and transitive, $R$ is an equivalence relation.
( $b$ ) Describe the equivalence class of $(1,3)$ with respect to that equivalence relation, in other words, describe $[(1,3)]_{R}$.

## Answer:

$a d=b c$ if and only if $a / b=c / d$
Therefore, the equivalence class of $(1,3)$ is the set of all pairs $(a, b)$ such that the fraction a/b equals $1 / 3$

Another way of expressing this is that the equivalence class of $(1,3)$ is the set of all pairs $(a, b)$ such that $b=3 a$

## Question 2: [10 marks]

( a ) Determine whether the relation represented by the following zero-one matrix is a partial order over the set $\{a, b, c, d\}$.
Justify your answer.

## Answer:

The relation must be reflexive, antisymmetric, and transitive to be a partial order.

It is reflexive, since all vertices on the main diagonal are 1 s .

However, it is not antisymmetric, since cRb and bRc

Therefore the relation is not a poset.
( b ) List all ordered pairs in the partial ordering represented by the following Hasse diagram.

a

```
Answer:
\{ (a,a), (a,b), (a,c), (a,d), (a,e),
    (b,b), (b,e), (b,d),
    (c,c) (c, d), (c,e),
    (d,d)
    (e,e), (e,d) \}
```


## Question 3: [10 marks]

( a ) Describe what the adjacency matrix for the graph $K_{n}$ looks like. Recall that $K_{n}$ is the complete graph with $n$ vertices.

## Answer:

It is an $n \times n$ matrix that has zeroes on the main diagonal and ones everywhere else.
( b ) Determine whether the following pair of graphs are isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists. You may label the vertices in order to refer to them.


## Answer:

These two graphs are not isomorphic.
They have the same number of vertices and the same number of edges.
They also both have 7 vertices of degree 1,1 vertex of degree 3 , and 2 vertices of degree 4.

However, the two vertices of degree 4 are adjacent to each other in the graph on the left, whereas they are not adjacent in the graph to the right.

So the sub-graph of the vertices of degree 4 for the graph on the left consists of the two vertices with an edge connecting them, whereas the sub-graph of the vertices of degree 4 for the graph on the right consists of the two vertices with no connecting edge. Thus the sub-graphs are not isomorphic and therefore the original graphs are not isomorphic.

## Question 4: [10 marks]

Use Huffman coding to encode these symbols with given frequencies: $\mathrm{A}: 0.23, \mathrm{~B}$ : $0.37, \mathrm{C}: 0.06, \mathrm{D}: 0.14, \mathrm{E}: 0.16, \mathrm{~F}: 0.01, \mathrm{G}: 0.03$. What is the resulting code for each letter? Compute the average number of bits required to encode a symbol.

## Answer:

In what follows, the heavier tree is always to the left (edges going left are labeled with a 0 , while edges going right are labeled with a 1).

Combine $G$ and $F$ into a tree $T_{1}$ of weight 0.04

Combine $C$ and $T_{1}$ into a tree $T_{2}$ of weight 0.10

Combine $D$ and $T_{2}$ into a tree $T_{3}$ of weight 0.24

Combine $A$ and $E$ into a tree $T_{4}$ of weight 0.39

Combine $B$ and $T_{3}$ into a tree $T_{5}$ of weight 0.61

Finally, combine $T_{5}$ and $T_{4}$

This gives the following code: A: 10, B: 00, C: 0110, D: 010, E: 11, F: 01111, G: 01110

The average number of bits required is given by:

$$
2(0.23)+2(0.37)+4(0.06)+3(0.14)+2(0.16)+5(0.01)+5(0.03)=2.38
$$

which means that on average 2.38 bits are needed to encode a character.

