1. Consider the following languages. For each, show whether or not Rice’s theorem shows that the language is undecidable.
 (a) \(A = \{ \langle M \rangle \mid M \text{ writes a blank symbol on the input portion of the tape} \} \)
 (b) \(B = \{ \langle M \rangle \mid L(M) \text{ is recognizable} \} \)
 (c) \(C = \{ \langle M \rangle \mid L(M) \text{ is finite} \} \)
 (d) \(D = \{ \langle M \rangle \mid A_{TM} \leq_m L(M) \} \)

2. Let \(\Sigma \) be a finite alphabet. We denote by \(FIN(\Sigma) \) the set of finite languages over \(\Sigma \). That is,
 \[
 FIN(\Sigma) = \{ L \subseteq \Sigma^* \mid L \text{ is finite} \}.
 \]
 Show that \(FIN(\Sigma) \) is countable.

3. A **useless state** is a state that is never entered on any input string. Consider the problem of determining whether a Turing machine has any useless states. Formulate this problem as a language and show it is undecidable.

4. Show that the Post Correspondence Problem is decidable over a unary alphabet.

5. Let \(B \) be a language over \(\Sigma \). Are the following true or false? Justify your answers.
 (a) If \(B \leq_m A_{TM} \), then \(B \) is decidable.
 (b) If \(B \leq_m A_{TM} \), then \(B \) is recognizable.

6. **Bonus question.** A **homomorphism** is a function \(\varphi : \Sigma^* \to \Delta^* \) where \(\Sigma \) and \(\Delta \) are alphabets. Let \(w = a_1a_2\cdots a_n \in \Sigma^* \) and \(L \subseteq \Sigma^* \) be a language. Then
 \[
 \varphi(w) = \varphi(a_1)\varphi(a_2)\cdots \varphi(a_n)
 \]
 and
 \[
 \varphi(L) = \{ \varphi(w) \mid w \in L \}.
 \]
 Show that the class of decidable languages is not closed under homomorphism.