1. (a) $q_0\text{aaa, } q_1\text{aa, } q_2\text{a}$, $q_3\text{a}$, q_R

(b) $q_0\text{aaaa, } q_1\text{aaa, } q_2\text{aa, } q_3\text{a}$, $q_4\text{a}$, $q_5\text{a}$, $q_6\text{a}$, $q_7\text{a}$, $q_8\text{a}$, $q_9\text{a}$, $q_{10}\text{a}$, $q_{11}\text{a}$, $q_{12}\text{a}$

2. (a) Construct a TM M that does the following on input w:

1. Scan w for a b; if a b is found, mark it, move left to the beginning of the tape, and go to the next step. If no b is found and no a is found, then accept; otherwise, reject.

2. Scan w to find an a; mark it if one is found go to the next step; otherwise, reject.

3. Continue scanning w; if another a is found, mark it, move left to the beginning of the tape, and go to the first step; otherwise, reject.

(b) Construct a TM M that does the following on input w:

1. Scan w for a b; if a b is found, mark it, move left to the beginning of the tape, and go to the next step. If no b is found and no a is found, then reject; otherwise, accept.

2. Scan w to find an a; mark it if one is found go to the next step; otherwise, accept.

3. Continue scanning w; if another a is found, mark it, move left to the beginning of the tape, and go to the first step; otherwise, accept.

3. To show that a PDA with two stacks can simulate a Turing machine, we consider a configuration of a TM uqv, where q is the current state, u is the contents of the tape to the left of the tape head, and v is the contents of the tape at the tape head and to the right of the tape head. Then for $u = u_1 \cdots u_k$, we say that the first stack contains u where u_1 is the bottom of the stack and for $v = v_1 \cdots v_\ell$, we say that the second stack contains $v_2 \cdots v_\ell$ with v_1 on the bottom of the stack.

Since v_1 is the symbol in the tape cell under the tape head, which stack it belongs to depends on which direction we want the tape head to move. If we want the tape head to move to the right, then v_1 is on the top of the second stack and we pop v_1, perform the transition, and push the symbol to be written to the first stack. To simulate a
move to the left, we pop v_1 from the first stack, perform the transition, and push the symbol to be written onto the second stack.

Lastly, we need to consider when we reach the bottom of a stack. If there are no elements to pop from the first stack, then we have reached the left end of the tape and we do nothing. If there are no elements to pop from the second stack, then we have reached a blank space and we push a blank symbol onto the left stack.

4. (a) Given Turing machines M_1 and M_2 that decide languages L_1 and L_2 respectively, we can construct a Turing machine M_3 that decides $L_1 \cap L_2$. M_3 operates as follows:

1. On input word w, run M_1 on w. If M_1 accepts, then go to the next step. If M_1 rejects, then reject.
2. Run M_2 on w. If M_2 accepts, then accept; otherwise, reject.

We can see that M_3 will only accept w if both M_1 and M_2 accept w. Also, M_3 is guaranteed to halt, since M_1 and M_2 are both guaranteed to halt. Thus, $L_1 \cap L_2$ is decidable.

(b) Given a Turing machine M that decides a language L, we can construct a Turing machine M' which decides \overline{L}. M' operates as follows:

1. On input w, run M on w.
2. If M rejects w, then accept; if M accepts w, then reject.

Since L is decidable, M is guaranteed to halt. Thus M' decides \overline{L} and \overline{L} is decidable.

(c) Let M_1 and M_2 be Turing machines that recognize languages L_1 and L_2, respectively. We can construct a Turing machine M_3 that recognizes $L_1 \cap L_2$. M_3 operates as follows:

1. On input word w, run M_1 on w. If M_1 accepts, then go to the next step. If M_1 rejects, then reject.
2. Run M_2 on w. If M_2 accepts, then accept; otherwise, reject.

First, we note that M_3 accepts w only if both M_1 and M_2 accept w and M_3 will reject w if at least one of M_1 or M_2 rejects w. However, if either M_1 or M_2 do not halt, then M_3 does not halt. Thus, M_3 recognizes $L_1 \cap L_2$.

(d) Let M_1 and M_2 be Turing machines that recognize languages L_1 and L_2, respectively. We can construct a Turing machine M_3 that recognizes $L_1 \cdot L_2$. M_3 operates as follows:

1. On input w, nondeterministically split w into two parts $w = w_1 w_2$.

2
2. Run M_1 on w_1. If M_1 accepts, then go to the next step. If M_1 rejects, then reject.

3. Run M_2 on w_2. If M_2 accepts, then accept. If M_2 rejects, then reject.

We note that M_3 will only accept w if there exists a branch of computation where w_1 is accepted by M_1 and w_2 is accepted by M_2. If there is no w_1 that is accepted by M_1, M_3 either halts and rejects or runs forever. The same applies to M_2 if there exists some w_1 that is accepted by M_1 but no suitable w_2 is accepted by M_2.

5. We construct a Turing machine M that decides ALL_{DFA}. First, we note that the class of regular languages is closed under complementation and that there is an algorithm that when given a DFA A constructs a DFA that recognizes the language $\overline{L(A)}$. Secondly, we note that if $L(A) = \Sigma^*$, then $\overline{L(A)} = \emptyset$. Let M_E be a Turing machine that decides E_{DFA}. Then M operates as follows:

1. On input $\langle A \rangle$, where A is a DFA, construct a DFA A' such that $L(A') = \overline{L(A)}$.

2. Run E_{DFA} on $\langle A' \rangle$.

3. If E_{DFA} accepts $\langle A' \rangle$, then accept; otherwise, reject.

6. To show that a doubly-infinite Turing machine can simulate an ordinary TM, we simply mark the initial tape cell with a special symbol that disallows the machine from moving to the left of the cell.

To show that an ordinary Turing machine can simulate a doubly-infinite Turing machine, instead, we show that a 2-tape TM, which we have shown to be equivalent in power to the ordinary TM, can simulate a doubly-infinite tape. Let D be a doubly-infinite TM and let M be our 2-tape TM. We split the tape of D into two parts and assign each part to a tape of M. Tape 1 of M corresponds to the part of the tape of D that contains the input word and everything to the right. Tape 2 of M contains everything on the tape of D to the left of the input word in reverse order.

More formally, let w_0 denote the contents of the tape cell that contained the first symbol of the input word at the beginning of the computation of D. Then if D has a tape uw_0v, Tape 1 of M contains w_0v and Tape 2 of M contains u^R.

3