1. (a) Rice’s theorem cannot be used to show that A is decidable since the property involves the operation of the machine and not the language recognized by the machine.

(b) Rice’s theorem does not apply, since the property “$L(M)$ is recognizable” is trivial, since every Turing machine recognizes a recognizable language.

(c) Rice’s theorem can be used to show that C is undecidable, since it is a non-trivial semantic property.

(d) Rice’s theorem does not apply since $A_{TM} \leq_M L(M)$ implies that $L(M)$ is unrecognizable. This is a trivial property since no Turing machine accepts an unrecognizable language.

2. We show that $FIN(\Sigma)$ has a correspondence with the set of binary words $\{0, 1\}^*$, which we know to be countable. We also know that the set of words over Σ is countable and can be enumerated in lexicographic order s_1, s_2, s_3, \ldots. We define the characteristic sequence of a language $L \in FIN(\Sigma)$ to be a binary string $b = b_1 b_2 \cdots b_n$ with

$$b_i = \begin{cases} 0 & \text{if } s_i \not\in L, \\ 1 & \text{if } s_i \in L. \end{cases}$$

If s_n is the lexicographically greatest string in L, then we define $s_j = \varepsilon$ for all $j > n$. The string s_n must exist since L is finite. Then every finite language L has a finite characteristic binary sequence and every finite binary string corresponds to a language over Σ. Thus, $FIN(\Sigma)$ is countable.

3. We define our problem as the following language

$$L = \{ \langle M \rangle \mid \text{TM } M \text{ has a useless state} \}.$$

Then we show that if we can decide L, then we can decide A_{TM}. Suppose there exists a Turing machine R that decides L. Then we can construct the following machine to decide A_{TM}:

1. On input $\langle M, w \rangle$, construct the Turing machine M', which operates as follows:
 1. On input x, if $x \neq w$, then skip to the next step. Otherwise, simulate M on w.
 2. If M rejects w or $x \neq w$, then visit every state except q_A or q_R. We indicate that we are doing this by writing a special symbol ζ to the tape. After we have visited every state, enter q_R and reject.
3. If \(M \) accepts \(w \), then accept.

2. Run \(R \) on \(\langle M' \rangle \).

3. If \(R \) accepts, then reject; otherwise, accept.

If \(M \) does not accept \(w \), then every state of \(M' \) is visited except for \(q_A \). In this case, \(q_A \) is a useless state and \(R \) accepts. If \(M \) accepts \(w \), then \(M' \) will enter the accepting state on input \(w \) and every other state is visited on input \(x \neq w \). In this case \(R \) will reject. Thus, \(M' \) has a useless state iff \(w \notin L(M) \).

Thus, if \(L \) is decidable, we can decide \(A_{TM} \). Therefore \(L \) is undecidable.

4. If the alphabet is unary (\(\Sigma = \{a\} \)), then the strings only differ by length. Then the following algorithm decides Unary PCP:

Given an instance of PCP \((u_1, v_1), \ldots, (u_k, v_k)\) over \(\Sigma = \{a\} \),

1. If there is a pair \((u_i, v_i)\) with \(u_i = v_i \), then this is a trivial match, so accept.

2. If for every pair \((u_i, v_i)\), we have \(|u_i| > |v_i| \), then reject. If \(|u_i| < |v_i| \) for all \((u_i, v_i)\), then reject. In both cases, either the \(u_i \)'s or \(v_i \)'s will be larger and there will never be a match.

3. Otherwise, there is a pair \((u_i, v_i)\) with \(|u_i| > |v_i| \) and a pair \((u_j, v_j)\) with \(|u_j| < |v_j| \). Let \(m = |u_i| - |v_i| \) and \(n = |v_j| - |u_j| \). Then a solution is the sequence of \(m + n \) integers

\[
i_1 = i_2 = \cdots = i_n = i, \quad i_{n+1} = \cdots = i_{m+n} = j
\]

and thus we can accept.

5. (a) False. If \(K \leq_M L \) is decidable and \(L \) is decidable, then \(K \) is decidable. However, \(A_{TM} \) is not decidable, so we cannot conclude anything about the decidability of \(B \). (Note that this does not imply that \(B \) is undecidable; if \(B \) is decidable, there is a mapping reduction from \(B \) to \(A_{TM} \).)

(b) True. If \(K \leq_M L \) and \(L \) is recognizable, then \(K \) is recognizable. Since \(A_{TM} \) is recognizable, \(B \) is recognizable.

6. Let \(M \) be a Turing machine and \(w \) be an input word such that \(\langle M, w \rangle \) is encoded over an alphabet \(\Sigma \) and let \(\zeta \) be a symbol not in \(\Sigma \). Consider the language

\[
L = \{ \langle M, w, \zeta^i \rangle \mid M \text{ accepts } w \text{ within } i \text{ steps} \}.
\]

\(L \) is decidable since it is guaranteed to halt. We can construct a machine that simulates \(M \) on \(w \) for up to \(i \) steps. Either \(M \) accepts \(w \) within \(i \) steps and accepts or \(M \) fails to accept within \(i \) steps and we halt the simulation after \(i \) steps and reject.

Now, we define the following homomorphism \(\varphi \) by \(\varphi(a) = a \) for all \(a \in \Sigma \) and \(\varphi(\zeta) = \varepsilon \), where \(\varepsilon \) is the empty string. Then \(\varphi(L) = A_{TM} \). Since \(A_{TM} \) is undecidable, \(\varphi(L) \) is undecidable and thus decidable languages are not closed under homomorphism.