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A neural network-based tool, TargetP, for large-scale subcellular location
prediction of newly identi®ed proteins has been developed. Using
N-terminal sequence information only, it discriminates between proteins
destined for the mitochondrion, the chloroplast, the secretory pathway,
and ``other'' localizations with a success rate of 85 % (plant) or 90 % (non-
plant) on redundancy-reduced test sets. From a TargetP analysis of the
recently sequenced Arabidopsis thaliana chromosomes 2 and 4 and the
Ensembl Homo sapiens protein set, we estimate that 10 % of all plant pro-
teins are mitochondrial and 14 % chloroplastic, and that the abundance of
secretory proteins, in both Arabidopsis and Homo, is around 10 %. TargetP
also predicts cleavage sites with levels of correctly predicted sites ranging
from approximately 40 % to 50 % (chloroplastic and mitochondrial prese-
quences) to above 70 % (secretory signal peptides). TargetP is available as
a web-server at http://www.cbs.dtu.dk/services/TargetP/.
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Introduction

Most proteins in a eukaryotic cell are encoded in
the nuclear genome and synthesized in the cytosol,
and many need to be further sorted to one or other
subcellular compartment. When the ®nal destina-
tion is the mitochondrion, the chloroplast, or the
secretory pathway, sorting usually relies on the
presence of an N-terminal targeting sequence that
is recognized by a translocation machinery (Rusch
& Kendall, 1995; Schatz & Dobberstein, 1996).

In most cases, the targeting sequence is proteoly-
tically removed during or after the entry (Robinson
& Ellis, 1984; Hawlitschek et al., 1988; Arretz et al.,
1991). For further sorting within the organelle,
additional targeting information may be located in
a secondary targeting sequence, either placed adja-
cent to the original targeting sequence (this is the
case for, e.g. thylakoid targeted chloroplast pro-
teins, Figure 1), or in other regions of the protein.
ing author:

ptide; mTP,
PP, mitochondrial
ndrial intermediate
ce; cTP, chloroplast
sing peptidase.
Signal peptides (SPs) are responsible for target-
ing proteins to the ER for subsequent transport
through the secretory pathway (Rapoport, 1992;
von Heijne, 1990). SPs generally consist of three
regions: a positively charged n-region, a hydro-
phobic h-region, and a polar c-region leading up to
the signal peptidase cleavage site. The most well-
conserved motif of SPs is the presence of a small
and neutral amino acid at positions ÿ3 and ÿ1
relative to the cleavage site (von Heijne, 1983,
1985).

In mitochondrial targeting peptides (mTPs), Arg,
Ala and Ser are over-represented while negatively
charged amino acid residues (Asp and Glu) are
rare. Only weak consensus sequences have been
found, the most prominent being a conserved Arg
in position ÿ2 or ÿ3 relative to the mitochondrial
processing peptidase (MPP) cleavage site. Further-
more, mTPs are believed to form an amphiphilic a-
helix that is of importance for import of the nascent
protein into the mitochondrion (Gavel et al., 1988;
Roise, 1997; Waltner & Weiner, 1996). Some matrix
proteins are cleaved a second time by the mito-
chondrial intermediate peptidase (MIP), which
removes an additional eight to nine residues from
the mature protein (Kalousek et al., 1988; Isaya &
Kalousek, 1994). A subset of the mitochondrial pro-
teins are ®rst imported into the matrix, where their
# 2000 Academic Press



Figure 1. N-terminal targeting sequences, the corre-
sponding ®nal subcellular destinations, and the pepti-
dases responsible for cleaving off the targeting
sequences. The thylakoid transfer domain and the IMS
targeting sequence are both SP-like. cTP, chloroplast
transit peptide; mTP, mitochondrial targeting peptide;
SP, signal peptide; IMS, intermembrane space (in mito-
chondria); SPP, stromal processing peptidase; cpTPP,
chloroplast thylakoidal processing peptidase (homolo-
gous to SPase); MPP, mitochondrial processing pepti-
dase; MIP, mitochondrial intermediate peptidase; IMP,
mitochondrial inner membrane peptidase (homologous
to SPase); SPase, signal peptidase.
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mTP is cleaved off, and then re-exported to the
intermembrane space (IMS) due to a second target-
ing signal (with some similarities to an SP) exposed
after the removal of the mTP (Gasser et al., 1982;
van Loon et al., 1987). Other variations on the
theme exist, such as internal and C-terminal target-
ing information, and direct insertion into the outer
membrane or IMS without ®rst passing the matrix
(Diekert et al., 1999; Lee et al., 1999).

The secondary structure of chloroplast transit
peptides (cTPs) is not well characterized, and the
sequence conservation around the stromal proces-
sing peptidase (SPP) cleavage site is not particu-
larly strong (Gavel & von Heijne, 1990;
Emanuelsson et al., 1999). Still, the cTP has a few
distinguishing features such as low content of
acidic residues and an over-representation of
hydroxylated residues compared to the mature
parts of chloroplast proteins (von Heijne et al.,
1989). Thylakoid proteins have a bi-partite prese-
quence structure (Figure 1) where the second sig-
nal is brought into action after the SPP cleavage of
the N-terminal cTP. This thylakoidal transfer
domain shares some important features with SPs
(von Heijne, 1990; Robinson et al., 1998).

We have reported subcellular localization predic-
tors designed to identify either SPs (SignalP)
(Nielsen et al., 1997) or cTPs (ChloroP)
(Emanuelsson et al., 1999) in a protein sequence.
Here, we integrate and extend these efforts and
present a novel subcellular localization predictor,
TargetP, that assigns one of four different localiz-
ations (chloroplast, mitochondrion, ER/golgi/
secreted, and ``other'') to a query sequence, and
also predicts a potential cleavage site for prese-
quence removal. A particularly important issue
addressed in this work is the mutual discrimi-
nation between cTPs and mTPs, which was un-
satisfying in ChloroP.

TargetP is built from two layers of neural net-
works, where the ®rst layer contains one dedicated
network for each type of presequence (cTP, mTP,
SP), and the second is an integrating network that
outputs the actual prediction (cTP, mTP, SP, other),
Figure 2. A non-plant version of TargetP that dis-
tinguishes only between mTPs, SPs and other has
also been constructed. All predictions are fully
automatic and the expected performance pro®le
can be customized to ®t less restrictive searches for
candidate proteins as well as highly conservative
criteria for, e.g. database annotations. TargetP is
able to discriminate between cTPs, mTPs, and SPs
with sensitivities and speci®cities higher than what
has been obtained with other available subcellular
localization predictors, and has a relatively well-
working cleavage site prediction capability for all
involved target sequences.

Results

Data sets

As described in Methods, all sequences were
extracted from SWISS-PROT and inappropriate
sequences were removed before redundancy
reduction, which was undertaken to avoid pro-
blems related to redundant data during neural net-
work training and testing. To increase the size of
the data sets as far as possible, also sequences
annotated as ``POTENTIAL'', ``BY SIMILARITY'';
or ``PROBABLE'' were included in their respective
sets. These sequences lack experimental evidence
for their cleavage sites, but since the networks in
the ®rst step are not trained to recognize cleavage
sites speci®cally but instead whether or not a
single residue is part of a targeting sequence, a
misplaced cleavage site will only misclassify a few
positions in each sequence. Therefore, we con-
sidered that a lower reliability in cleavage site pos-
ition assignment would only marginally in¯uence
network performance. In the construction of mTP
and cTP cleavage site predictors, though, only
unambiguously annotated sequences were used
(110 and 62, respectively).



Figure 2. TargetP localization predictor architecture.
TargetP is built from two layers of feed-forward neural
networks, and on top a decision making unit, taking
into account cutoff restrictions (if opted for) and output-
ting a prediction and a reliability class, RC, which is an
indication of prediction certainty (see the text). The non-
plant version lacks the cTP network unit in the ®rst
layer and does not have cTP as a prediction possibility.
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Since the number of plant mTP sequences
extracted from SWISS-PROT was too small to be
useful, mTP sequences from all possible organisms
were included when training both the plant and
non-plant versions of TargetP. A cluster analysis of
mTPs (Schneider et al., 1998) using self-organized
maps (Kohonen, 1982) did not reveal any signi®-
cant species-speci®c features, suggesting that the
use of non-plant mTPs in the training of the plant
TargetP predictor and, conversely, the use of plant
mTPs in the training of the non-plant TargetP pre-
dictor is reasonable. The redundancy reduced sets
from which the training and test sets were built
®nally contained 141 cTP, 368 mTP, and 269 SP
sequences (for the plant version of TargetP), and
Table 1. TargetP prediction performance, in actual numbers,
parentheses) test sets

Set True category
Number in

category cTP

A. Plant cTP 141 (140) 120 (119)
mTP 368 (140) 41 (18)
SP 269 (140) 2 (0)
other 162 (135) 10 (5)

Specificity 0.69 (0.84)
B. Non-plant mTP 371 (370) -

SP 715 (370) -
other 1652 (370) -

Specificity -

In total 85.3(�3.5) % (85.8(�3.8) %) correct for plant protein predi
for non-plant protein predictor (2738 (1110) proteins), where stand
parallel networks.
371 mTP and 715 SP sequences (for the non-plant
version of TargetP).

Neural network training

The three parallel networks in the ®rst layer
(cTP, mTP, SP) were trained using several combi-
nations of network architecture parameters. The
number of nodes in the hidden layer did not seem
to be crucial, as long as there were at least two hid-
den nodes, while increased input window size in
general improved performance (data not shown).
For cTP networks, a window size of 55 positions
was chosen, for mTP networks 35 positions (both
plant and non-plant networks), and for SP net-
works, 31 (plant) or 27 (non-plant) positions. The
chosen architectures of all ®rst layer networks con-
tained four hidden units. From these networks, the
output scores corresponding to the 100 N-terminal
positions in the sequence were fed into the inte-
grating network. This network was trained on
equal numbers of sequences from all the categories
(size-equalized sets), and its performance was at its
best when no hidden units were included. This
indicates that once the ®rst layer outputs have
been obtained, the complexity of the sorting pro-
blem has been reduced, and is more or less linearly
separable.

Localization prediction results on redundancy
reduced test sets

Performance tests were done on several different
data sets. First, TargetP was tested on the
sequences that were used in the creation of the
integrating layer networks, see Table 1. Cross-vali-
dation was applied, i.e. no sequence was tested on
a network assembly whose training it had partici-
pated in. Since these sets were restricted (equal-
ized) in size by the least abundant category of
presequences (the cTP set for the plant version and
the mTP set for the non-plant version of TargetP),
testing was also undertaken with the full-size
on redundancy reduced non-equalized (size-equalized in

Predicted category

mTP SP Other Sensitivity

14 (14) 2 (2) 5 (5) 0.85 (0.85)
300 (109) 9 (3) 18 (10) 0.82 (0.78)

7 (2) 245 (132) 15 (6) 0.91 (0.94)
13 (9) 2 (5) 137 (116) 0.85 (0.86)

0.90 (0.81) 0.96 (0.93) 0.78 (0.85)
330 (330) 9 (8) 32 (32) 0.80 (0.89)

13 (6) 683 (354) 19 (10) 0.96 (0.96)
152 (47) 49 (8) 1451 (315) 0.88 (0.85)

0.67 (0.86) 0.92 (0.96) 0.97 (0.88)

ctor (940 (555) proteins) and 90.0(�1.1) % (90.0(�0.7) %) correct
ard deviations refer to the spread in performance of the ®ve
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redundancy-reduced sets, i.e. 940 sequences for
plant version and 2738 for non-plant version. The
prediction results are shown in Table 1. From this
table, it can be seen that approximately 85 % of the
940 plant sequences were correctly predicted, with
category-wise sensitivities in the interval 0.82-0.91,
and for the non-plant protein predictor 90 % of the
2738 proteins were correctly predicted with cat-
egory-wise sensitivities between 0.88 and 0.96. The
speci®cities of plant and non-plant predictions are
more scattered as they range from 0.67 (non-plant
mTPs) to 0.97 (non-plant other) while the speci®ci-
ties when testing on the size-equalized sets were
more uniform, essentially because the cTP and
mTP speci®cities were higher. The poor discrimi-
nation between mTP and cTP which lowered the
performance for the ChloroP predictor has been
signi®cantly improved, from almost 39 % of the
mTP proteins falsely predicted as cTPs by ChloroP
(data not shown) down to around 11 % for TargetP
(calculated on ``full-size'' sets).

The full-size sets were also tested on PSORT
(Nakai & Kanehisa, 1992; Horton & Nakai, 1997)
and MitoProt (Claros, 1995; Claros & Vincens,
1996) as well as on TargetP's predecessors SignalP
(Nielsen et al., 1997) and ChloroP (Emanuelsson
et al., 1999). The results of these predictions are
summarized in Table 2. TargetP performed better
than PSORT in terms of sensitivity and speci®city
for almost all sets, with exceptions of non-plant
``other'' sensitivity where PSORT was better, and
cTP and non-plant SP speci®city where perform-
Table 2. Comparison of localization predictor performan
proteins) and non-plant (2738 proteins) test sets

Predictor set
% Correct

overall Category Specificity Se

A. TargetP
Plant 85.3 cTP 0.69

mTP 0.90
SP 0.95
other 0.78

Non-plant 90.0 mTP 0.67
SP 0.92
other 0.97

B. PSORT
Plant 69.8 cTP 0.69

mTP 0.87
SP 0.74
other 0.47

Non-plant 83.2 mTP 0 60
SP 0.93
other 0.87

C. MitoProt
Plant 80.3 cTP 0.59

mTP 0.77
Non-plant 89.4 mTP 0.57

D. ChloroP
Plant 78.8 cTP 0.40

E. SignalP
Plant 79.9 SP 0.59
Non-plant 92.4 SP 0.78

MCC, Matthews correlation coef®cient (calculated category-wise).
ance was equal. Each of the ``binary'' predictors
MitoProt, ChloroP, and SignalP obtained better
sensitivity for the category they were specialized
on, but the speci®cities were in all cases lower than
those of TargetP (for cTPs and plant-SPs much
lower). In plant protein predictions, MitoProt was
used in its three-state mode (see MitoProt instruc-
tion ®le), in which it distinguishes between mTPs
and cTPs using Arg and Ser frequencies as pro-
posed in (von Heijne et al., 1989). Although the
obtained MitoProt cTP speci®city was greater than
that of ChloroP it was lower than those of PSORT
and TargetP. Measured by the Matthews corre-
lation coef®cient, MCC (Matthews, 1975), TargetP
performed better than both PSORT and MitoProt
on all the tested categories.

To examine the possibilities to generate more
reliable predictions for database annotation, where
the focus is on speci®city more than sensitivity, we
tried two different ways of improving the certainty
that query sequences really belong to the predicted
category. The two approaches turned out to yield
similar results when applied to the size-equalized
test sets. The ®rst approach was to demand the
speci®city (on the redundancy reduced test sets) to
be above a certain level, which was implemented
by imposing a cutoff restriction on the output
scores in addition to the default winner-takes-all
rule. Thus, for a speci®city of 0.95, the correspond-
ing sensitivities were found to be 0.63-0.96 (non-
plant predictor) or 0.33-0.93 (plant predictor), see
Table 3. The lower ®gure is in both cases for mTP
ces on redundancy reduced non-equalized plant (940

nsitivity MCC Reference

0.85 0.72 (This work)
0.82 0.77
0.91 0.90
0.85 0.77
0.89 0.73
0.96 0.92
0.88 0.82

0.47 0.51 (Nakai & Kanehisa, 1992; Horton &)
0.66 0.64 Nakai, 1997
0.82 0.69
0.78 0.50
0 81 0 64
0.64 0.71
0.92 0.73

0.45 0.44 (Claros, 1995; Claros & Vincens, 1996)
0.84 0.67
0.91 0 67

0.90 0.50 (Emanuelsson et al., 1999)

0.94 0.62 (Nielsen et al., 1997)
0.98 0.83



Table 3. Obtaining pre-de®ned speci®cities by imposing cutoff restrictions on TargetP predictions

Predicted category
cTP mTP SP other

Set

Required
minimum
specificity

No. seqs
with score

> cutoff

Whereof
correctly
predicted Spec. Sens. Cutoff Spec. Sens. Cutoff Spec. Sens. Cutoff Spec. Sens. Cutoff

Plant 0.98 218 (39.3 %) 214 (98.2 %) 0.99 0.48 0.82 1.00 0.03 0.97 0.98 0.87 0.64 1.00 0.16 0.91
0.95 333 (60.0 %) 318 (95.5 %) 0.95 0.59 0.73 0.96 0.33 0.86 0.96 0.93 0.43 0.95 0.43 0.84
0.90 453 (81.6 %) 412 (90.0 %) 0.90 0.72 0.62 0.91 0.48 0.76 0.93 0.94 0.00 0.90 0.83 0.53

Non-plant 0.98 383 (34.5 %) 376 (98.1 %) - - - 1.00 0.02 0.97 0.98 0.81 0.83 0.99 0.19 0.93
0.95 881 (79.4 %) 841 (95.5 %) - - - 0.95 0.63 0.78 0.96 0.96 0.00 0.95 0.69 0.73
0.90 1033 (93.1 %) 955 (92.4 %) - - - 0.91 0.79 0.65 0.96 0.96 0.00 0.90 0.84 0.52

Performed on the size-equalized plant (555 proteins) and non-plant (1110 proteins) sets. The actual speci®city may be slightly higher than the required speci®city, depending on prediction
threshold effects between two adjacent cutoff levels. Spec., speci®city; Sens., sensitivity.
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prediction while the higher is for SP prediction.
The non-equalized sets were also tested (data not
shown), with similar resulting performances except
that the limiting (in terms of size) categories in
general scored lower sensitivities, while the largest
categories of plant and non-plant proteins, mTP
and ``other'', respectively, scored better sensi-
tivities. This is not surprising given that the speci-
®city requirements become harder to ful®ll for the
limiting categories as the number of potential false
positives increases when going from size-equalized
to non-equalized sets. In the publicly available pre-
dictor, prede®ned cutoffs corresponding to certain
levels of speci®city are provided.

Second, we tried the use of ``reliability classes'':
a prediction is assigned a reliability class (RC)
according to the difference, �, between highest
and second-highest network output score. If
� > 0.8, then RC � 1; if 0.6 < � < 0.8, then RC � 2,
etc. (®ve RCs in total). This feature is a useful
indication of the level of certainty in the prediction
for a particular sequence. Overall, 99 % of the
sequences with RC � 1, and 93/95 % (plant/non-
plant) of the sequences with RC � 2 were correctly
predicted, Table 4. Besides the speci®cities within
each particular RC, we also calculated the cumulat-
ive speci®cities and sensitivities. This is the values
for all proteins predicted to a particular RC or bet-
ter, so when calculating the cumulative perform-
ances for e.g. RC � 2, all proteins predicted either
to RC � 2 or RC � 1 were included, and corre-
spondingly for RCs 3, 4, and 5 (the latter of course
equals the overall predictor performance without
restriction cutoffs). While the speci®city within an
Table 4. TargetP performance within the reliability classes (R

cTP

Set RC

No. sequences
predicted to

RC

Whereof
correctly
predicted Spec. Sens. Spec. S

cumulative

Plant 1 173 (31.2 %) 172 (99.4 %) 1.00 0.24 1.00
2 135 (24.3 %) 126 (93.3 %) 0.97 0.50 0.95
3 98 (17.7 %) 83 (84.7 %) 0.93 0.62 0.81
4 76 (13.7 %) 55 (72.4 %) 0.90 0.79 0.80
5 73 (13.2 %) 40 (54.8 %) 0.81 0.85 0.42

Total 555 (100 %) 476 (85 8 %)

Non-
plant 1 432 (38.9 %) 426 (98.6 %) - - -

2 341 (30.7 %) 323 (94.7 %) - - -
3 153 (13.8 %) 127 (83.0 %) - - -
4 111 (10.0 %) 81 (73.0 %) - - -
5 73 (6.6 %) 42 (57.5 %) - - -

In
total: 1110 (100 %) 999 (90.0 %)

Performed on the size-equalized plant (555 proteins) and non-pla
ities are the values for the sequences predicted to the particular rel
sens. and spec. values presented in Table 3 (see the text). Other val
Sens., sensitivity.
RC is an expression of the reliability of a speci®c
prediction, the cumulative performance values
show how much the sensitivity will be reduced, if
the speci®city is increased by only considering pre-
dictions at a particular RC or better.

Localization prediction results on Arabidopsis
thaliana and Homo sapiens data sets
from SWISS-PROT

All available A. thaliana and H. sapiens entries in
SWISS-PROT (as of October 1999), with annotated
subcellular location in the FT or CC ®elds, were
collected and run through the predictors. Since
quite a few of the entries were present in the train-
ing and test sets of TargetP, performance with the
common sequences removed was also checked.
Although this removal resulted in somewhat lower
performances, the overall performance of TargetP
was still the best among the tested predictors. A
total of 84 % A. thaliana and 86 % H. sapiens
sequences were correctly predicted by TargetP
(considering only non-overlapping sequences), as
compared to 68 and 69 %, respectively, for PSORT.
In general, the performance patterns for all predic-
tors were fairly similar to those on the full-size
redundancy reduced sets except for cTP and mTP
speci®cities. For mTP sets the speci®cities were
clearly lower, with differences of 0.24 (TargetP,
non-plant) to 0.55 (MitoProt, plant) units, while for
cTP sets they were higher by 0.11 (PSORT) to 0.30
(ChloroP) units. For details on the tests of A. thali-
ana and H. sapiens SWISS-PROT sets, consult the
supplementary material available at JMB Online.
Cs)

Predicted category
mTP SP other

pec. Sens. Spec. Spec. Sens. Spec. Spec. Sens. Spec.
cumulative cumulative cumulative

1.00 0.22 1.00 0.99 0.66 0.99 1.00 0.12 1.00
0.97 0.44 0.94 0.99 0.81 1.00 0.92 0.40 0.88
0.92 0.59 0.82 0.99 0.88 1.00 0.89 0.65 0.85
0.86 0.66 0.56 0.97 0.92 0.67 0.87 0.76 0.79
0.81 0.78 0.62 0.93 0.94 0.33 0.85 0.86 0.68

0.97 0.28 0.97 1.00 0.62 1.00 0.98 0.25 0.98
0.96 0.59 0.95 0.98 0.85 0.94 0.96 0.59 0.95
0.93 0.75 0.82 0.97 0.90 0.87 0.93 0.72 0.83
0.90 0.84 0.71 0.97 0.94 0.88 0.90 0.81 0.69
0.86 0.89 0.53 0.96 0.96 0.55 0.88 0.85 0.67

nt (1110 proteins) sets. The cumulative speci®cities and sensitiv-
iability class, RC, or better. These values are comparable to the
ues refer to the performance within each RC. Spec., speci®city;
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Cleavage site predictions

As mentioned in Methods, the TargetP cleavage
site predictions of SPs and cTPs are the same as in
the SignalP and ChloroP methods, while the mTP
cleavage site prediction is a new feature. It consists
of three competing scoring matrices, derived from
sequences known to have an Arg in either ÿ2, ÿ3
or ÿ10 relative to the annotated cleavage site. We
tested the cleavage site prediction ability on the
redundancy-reduced cTP/mTP/SP sets, using only
the unambiguously annotated sequences (56 cTPs,
197 mTPs, 813 SPs), as well as on SWISS-PROT
A. thaliana cTP and H. sapiens mTP sets (72 and 53
sequences, respectively), Table 5. The cleavage site
prediction ability was in general good for SPs,
75 % correct on the redundancy-reduced set, and
around 65 % correct on the Arabidopsis and Homo
sets, while mTP and, in particular, cTP cleavage
site prediction were not as reliable. On the human
mTP set, TargetP predicted half, and MitoProt a
quarter, of the cleavage sites correctly (the
sequences that participated in the TargetP mTP
cleavage site prediction development were
removed from the TargetP results in this test). On
the redundancy-reduced mTP set, TargetP again
predicted approximately 50 % of the cleavage sites
correctly. Ninety-nine percent of the correctly
predicted mTP sequences known to have an Arg
residue in position ÿ2, ÿ3, or ÿ10 relative to the
annotated cleavage site, had their highest (predic-
tion-determining) score from the matrix corre-
sponding to their annotated cleavage site. It also
turned out that the cleavage sites of proteins with
an Arg residue in ÿ10 were harder to predict cor-
rectly than those with an Arg residue in ÿ2 or ÿ3.
For the two cTP sets (redundancy-reduced and
A. thaliana) only around 10 % of the cleavage sites
were correctly predicted, while more than 40 %
were predicted to have their cleavage sites within
�2 residues from the annotated site. There was a
strong bias towards predicting the cTP as shorter
than annotated, and we have earlier suggested that
this may depend on a to-date uncharacterized pro-
Table 5. Cleavage site predictions on redundancy-reduced, H

Predictor set No. of seqs

TargetP
cTP 58
mTP 197
SP 813
Homo-mTP 56
Homo-SP 1323
Arabidopsis-cTP 67
Arabidopsis-SP 53

MitoProt
mTP 197
Homo-mTP 72

Note that TargetP cleavage site prediction performance is not cros
tested contains no sequences that participated in the development of
teolytic activity in the stroma (Emanuelsson et al.,
1999). For prediction of mitochondrial cleavage
site, though, no clear length bias was found.

Prediction of unannotated data sets

As a ®rst application of TargetP, we analyzed
the predicted protein coding regions of the newly
sequenced A. thaliana chromosomes 2 and 4 (Lin
et al., 1999; The European Union Arabidopsis Gen-
ome Sequencing Consortia, 1999) and the
H. sapiens Ensembl set (http://ensembl.ebi.ac.uk/),
Table 6. Approximately 14 % of the Arabidopsis
sequences (both chromosome 2 and 4) were pre-
dicted as chloroplastic while the predicted mTP
and SP abundances were around 10 % and 15 %,
respectively, in all three sets. The results of these
predictions are available on the TargetP web site.
Not all sequences predicted to contain an SP are
actually secreted, though; a subset of them are
transmembrane (TM) proteins. To estimate the per-
centage of these, we used the TMHMM prediction
method for TM helices (Sonnhammer et al., 1998).
We assigned all proteins predicted to contain one
or more TM helices downstream of position 40 as
TM proteins, while those with no TM helices were
assigned as secreted proteins. Proteins predicted
by TMHMM to contain only one TM helix within
the N-terminal 40 residues were subjected to
further analysis, since the predicted TM helix in
these cases might actually be the hydrophobic part
of a cleavable signal peptide. To this end, we used
an experimental hidden Markov model-based ver-
sion of SignalP (SignalP-HMM) (Nielsen & Krogh,
1998) which offers a better discrimination between
cleaved signal peptides and uncleaved signal
anchors than does the original neural network-
based SignalP. If SignalP-HMM predicted a signal
peptide (74 %-83 % of the group with one N-term-
inal predicted TM helix), the protein was assigned
as secreted, otherwise as TM protein. This analysis
lowered the estimates of secreted proteins to
approximately 11 % for the Arabidopsis sets and to
8 % for the Homo set.
omo and Arabidopsis sets

% Correct

Exact Within �2 residues

6.9 44.8
50.8 59.9
74.9 83.9
50.0 60.7
68.1 81.1
10.4 41.8
62.3 77.4

25.4 34.0
25.0 36.1

s-validated. However, the Homo-mTP set on which TargetP was
the TargetP mTP cleavage site predictor.



Table 6. TargetP predictions of unannotated A. thaliana and H. sapiens data sets

Predicted abundance, %

Data set No. of seqs cTP mTP SP
SP, no membrane

proteins (*)

A. thaliana chr 2 4054 13.2 10.5 16.7 11.1
A. thaliana chr. 4 3744 13.9 10.1 17.2 11.6
H. sapiens (Ensembl) 10,228 - 9.3 12.8 8.0

The SP category marked (*) does not include predicted transmembrane proteins (see the text). The prediction for each sequence is
available on the TargetP web site. The A. thaliana sets were downloaded from ftp://ftp.tigr.org/pub//data/a thaliana/chromo-
someII/(chromosome 2) and ftp://warthog.mips.biochem.mpg.de/pub/cress/chrIV/ESSAseq/(chromosome 4). The H. sapiens set
was downloaded from ftp://ftp.sanger.ac.uk/pub/ensembl/data/pep/.
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Discussion

The aim of this work was to provide improved
subcellular localization predictions for proteins
potentially sorted to the chloroplast, the mitochon-
drion, or the secretory pathway, and to generate a
cleavage site prediction for mTPs as a complement
to the already existing cTP and SP cleavage site
predictions in ChloroP and SignalP. We have man-
aged to increase (comparing to existing tools) the
discrimination ability between the targeting
sequences, especially in terms of speci®city, and in
particular the poor discrimination of cTPs and
mTPs has been clearly improved when compared
to ChloroP (Tables 1 and 2). In general, the one-cat-
egory predictors MitoProt, SignalP, and ChloroP
still yield a higher sensitivity on their particular
presequences, but at the cost of reduced speci®city.
Letting the user choose cutoffs for the predictions
is a means for ®ne-tuning the TargetP performance
and biasing it towards more restrictive predictions
(Table 3). To the same end, a classi®cation of each
prediction into one of ®ve reliability classes has
been developed as an indication of how certain a
prediction is: the lower the class number, the safer
the prediction (Table 4).

To test TargetP and its competitors on real-
world applications, all A. thaliana and H. sapiens
sequences available in SWISS-PROT were collected
and processed through TargetP, PSORT, MitoProt,
SignalP, and ChloroP. The performance of TargetP
on these sets (86 and 84 % correctly predicted
sequences for non-plant and plant sets) was only
slightly lower compared to the cross-validated test
set performance (Table 2), and was in almost all
aspects superior to the other predictors. We con-
clude that the use of TargetP, for e.g. automatic
annotation purposes, will yield signi®cantly less
false-positives at the cost of missing fairly modest
numbers of true-positives compared to other avail-
able predictors.

The cleavage site predictions are not as reliable,
but TargetP is still able to predict the correct clea-
vage site in approximately 40-50 % (cTPs and
mTPs) or 70 % (SPs) of the tested proteins (Table 5).
It is obvious that mTP and, in particular, cTP clea-
vage site predictions still are in great need of
improvements. The scarce data is so far the biggest
obstacle in this matter.
An analysis of three newly sequenced and unan-
notated data sets, A. thaliana chromosomes 2 and 4
and H. sapiens Ensembl set, suggests an abundance
of roughly 10 % mTPs and 15 % SPs (including
both secretory and membrane proteins) in all three
sets, and 14 % cTPs in the plant set (Table 6).

In conclusion, the successful construction of the
TargetP predictor demonstrates that protein sorting
signals can be recognized with reasonable
reliability from amino acid sequence data alone,
thus to a certain extent mimicking the cellular rec-
ognition processes. It is likely that further improve-
ments can be obtained by including, e.g.
information from multiply aligned sequences or
from analyses of the mature part of the proteins,
downstream of the sorting signals (Andrade et al.,
1998; Chou & Elrod, 1999; Reinhardt & Hubbard,
1998). It should also be possible to extend the abil-
ities of TargetP by searching for secondary target-
ing sequences such as thylakoid transfer domains
immediately adjacent to the primary sorting sig-
nals.

Methods and Data Sets

General outline of data set creation

All data were extracted from SWISS-PROT (Bairoch &
Apweiler, 2000). Release 36 was used for the plant data
sets, and release 37 for the non-plant except for the mTP
set in which the upgrades of release 38 also were
included. Sequences were extracted by requiring the key-
word EUKARYOTA in the OC (Organism Classi®cation)
®eld. Sequences exhibiting PLANTA as the second node
in the OC ®eld were extracted to the plant data sets.
Targeting peptide entries marked as POTENTIAL, BY
SIMILARITY, or PROBABLE in their FT ®eld, but still
with an explicitly annotated endpoint of the prese-
quence, were also included in their respective sets
(except non-plant SP set which was considered large
enough without including such sequences). In the nucle-
ar and cytosolic sets, sequences with any of these anno-
tations as to their subcellular location annotations in
their CC ®eld were also accepted. Only sequences with
an N-terminal Met residue were considered, and we also
excluded the very few sequences containing B, Z, or X,
in order to avoid possible noise from the ambigous pos-
itions in the training. Following the removal of these and
other inadequate entries (see below), sequences with a
high degree of similarity to other sequences were
removed by redundancy reduction.
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For redundancy reduction, Hobohm algorithm 2 was
employed (Hobohm et al., 1992). Pairwise alignment was
performed using the full Smith-Waterman algorithm and
the PAM250 scoring matrix, as implemented in the
search program of the FASTA package (Smith &
Waterman, 1981; Pearson, 1990). The threshold score
above which sequences were considered as too similar
for network training was chosen as the score above
which the actual distribution of scores deviated from the
expected extreme value distribution of scores from a
local alignment of random sequences (Karlin & Altschul,
1990; Altschul et al., 1994; Pedersen & Nielsen, 1997).
Before comparison to the extreme value distribution, the
score was corrected for the length difference of the
aligned sequences by dividing the raw Smith-Waterman
score with ln(m � n) (Altschul & Gish, 1996), where m
and n are the lengths of the two aligned sequences.

cTP data set for plant version of TargetP

cTP containing proteins were identi®ed by requiring
the annotation ``TRANSIT ( . . . ) CHLOROPLAST'' in the
FT (Feature Table) ®eld (566 proteins in total). From this
set, entries with cleavage sites (CS), predicted by the SP-
predictor SignalP (prokaryotic, gram-negative networks)
(Nielsen et al., 1997) to lie within �5 residues from anno-
tated CS were removed since it could not be excluded
that these cleavage sites resulted from the second clea-
vage of a bipartite stroma-thylakoidal targeting prese-
quence. Sequences from algae were also removed since it
has been shown that they are more similar to mTPs than
to cTPs from higher plants (FranzeÂn et al., 1990). Further-
more, eight chloroplast encoded proteins, one chloroplast
envelope protein, and one having a thylakoidal transfer
domain that had been missed by SignalP were excluded.
The eight chloroplast encoded proteins were all anno-
tated as of organellar origin (``Chloroplast'' in the OG,
organelle, ®eld) which is incompatible with their TRAN-
SIT ( . . . ) CHLOROPLAST annotation in the FT ®eld,
since this annotation indicates that the protein has a
transit peptide for import into chloroplasts. Since all
these proteins were cytochrome f, known to be encoded
in the chloroplast, the annotated presequence most likely
is a thylakoidal transfer domain (the SWISS-PROT data-
base curators have been informed). After these oper-
ations, a total of 432 entries were left in the cTP data set,
with a mean cTP length of 56 amino acid residues.
Redundancy reduction was then performed as described
above. In the creation of the data set with positive train-
ing examples, the redundancy reduction was done
including the annotated cTP and the ®rst residue of the
mature protein (resulting in 141 non-redundant entries)
while the cTP entries to be used as negative examples in
the training of mTP and SP networks were redundancy-
reduced on the 68 N-terminal amino acid residues (corre-
sponding to twice the length of the average mitochon-
drial transit peptide, mTP), leaving 123 sequences.

mTP data set for plant version of TargetP

Sequences annotated ``TRANSIT( . . . )MITOCHON-
DRION'' in their FT ®eld (and with N-terminal mTP)
were extracted to the mTP set. The mTP set consisted
not only of plant sequences since the number of plant
mTPs was too small to allow reliable network training.
Previous studies have not been able to reveal signi®cant
species-correlated differences between mTPs (Schneider
et al., 1998). Proteins annotated (according to the ``SUB-
CELLULAR LOCATION'' comment) as being located in
the inter-membrane space were removed from the data
set since they, in general, have a bi-partite presequence
and the annotated cleavage site may thus stem from the
cleavage of the second, IMS-targeting sequence
(Figure 1). The 658 mTP containing sequences were left
after these procedures. The redundancy reduction on
this set for the use as positive training data was per-
formed on the mTP plus the ®rst mature residue and left
368 non-redundant proteins. For sequences to be used as
negative examples in cTP and SP network training,
redundancy reduction was performed on the 112 N-
terminal amino acid residues (corresponding to twice the
average length of cTP) resulting in 190 sequences.

SP data set for plant version of TargetP

The SP containing plant sequences were picked as
those showing the keyword SIGNAL in their FT ®eld
(648 proteins in total). The data set was redundancy
reduced on the actual SP plus the ®rst residue of the
mature protein for use as positive data in the SP network
development, and on 112 residues (corresponding to
twice the length of the average chloroplast transit pep-
tide, cTP) for use as negative data in the training of the
cTP and mTP networks. The resulting, redundancy
reduced data sets, consisted of 269 and 82 sequences,
respectively.

Cytosolic and nuclear data sets for plant version
of TargetP

The cytosolic and nuclear plant sets were used as
negative sequences in the training of all plant networks.
The cytosolic and nuclear entries contained the string
SUBCELLULAR LOCATION: CYTOPLASMIC/NUCLE-
AR in their CC ®eld. The initial sets contained 537 cyto-
solic and 214 nuclear proteins. After redundancy
reduction on the ®rst 112 residues (to be used in the
training of the cTP network), 87 cytosolic 48 nuclear pro-
teins remained. For training of the mTP networks, redun-
dancy reduction was applied on the 68 N-terminal
residues, which left 108 cytosolic and 54 nuclear pro-
teins.

mTP data sets for non-plant version of TargetP

The mTP set for the non-plant predictor was based on
the mTP set for the plant protein predictor presented
above, to which was added the mTP containing updates
of SWISS-PROT releases 37 and 38. The redundancy
reduction for the positive mTP set was performed on the
mTP and the ®rst three residues of the mature protein,
since it had been shown that they potentially play a role
in presequence recognition (Song et al., 1998). The initial
set comprised 702 sequences. After redundancy
reduction, the positive set contained 371 sequences, and
the negative set 344 (reduced on the 44 N-terminal resi-
dues). The average mTP length was 34 amino acid resi-
dues.

SP data sets for non-plant version of TargetP

The non-plant signal peptide set contained 2292
sequences collected in the same way as the plant SP set,
except that ambiguously annotated entries (see above)
were not included. After redundancy reduction, per-
formed on the SP and ®rst residue of mature protein,
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715 sequences were left. In the reduction procedure for
the negative set (on the ®rst 68 amino acid residues), the
initial set was divided into two parts that were redun-
dancy reduced separately for technical reasons. The two
reduced sets were then concatenated and reduced once
again, resulting in a set of 527 proteins. The average SP
length was 22 residues.

Cytosolic and nuclear data sets for non-plant
version of TargetP

These sets were collected from the non-plant
sequences in SWISS-PROT release 37 annotated as SUB-
CELLULAR LOCATION: CYTOPLASMIC/NUCLEAR
in their CC ®elds. There were 2274 cytoplasmic
sequences and 4037 nuclear sequences initially. After
redundancy reduction, 438 and 1214 sequences were left,
respectively. Again, the redundancy reductions were
performed (on the 68 N-terminal residues) by splitting
each set into two separately reduced parts that were
merged and reduced once again.

Training and test set construction

All training and test sets were truncated to a number
divisible by ®ve. Before network training, the data sets
were divided into ®ve equally sized parts for cross-vali-
dation. Each sequence participated either in the training
or in the testing of a particular network, not both. For
the ®rst layer networks, the sets were constructed to con-
tain equal numbers of positive and negative training
sequences and the negative sequences consisted of
approximately equal numbers of all the applicable non-
positive categories. For the integrating layer network, the
least abundant of the three (two in non-plant version)
presequence categories determined the size of the other
classes to assure training with equivalent numbers from
each protein class (cTP, mTP, SP, other) (size-equalized
sets). All sequence exclusions were random. The ®nal
plant TargetP training sets consisted of, for cTP networks
280 (half of which cTP-containing, positive examples),
for mTP networks 730 (365 mTPs), for SP networks 530
(265 SPs), and for the integrating network 555 redun-
dancy-reduced sequences (from four categories: cTP,
mTP, SP, other). The ®nal non-plant TargetP training
sets consisted of, for mTP networks 740 (370 mTPs), for
SP networks 1420 (710 SPs), and for the integrating net-
work 1110 sequences (from three categories: mTP, SP,
other). The cTP, mTP, and SP data sets can be down-
loaded from the TargetP web site.

Neural network architecture and training

The TargetP predictor has neural networks in two
layers (Figure 2), roughly in the same manner as for
ChloroP (Emanuelsson et al., 1999), with the ®rst layer
consisting of one network for each type of presequence
(i.e. three in the plant version and two in the non-plant
version), each assigning one score per residue. The out-
puts of the ®rst layer networks are fed into the second
(integrating) layer network, which outputs one score per
query sequence and possible localization class (i.e. four
in the plant version and three in the non-plant version).
All neural networks in the predictor are of the feed-for-
ward type with sigmoidal neurons (Minsky & Papert,
1968) and zero or one layer of hidden neurons, trained
using error backpropagation (Rumelhart et al., 1986) but
the implementations and chosen parameter values differ
somewhat.

First layer networks are implemented using the HOW
package, (Brunak et al., 1991) with a logarithmic error
function and sparsely encoded sliding windows for
input data encoding (Qian & Sejnowski, 1988; Brunak
et al., 1991). Each position in the input sequence window
occupies 20 input nodes (one for each of the 20 amino
acid residues), and the node corresponding to the amino
acid present at that position is switched on (i.e. set to
one) while the others remain off (set to zero). The ®rst
layer networks are then trained to recognize whether or
not the residue in the middle of the sliding window is
part of a targeting sequence. Networks with different
sizes of the sliding window and different numbers of
nodes (0, 2, 4, 8) in the hidden layer were tested. Sliding
window sizes ranged, for cTP networks, from 7 to 55
residues, for mTP networks from 7 to 35, and for SP net-
works from 7 to 31 residues (the upper limit roughly fol-
lowing the average presequence length). The learning
rate was set to 0.001 based on earlier studies
(Emanuelsson et al., 1999).

The second layer (integrating) network was
implemented with the HOWLIN program from the
HOW package, using a quadratic error function, and
considers as input the outputs from the ®rst layer cTP,
mTP, and SP networks corresponding to the 100 N-term-
inal positions of the input sequence. For each residue in
the query sequence there are thus three (plant version)
or two (non-plant version) scores that are fed into the
integrating layer network. The output from the top layer
network is one score per type of targeting peptide, i.e.
four for the plant version (cTP, mTP, SP, other) and
three for the non-plant version (mTP, SP, other). In the
default implementation the highest output score deter-
mines the prediction (winner takes all) but there is also a
possibility to demand the output to be above a certain
threshold to be valid as a prediction, thus altering the
expected sensitivity/speci®city balance (see Results).
Due to the ®vefold cross-validation, all previously men-
tioned networks (®rst and integrating layers) are not one
single network but ®ve parallel networks, each of which
created from one training set and tested on one test set.
In the ®nal version, the prediction result is a combination
of the outputs of all parallel networks.

Measuring prediction performance

Performances were in general measured as percentage
correctly predicted sequences, and as sensitivity (fraction
of positive examples predicted as positives):

sens � tp

tp� fn

and speci®city (fraction of all positive predictions that
are true positives):

spec � tp

tp� fp

where tp � true positives, fn � false negatives (under-
prediction), and fp � false positives (over-prediction).
The Matthews correlation coef®cient, MCC (Matthews,
1975), de®ned as:

MCC � tp� tnÿ fp� fn���������������������������������������������������������������������tp� fn��tp� fp��tn� fp��tn� fn�p
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where tn � true negatives, was used in the comparison
of performances of different predictors. MCC equals one
for a perfect prediction, while it is zero for a completely
random assignment.

Cleavage site predictions

cTP cleavage site prediction follows exactly the meth-
od described in (Emanuelsson et al., 1999), using the
same networks and scoring matrix, and the same way of
choosing the area within which the cleavage site is
searched. All cTP cleavage site performances are given
as the number of sequences correctly predicted within
�2 residues if not otherwise stated. SP cleavage is deter-
mined by processing the sequences through SignalP
(Nielsen et al., 1997). The prediction of mTP cleavage
sites is a new feature. The redundancy reduced mTP
sequences, including the additions from SWISS-PROT
releases 37 and 38 and excluding all with notations of
uncertainty as to their cleavage sites (in total 197
sequences) were divided into 4 groups based on the Arg
residue presence in positions ÿ2, ÿ3, and ÿ10 relative to
the annotated cleavage sites (Gavel et al., 1988).
Sequences with an Arg residue in exactly one of these
positions were kept in three separate groups and the rest
(those with several or none Arg residues) were not used
in the cleavage site prediction development. The three
Arg groups (ÿ2, ÿ3, ÿ10) contained 41, 39, and 30
sequences respectively. An automatic motif ®nding and
score matrix generating program, MEME (Bailey &
Elkan, 1994), was used to create one scoring matrix for
each of the three groups. For each sequence, the 12 resi-
dues surrounding the Arg were included in the respect-
ive MEME training set. The ®nal cleavage site was then
predicted by simply letting the matrix generating the
highest score on the sequence determine the site of clea-
vage. The search is restricted to the 120 N-terminal resi-
dues since mTPs longer than that only very rarely have
been reported (only 2 out of 702 sequences in the unre-
duced mTP set are longer than 120 residues).

TargetP user instructions

The user is prompted to choose between the plant and
non-plant versions of TargetP, and decides whether the
default localization decision rule (winner-takes-all) is
valid or should be completed with cut-off restrictions.
There are also prede®ned cutoffs, corresponding to cer-
tain expected sensitivity/speci®city combinations. Clea-
vage site prediction is another option. TargetP is
available at http://www.cbs.dtu.dk/services/TargetP/.
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