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Abstract 
Identifying single nucleotide polymorphisms (SNPs) 
that are responsible for common and complex 
diseases such as cancer is of major interest in 
current molecular epidemiology. However, due to the 
tremendous number of SNPs on the human genome, 
to expedite genotyping and analysis, there is a clear 
need to prioritize SNPs according to their potentially 
deleterious effects to human health. As of yet, there 
have been few efforts to quantitatively assess the 
possible deleterious effects of SNPs for effective 
association studies. Here we propose a new 
integrative scoring system for prioritizing SNPs 
based on their possible deleterious effects in a 
probabilistic framework. We also provide the 
evaluation result of our system on the OMIM (Online 
Mendelian Inheritance in Man) database, which is 
one of the most widely-used databases of human 
genes and genetic disorders.    

Introduction 

Much effort in current epidemiology, medicine, and 
pharmarcogenomics is focused on the identification 
of genetic variations that are involved in common 
and complex diseases. Specifically, single nucleotide 
polymorphisms (SNPs), which are substitutions of a 
single nucleotide at a specific position on the genome 
occurring in more than 1% of the human population, 
are in the core of such studies, as they form the 
majority of genetic variations in the human. Reliable 
identification of disease-causing SNPs is expected to 
enable early diagnosis, personalized treatments, and 
targeted drug design1. 
 

Typically, the first step toward identifying causal 
SNPs for common and complex human diseases, 
involves case-control association studies2. However, 
due to the sheer number of SNPs on the human 
genome, estimated at over ten milion3, it is often 
required, when conducting association studies, to 
prioritize SNPs based on their potential deleterious 
functional effects1. For instance, SNPs occurring in 
functional genomic regions such as protein coding or 
regulatory regions are more likely to have deleterious 
effects, and, as such, more likely to underlie disease. 
By focusing on a small number of these functionally 
significant SNPs that are likely to be associated with 

disease, a substantial amount of genotyping and 
analysis overhead can be reduced.  
 

However, for the vast majority of SNPs, no 
experimental evidence is currently available to 
substantiate their deleterious effects. As such, web-
services and public databases that provide 
computationally predicted putative deleterious effects 
of SNPs have been developed and widely used4. 
These tools examine whether a SNP resides in 
functional genomic regions such as exons, splice 
sites, or transcription regulatory sites, and predict the 
potential corresponding functional effects that the 
SNP may have using a variety of machine-learning 
approaches. The utility of these computational tools 
has been empirically demonstrated in several genetic 
variation studies5-6.  
 

Such tools and systems, which prioritize functionally 
significant SNPs, suffer from two main limitations: 
First, they provide only partial information about the 
functional significance of SNPs. That is, they each 
examine the putative deleterious effects of SNPs with 
respect to a single biological function, for example, 
either protein coding or transcriptional regulation. 
Thus, to comprehensively analyze the functional 
significance of SNPs, researchers must spend much 
time and effort to separately apply multiple tools, and 
interpret/integrate their (often conflicting) predictions.  
 

Second, while current systems classify SNPs into 
distinct groups (e.g., ‘deleterious’ or ‘neutral’), they 
do not numerically score or rank SNPs according to 
their functional significance. Budget considerations 
often force researchers to select a limited number of 
SNPs on the target genomic region for conducting 
association studies. When the number of putatively 
deleterious SNPs presented by current tools is larger 
than this pre-specified limit, with no additional 
ranking information, selecting only some of them is 
not straightforward. As a result, researchers must rely 
on other resources to finalize their decision.         
 

To address these limitations, we propose a new 
integrative scoring system for ranking SNPs based on 
their putative deleterious effects. To do this, we 
assess SNPs with respect to four major bio-molecular 
functional categories of genomic regions: splicing, 
transcription, translation, and post-translation 
modification. We attempt to overcome the 



  

incompleteness and possible false findings of an 
individual bioinformatics tool by combining the 
assessment results from multiple independent 
prediction tools. Most significantly, we assign a 
specific numerical score to each SNP, representing 
its putative deleterious effects to human health. 
Using this score, a limited subset of the most 
functionally significant SNPs can be ranked and 
selected. 

We applied our system to 123,697 SNPs located on 
607 disease-susceptibility genes obtained from the 
OMIM database7. Splice sites and coding regions are 
most enriched with potentially deleterious SNPs, 
which is consistent with established findings. We 
further demonstrate the utility of our scoring system 
by showing that the functional significance score for 
known disease-associated SNPs from OMIM is 
significantly higher than the score assigned to 
randomly selected SNPs on the same gene. Finally, 
we discuss the impact of our work and possible 
directions for future research. 

Problem Definition 

We aim to quantitatively measure the potential 
deleterious effects of SNPs on the bio-molecular 
function of their genomic region. For simplicity, we 
refer to the assessed score as the functional 
significance (FS) score of each SNP.  

To formally define a scoring function for assessing 
the FS score, we first introduce some basic notations. 
Suppose that we are given p SNPs on the target 
genomic region. Each SNP can be represented as a 
discrete random variable, Xj (j=1,…,p), whose 
possible values are the 4 nucleotides, {a,g,c,t}. The 
true (and unknown) functional category of SNP Xj is 
then represented by another discrete random variable, 
Yj, whose value is 1 when Xj is deleterious and 0 
otherwise. We note that we do not know the true 
functional category Yj of SNP Xj. We thus estimate it 
using m bioinformatics tools that predict, for each 
SNP Xj, the functional label (i.e., `deleterious' or 
'neutral') along four major bio-molecular functions: 
protein coding, splicing regulation, transcriptional 
regulation or post-translation modification.  

For each of the m tools, and each of the SNPs, we 
define two discrete random variables, Uij and Sij. 
(i=1,...,m; j=1,…,p). The variable Uij denotes the 
label assigned to the jth SNP by the ith tool, that is,  
Uij=1 when the ith tool predicts SNP Xj to be 
deleterious, and 0 otherwise. The variable Sij 
represents a confidence score on the assigned label. 
The higher the value of Sij, the more strongly the tool 
supports its own prediction, Uij. As different tools 

use different confidence scales, we define a 
normalized confidence score, ijS , whose value is 
between 0 and 1, as follows: 
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For each SNP and tool, we also define a random 
variable Cij to indicate whether the SNP may affect 
any other bio-molecular function due to its genomic 
location (obtained from dbSNP). The value of Cij is 1 
if and only if either: a) SNP Xj is located on a protein 
coding region, and the ith tool examines the 
deleterious effects of SNPs on either protein coding, 
exonic splicing regulation, or post-translation 
modification; b) SNP Xj is located on a splice site, 
and the ith tool examines the deleterious effects of 
SNPs on intronic splicing regulation; c) SNP Xj is 
located on either an intronic region, 5’/3’ un-
translated regions of a gene (UTR), or directly 
upstream or downstream from a gene, and the ith tool 
examines the effects of SNPs on transcriptional 
regulation; or d) SNP Xj is located on any intergenic 
regions whose function is currently unspecified. (As 
we do not know the function of the region, we need 
to examine the putative effects of SNPs with respect 
to all four bio-molecular functions.) 

Last, for each tool, we define a continuous random 
variable TRi, corresponding to the Tool Reliability 
(TR) score for the ith tool.  This score represents how 
likely the tool is to correctly predict deleterious SNPs. 
The computation of the TR score is explained in the 
next section.  

Based on the variables Uij, Sij, Cij, and TRi, the FS 
score of SNP Xj is defined and calculated as follows:  

Definition 1. Functional Significance (FS) score:  
Given a SNP Xj, a set of m functional prediction 
results and normalized confidence scores for the SNP 
Xj, {(U1j, S1j),…,(Umj, Smj)} from m distinct prediction 
tools, and  a set of m Tool Reliability Scores for the 
tools, {TR1,…, TRm} the Functional Significance 
score of SNP Xj, denoted  by FSj,  is defined as:   

                 
  .

)(

1

1

∑

∑

=

=

⋅

⋅⋅⋅
≡ m

i
iij

m

i
ijjiiij

j

TRC

SUTRC
FS

 

 
That is, the FS score of a SNP is the weighted 
average of the normalized confidence scores obtained 
from the different prediction tools – regarding the 
SNP being deleterious – where the weight is the 
reliability score of each tool. We note that by 
multiplying Uij, the confidence score of each tool is  
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Figure 1. Outline of our assessment process. 
 

counted only when the tool indeed predicts that the 
SNP Xj  is deleterious. 

Methods 

Our system executes three main steps to assess the 
functional significance of SNPs. Figure 1 outlines the 
process. In step I, functional categories of SNPs, (i.e., 
either deleterious or neutral) and supporting 
confidence scores are obtained from m external 
prediction tools. In step II, the reliability of each tool 
is computed based on the tool’s agreement with the 
prediction of other tools. In step III, the functional 
significance scores of SNPs are computed as an 
average of the normalized supporting confidence 
scores, weighted by the reliability of each tool. We 
further describe each step in the following 
subsections.  

 
STEP I. Retrieving Predicted Functional Information 

Given a set of p SNPs, {X1, …, Xp}, we first retrieve 
from the F-SNP database8,  their predicted functional 
labels (i.e., deleterious or neutral) along with 
respective confidence scores, obtained from 16 
publicly available web-based services and databases. 
These 16 tools are grouped into four functional 
categories as follows:   

• Splicing Regulation: SNPs in splicing regulatory 
sites may interfere with splicing regulation, 
resulting in unintentional exon skipping or intron 
retention; 

• Transcriptional Regulation: SNPs in transcription 
regulatory regions (e.g., transcription factor 
binding sites, CpG islands, microRNAs, etc.) can 
alter binding sites, and thus disrupt proper gene 
regulation; 

• Translation: SNPs in protein coding regions may 
cause a deleterious amino acid substitution (i.e., 
nonsynonymous SNPs) or interfere with protein 
translation (i.e., nonsense SNPs); 

• Post-Translation Modification: SNPs in protein 
coding regions may alter post-translation 
modification sites (e.g., phosphorylation, o-
glycosylation, or tyrosine sulfation sites), 
interfering with proper post-translation 
modification.  

 

STEP II. Computing Tool Reliability  

The Tool Reliability score, TRi denotes how likely 
the ith tool is to correctly predict deleterious SNPs.  
We measure the Tool Reliability score using the 
conditional probability as defined below:  

.11Pr ) |U(YTR ijji ==≡  

If the true labels of the SNPs, Yj (j=1,…,p), are 
known, this score can be statistically estimated. For 
example, using a maximum likelihood approach, TRi 
can be estimated as the ratio between the number of 
correctly predicted deleterious SNPs and the total 
number of deleterious SNPs predicted by the tool. 
However, in most cases we do not know the true 
functional categories of SNPs. We thus estimate the 
probability Pr(Yj=1|Uij=1) using the method 
proposed by Long et al in their theoretical work9 on 
classification. When class labels are unknown, they 
propose to evaluate the prediction accuracy of a 
classifier based on the extent that the classifier tends 
to agree with other classifiers, and prove that the 
conditional probability Pr(Uij=1|Yj=1) can be 
calculated in this context as follows: 
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where k and l represent the indices for any two 
distinct tools (i≠k≠l), and qk and qkl denote Pr(Ukj=1) 
and Pr(Ukj=1 ∧ Ulj=1), respectively. The maximum 
likelihood approach is used to estimate these 
probabilities. For a detailed proof of Equation 1), see 
the work by Long et al9.  

Using Bayes’ rule and Equation 1), we compute the 
Tool Reliability score for the ith tool, TRi, as follows:  



  

 1)  Eq.   (by   

  .
))((

)()(
))1(Pr1(

)1(Pr
    )1(Pr  

  rule)   Bayes'   (by    
)1Pr(
)1Pr(

1)  | 1(Pr

)1  |  1(Pr
                                                                            

21

j

ilkkl

liilkiik

j

j
j

ij

j
jij

ij

i

qqqq
qqqqqq

Y
Y

Y

 
U
Y

YU

UY
TR

⋅−
⋅−⋅⋅−

⋅
=−
=

+==

=
=

⋅===

==≡

−

 
We use uninformative priors for Pr(Yj=1) and 
Pr(Uij=1) over all SNPs, and as such, the Tool 
Reliability score is invariant to each SNP. To 
compute an estimate of the prior probability of the 
SNP being deleterious, for Pr(Yj=1), we take a 
conservative maximum likelihood approach. That is, 
for each tool examining the effects of a SNP on a 
specific bio-molecular function, the fraction of SNPs 
that are unanimously predicted to be deleterious by 
all the tools examining the same function is used as 
an estimate for Pr(Yj=1).   

 
STEP III. Computing Functional Significance 

Given the prediction results and confidence scores 
obtained in step I and the Tool Reliability score (TRi) 
computed in step II, the Functional Significance (FS) 
score of SNP Xj can be computed as shown in 
Definition 1.  

 

Results  

We applied our method to 123,697 SNPs located on 
607 disease-susceptible genes, for which the OMIM7 
database provides references to biomedical literature 
reporting the SNPs to be disease-causing or showing 
a positive statistical correlation with common 
disorders (downloaded Feb. 18, 2008). The list of 
SNPs linked to each of the 607 genes and their 
primary information such as genomic locations were 
downloaded from the dbSNP2 database (build 126).  
 
For each genomic location, Figure 2 shows the 
percentage of low FS scoring vs. high FS scoring 
SNPs that reside in the location among the examined 
123,697 SNPs. The X-axis denotes 6 distinct types of 
genomic regions, while the Y-axis shows the 
percentage of SNPs whose FS scores are lower than 
0.5 (gray bars) vs. the percentage of SNPs whose 
scores are at least 0.5 (black bars) on each region 
type. For clarity, the percentage is displayed up to 
12%. The majority of the examined SNPs are located 
within intronic regions (81.7%), but the FS score for 
most SNPs in intronic regions is lower than 0.5  
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Figure 2. The percentage of low FS scoring vs. high 
FS scoring SNPs according to six genomic locations. 

 

(70.84%). A similar tendency is noted in 5’/3’ un-
translated regions (UTR), upstream/downstream of a  
gene, and in currently unspecified regions. In 
contrast, despite the relatively smaller number of 
SNPs on splice sites and on coding regions, these 
regions are enriched for putative deleterious SNPs. 
That is, an FS score of at least 0.5 is assigned to 99% 
of the SNPs in splice sites and to 55% of SNPs in 
coding regions. This scoring pattern is consistent 
with the broadly accepted assumption that mutations 
in splice sites and coding regions would have direct 
effects on gene function4.  
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Figure 3. The distribution of the average FS scores 
of disease-associated SNPs on each gene, compared 
to that of randomly selected SNPs on the same gene. 
 

Next, we examined whether the average FS score of 
SNPs known to be disease-causing or disease-
associated in each of 607 genes (obtained from 
OMIM) is different from that of SNPs selected 
uniformly at random on the same gene. Figure 3 
shows the distribution of the average FS scores. The 



  

X-axis represents the average FS score for each 
group of SNPs on the same gene, binned into 10 
equal intervals, while the Y-axis represents the 
percentage of genes whose average FS score 
corresponds to each bin.  

As is clearly seen in Figure 3, the distribution of the 
average FS scores of known disease-causing or 
associated SNPs is significantly different from that of 
randomly selected SNPs on the same gene (p-value 
1.0303e-055 using the paired t-test with 5% 
significance level). We note that for 48.3% of the 
SNPs that are disease associated, the average FS 
score is at least 0.5, while only 4.9% of randomly 
selected SNPs are assigned such a high score.     
 
We note that the FS score assigned to about half of 
the known disease-causing or associated SNPs is still 
below 0.5. There are two possible explanations for 
this seemingly inappropriate FS score. First, even 
though some SNPs, obtained from the OMIM 
database7, show a positive statistical correlation with 
common disorders in some association studies, they 
may not all be real disease-causing mutations. Some 
of these SNPs may simply be linked to the actual 
disease-causing mutations, or may represent false 
positive findings.  
 
Second, while the disease-associated SNPs may 
indeed be disease-causing mutations, our current 
scoring scheme may not capture them properly. For 
example, besides the bio-molecular functions that we 
currently examine, there could be other genetic 
mechanisms that have a profound impact on human 
pathogenesis. As such, disease-associated SNPs with 
low FS scores should not be ruled out until biological 
experiments confirm their role. 
 

Conclusion 

We have presented a new scoring system for 
assessing the putative deleterious effects of SNPs. 
Our integrative scoring method combines assessment 
results from multiple independent computational 
tools in a probabilistic framework, which takes into 
account the certainty of each prediction as well as the 
reliability of the different tools. An empirical study 
over 607 disease-associated genes taken from the 
OMIM7 database shows that our system provides 
distinct scoring patterns that are consistent with well-
established findings about functional SNPs.  We 
expect our scoring system to be a valuable resource 
for facilitating effective association studies for 
common and complex genetic disorders.  
 

In the near future we plan to conduct more rigorous 
evaluation studies, and report comparisons to other 
function-assessment systems for SNPs (some of those 
were already carried out but not shown here for lack 
of space). We also plan to continue the computational 
assessment of potential deleterious effects of SNPs 
identified on the human genome, and provide the 
scoring results via the F-SNP database8. 
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