
Approximate Queries and Representations for Large Data Sequences�Hagit Shatkay Stanley B. ZdonikDepartment of Computer ScienceBrown UniversityProvidence, RI 02912fhs,sbzg@cs.brown.eduAbstractMany new database application domains such as ex-perimental sciences and medicine are characterized bylarge sequences as their main form of data. Using ap-proximate representation can signi�cantly reduce the re-quired storage and search space. A good choice of rep-resentation, can support a broad new class of approxi-mate queries, needed in these domains. These queriesare concerned with application-dependent features of thedata as opposed to the actual sampled points. We intro-duce a new notion of generalized approximate queriesand a general divide and conquer approach that sup-ports them. This approach uses families of real-valuedfunctions as an approximate representation. We presentan algorithm for realizing our technique, and the resultsof applying it to medical cardiology data.1 IntroductionApplication domains such as Medicine, Music, Seis-mology and experimental sciences in general, all re-quire non-traditional database support for large datasequences, such as time series. In contrast to traditionaldatabase applications, users in these domains typicallysearch for patterns within the data that �t some ap-proximate notion of what they want. They are not in-terested in the exact values in the time series as muchas the overall shape of some subsequences.In this paper we introduce a new framework that fa-cilitates a broad class of approximate queries over se-quences. Previous work such as [Mot88, SWZS94,WZJS94, CS94, AFS93, FRM94] regards approximatequeries, as queries to which the answers are not exactlywhat was asked for. The query de�nes an exact resultin terms of speci�c values, which is the \best" we canexpect. The actual results, however, are within somemeasurable distance (expressed as a metric function),from the desired one. Hence, the queries are actuallyprecise, while the results may be approximate.Figure 1 demonstrates this notion of approximate�Partial support for this work was provided by the Ad-vanced Research Projects Agency under contract N00014-91-J-4052 ARPA order 8225, and contract DAAB-07-91-C-Q518 undersubcontract F41100.yAppears in ICDE96
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Figure 1: The solid curve represents a speci�ed query se-quence. The result consists of all stored sequences withindistance � from the desired sequence.queries for time series data. The user looks for sequencessimilar to the query sequence (represented by the solidcurve), and the result contains all the sequences storedin the database within the boundary de�ned by thedashed curves. A stored sequence is an exact match if itis identical to the solid curve, (i.e. distance = 0). Thisform of similarity is supported by algorithms from thedomain of approximate pattern matching (e.g. [CR94]).This paper presents a more general notion of approx-imation, appropriate for the complex queries requiredin advanced multimedia and scienti�c applications. Aquery mechanism in this context should allow for thespeci�cation of the general shape of data without de-pending on speci�c values. For example, in a seismicdatabase, we may look for sudden vigorous seismic ac-tivity; in a stock market database, we look at rises anddrops of stock values; in a music database, we look fora melody regardless of key and tempo. The form of ap-proximation demonstrated in Figure 1, is value-basedand does not generalize well to any of the above cases.We discuss this point in detail in Section 2.Another aspect of these applications is the extremelength of sequences. Often, this data is archived o�-line,on very slow storage media (e.g., magnetic tape), in aremote central site. Domain experts retrieve portions ofthe raw data, and use application programs to manip-ulate it. Thus, little use is made of available databasemanagement tools. For example, obtaining raw seismicdata can take several days [Fis93]. The geochemist ex-amines this data in the lab, and if it is not su�cient toanswer the question at hand, another retrieval is issued.



This extremely high latency limits scienti�c progress.Since the exact data points are not necessarily of inter-est, we can store instead an approximate representationthat is much more compact, thus can be stored locally.Moreover, due to the representation's compactness, sev-eral di�erent representations can be stored to acceleratevarious classes of queries.Our method relies on the ability to break the input datainto regions that can each be e�ectively approximatedby a function (e.g., a line). From the piecewise functionswe can extract features of interest (e.g., peaks). For thepurpose of our example applications, drawn from thedomain of medicine, polynomials proved to be su�cient.However, our approach does not rule out approximationthrough other well-behaved functions. We show howthis technique can be highly space-e�cient as well assupport generalized approximation queries.In this paper we discuss approximation both in termsof queries and in terms of representation. We generalizethe previous notion of approximate queries, and sug-gest a strategy for handling this kind of approximation,without committing ourselves to any speci�c query lan-guage. Due to space limitations, we don't go into all ofthe details such as a full discussion of the breaking algo-rithms (see Section 5), or the preprocessing that needsto be performed on the raw data. Instead, we presenta framework that has been tested on cardiology datausing a speci�c representation that has shown to workwell for our purposes. The same framework can be usedwith other approximating functions.In Section 2 we motivate and provide a de�nition of gen-eralized approximate queries. Section 3 provides a sur-vey of related work. Section 4 presents our \divide andconquer" strategy for handling sequences, and demon-strates how we can apply it to generalized approximatequeries. Section 5 presents one of the algorithms wehave implemented, and provides experimental resultsfor electrocardiograms. Section 6 provides an outlineof future work.2 Generalized Approximate QueriesIn current application domains that use sequential datathere is a need to search for patterns rather than ex-plicit values. That is { individual values are usually notimportant but the relationships between them are. Inwhat follows we present an example and analyze it toclarify the issues.2.1 GoalPost Fever { an ExampleOne of the symptoms of Hodgkin's disease is a temper-ature pattern, known as \goalpost fever", that peaksexactly twice within 24 hours. A physician looking forall patients with \goalpost fever" is interested in �nd-ing all 24-hour temperature graphs that look roughlylike the curve plotted in Figure 2.Suppose we have a speci�c exemplar of a sequence with2 peaks, like the one depicted in Figure 2, �xed on a

Figure 2: Temperature pattern with exactly two peaks.
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contraction (1,2,4), dilation 1(3), shift in time (2), shiftin amplitude (4).All the sequences of Figure 5 are results of transfor-mations that maintain the \two peaks" property. Thegoalpost fever query denotes an equivalence class of se-quences under the relation \having two peaks", whichis closed under transformations that preserve this prop-erty. Since all these sequences are members of the class,they constitute an exact match for the query, ratherthan an approximation. This is despite the fact thatnone of them is within value-based distance 0 from theothers.We note that the query itself is approximate in the sensethat it ignores speci�c values, and looks for \somethingwith two peaks". The following section formalizes thisnotion of approximation.2.2 Generalized Approximate Queries -CharacterizationWe de�ne generalized approximate queries as querieswith the following characteristics:1. There is some general, value independent, patternthat characterizes the desired results. De�ning thepattern constitutes the query. (The query can bean exemplar or an expression denoting a pattern).2. The query denotes a (possibly uncountable) set Sof sequences, rather than a single sequence, to bematched.3. S is closed under any behavior-preserving transfor-mations, and not merely under identity of speci�cvalues. Taking any sequence r 2 S, any otherr0 2 S can be obtained from r, through the applica-tion of transformations that preserve the signi�cantfeatures of r. The actual features and transfor-mations are domain dependent. Examples of suchtransformations include:� Translation in time and amplitude.� Dilation and Contraction (frequency changes)� Deviations in time, amplitude and frequency.� Any combination of the above.4. A result is an exact match if it is a member of S.Hence, the expected result is a set of matches thatcan all be exact.A result is approximate, if it deviates from the spec-i�ed pattern, in any of the dimensions which corre-spond to the speci�ed features (such as number ofpeaks, or the steepness of the slopes, or the minimalheight required for being a peak in our example),within a domain-dependent error tolerance. The er-ror tolerance must be a metric function de�ned overeach dimension. This means that an approximateresult is obtained from some r 2 S by a transfor-mation that is not completely feature-preserving.1Dilation and contraction are both forms of changes in frequency.

The above de�nition describes an approximation notionsince it abstracts away from particular values and al-lows us to talk about how things \approximately look".It generalizes the standard notion of approximation( [Mot88, CS94, AFS93]) in the following ways:� Generalizes what the query denotes, from a sin-gle sequence (or a set closed under identity ofvalues), to a set of similar sequences, which canbe obtained from an exemplar through similarity-preserving transformations. Thus, we de�ne ap-proximate queries and not just approximate results.� An approximate result can deviate from an exactone in various dimensions (each dimension corre-sponds to some feature), as opposed to deviationwithin a �xed distance from the speci�c values.Moreover, it generalizes more recent notion of similarityover sequences (see Section 3 and [GK95, ALSS95]) fromproximity under shifting/scaling of sequences, to closureunder any form of feature preserving transformations.2.3 Approximate Data RepresentationSequences such as time series are characterized by theirlarge volume. Data is constantly generated, sampled,gathered and analyzed. The observation that data issampled already hints that the actual values just \hap-pened to be" what they are. A slight delay in the start-ing point of sampling can produce di�erent values.Moreover, e�cient access is required only to subse-quences of the data that satisfy domain-dependent prop-erties, rather than to particular explicit points. Hence,it is not necessary (nor is it feasible) to store all thedata in a manner that supports immediate access toany part of it at all times. It is su�cient to character-ize \interesting" features in the data, and store thesecharacterizations rather than whole sequences.Examples of such characterizations are di�erential equa-tions, approximating polynomials, compressions, ormain frequencies of DFT [FRM94]. Applications mayrequire di�erent alphabets of interesting features. Forexample, in order to �nd a word in a database of spo-ken recorded text, it is a good strategy to transformthe sequence of sampled audio signals into a sequenceof words, represented as strings of ASCII characters.These strings constitute the feature alphabet.The representation in terms of the target alphabetshould have the following characteristics:� Signi�cantly more space e�cient than the original.� If a; b are two sequences, Features(a), Features(b)are their respective interesting features, andRep(a), Rep(b) their respective representations inthe new alphabet, then: Rep(a) = Rep(b) ()Features(a) = Features(b)22() is a strong requirement, and can be relaxed by requiringit to hold with high probability. Probabilities assigned to eachdirection need not be the same. Sometimes false hits are accept-able but false dismissals are not, (thus right to left should have ahigher probability), or vice versa.



Namely, similar representation should correspondto similar features.� Preserves important features of the sequence.� Is conveniently indexable.� Supports queries on general patterns rather thanconcrete values.� Can be used to predict/deduce unsampled points.(This is not necessary for supporting generalizedapproximate queries.)We don't propose discarding the actual sequences. Theycan be stored archivally and used when �ner resolutionis needed.3 Related WorkThe work presented here lies in the intersection of twodomains, namely, sequence support in databases andsimilarity (and approximation) queries. A lot of therecent work on databases for temporal and sequentialdata [Ric92, GS93, SS93, SZLV93, SLR94] does notaddress approximation. Very interesting work was doneon similarity and approximation-based search for dataother than sequences [Mum87, Jag91, SWZS94], but itdoes not generalize well to sequences.Similarity search on sequential data is presentedin [AFS93, FRM94]. This work is based on mapping allsubsequences of �xed length to K-dimensional points,that are K coe�cients of the DFT (Discrete FourierTransform), and using minimal bounding rectangles forstorage and indexing. Queries are sequences that arematched against stored data up to some error toler-ance, measured using Euclidean distance. The work isextended in [GK95] to allow for shifting and scaling ofsequence amplitude. (A similar extension, using the L1metric, without DFT, is presented in [ALSS95]). Thisapproach �nds e�cient approximate representation fortime series, under the assumption that low frequenciesconstitute data, and high frequency is noise. However,similarity tests relying on proximity in the frequency do-main, can not detect similarity under transformationssuch as dilation (frequency reduction) or contraction(frequency increase). For instance, looking at the goal-post fever example, none of the sequences of Figure 5matches the sequence given in Figure 3, if main frequen-cies are compared. Moreover, their approach is basedon indexing over all �xed-length subsequences of eachsequence. We claim that not all subsequences are of in-terest, thus there is no need to facilitate e�cient accessto all subsequences.The above work is extended in another direction in[FL95] to deduce the K-dimensional representationfrom the given data, using a provided distance func-tion for the data, and reducing this distance to a K-dimensional Euclidean distance. This technique is veryuseful in cases where the distance function is well de-�ned but costly to compute. However, in many cases

(like in the goalpost fever case) obtaining distance func-tions on the actual data sequences is very hard, mak-ing the above technique not appropriate. Our approachpursues a complementary (feature based) direction, oftransforming the original sequences into a simpler formfrom which the relevant features for comparison are eas-ily obtained. These features are compared in order to�nd similarities, and distances are measured betweenthe values of the features to accommodate approximatematches.Other recent work presented in [ABV94] deals withrecognition, matching and indexing handwritten text.They break handwritten text into letters, and incor-porate Hidden Markov Models that recognize lettersinto a lexicographic index structure to support search.This approach doesn't generalize well to other sequen-tial data which is not as structured and predictable ashandwritten text.Very recently Jagadish et al [JMM95] introduced a gen-eral framework, for approximate queries. It consists ofa pattern language P, a transformation rule languageT, and a query language L. Distance between objects ismeasured in terms of the cost of the transformation rulesthat map from one object to another. The framework issimilar to ours in viewing similarity queries as generalpatterns that the data should satisfy, and in regardingtransformations as a similarity measure over data se-quences. However, we add a framework for representingdata to support similarity queries e�ciently. Workingstrictly within their framework, which uses transforma-tion rules as an e�ective measurement for similarity,search is exponential at best. Our framework gives avery general similarity criterion that is not meant tobe e�ective3. To compensate for this, we enhance theframework with a domain-dependent method for achiev-ing approximate representation, tailored for the speci�cfeatures that are preserved by the transformations.Our approach is focused around prominent features,the transformations we consider are those that preservethem, and approximations are deviations from these fea-tures. In [JMM95] the transformation rules correspondto the deviations and di�erences between objects, ratherthan to \sameness". Our tailoring of the representationaround the features, already embeds the predicates as-sociated with \pattern" queries of [JMM95], into therepresented data. This facilitates indexing and e�cientsearch, and allows for the transformation-rule based ap-proximation of [JMM95], to be treated as a simple,quanti�ed deviation from the stored data, and there-fore to be handled as regular range queries.4 Our Approach { Divide and ConquerIn this section we introduce and demonstrate our ideaof representing sequences in a way that facilitates gen-eralized approximate queries. It consists of breakingsequences into meaningful subsequences and represent-3Given an arbitrary transformation t, and two sequences a, b,whether t(a) = b is undecidable.



ing them using well behaved real-valued functions. Noother database system that we know of takes this ap-proach.4.1 The General ApproachTo facilitate the approximation discussed in Section 2,given any application domain, the following concernsmust be addressed (with the help of domain experts):� Identify key domain features of the data.� Find a feature-preserving representation.� Find a transformation from the time-series to thechosen representation.Centering representation around features of interest, al-lows querying them directly, as demonstrated in Sec-tion 4.4. Like in any other approach for representing,storing and querying data, there is a close and limit-ing relationship between the stored data, and the kindof queries that are e�ciently supported. Thus, themethod we pursue for supporting approximation is al-ways tightly coupled with the application domain, al-though it is general enough to be usefully applied inmore than a single domain.4.2 Function SequencesOur technique consists of mapping digitized sequencesto sequences of real-valued functions. We claim thatsequences can be broken into meaningful subsequences,and each subsequence can be represented as a continu-ous and di�erentiable function. The data model under-lying this approach must preserve and support sequen-tial (temporal or other) ordering, as in [SZLV93, SS93,GS93].Functions have the following desirable features:1. Signi�cant compression can be achieved. The ex-act compression rate depends on the nature of thedata, the tolerated information loss, and the chosenfunctions.2. Simple lexicographicordering/indexing exists within a single family offunctions.4 Some examples are:Polynomials { By degrees and coe�cients (wheredegrees are more signi�cant)3x2 + 2x + 1 < x4 + 2 < 2x4Sinusoids { By amplitude, frequency, phase.3. Continuity allows interpolation of unsampledpoints.4. Behavior of functions is captured by derivatives,inection points, extrema, etc.The last of those features is the most important for sup-porting generalized approximate queries. The behaviorof sequences is represented through the well-understoodbehavior of functions.4Each subsequence has to be shifted and regarded as if startingfrom time 0 to allow comparison of representing functions.

We associate with each application domain the speci�cfamily of functions that is best suited for it. This raisesseveral issues such as breaking the sequences, choosingfunctions, storing them and indexing them. The �rstissue is crucial for addressing the others. The next sub-section elaborates on it.4.3 Breaking Up SequencesObtaining good representation of sequences using ourtechnique, relies on a careful choice of the places wheresequences are broken. A breaking algorithm determineswhere each subsequence starts and ends, and a break-point is a point in the sequence on which a new sub-sequence starts, or a previous subsequence ends. Thebreaking algorithm must decide to which subsequencethe breakpoint belongs, according to the behavior ofthe resulting subsequences. The following list providesproperties that a breaking algorithm must satisfy to bebene�cial:Consistent { Sequences with similar features (where`similarity' is domain-dependent) are broken at cor-responding breakpoints, with respect to those fea-tures.Thus, the features by which subsequences are deter-mined (for instance { minima and maxima points)are detected even when the sequence is modi�edby any form of feature-preserving transformations.Therefore, if A and B are two sequences suchthat A can be obtained from B through a feature-preserving transformation, then when A and B arebroken into subsequences, each subsequence of Acan be obtained through a transformation of thecorresponding subsequence of B.Robust { Minor changes to a sequence do not a�ectthe respective breakpoints5. Putting it formally:Let S denote the sequence < s1; :::; sn > : Let S0denote the sequence obtained from S by adding anew element s0 between sl; sl+1 (0 � l � n)6.1. Suppose < si; :::; sl�1; sl; sl+1; :::; sj > is oneof the subsequences obtained from applying thebreaking algorithm to S, and F (t) is the rep-resenting function (within error tolerance �) of< si; :::; sj >. If there exists t, l < t < l + 1; s.t.F (t)� s0 < �, then the algorithm must break S0s.t. < si; :::; sl�1; sl; s0; sl+1; :::; sj > is one of thesubsequences. The rest of the subsequences are thesame as those of S.2. Suppose < si; :::; sl > and< sl+1; :::; sj > are two consecutive subsequencesof S, and F1(t); F2(t) are their respective repre-senting functions. If there exists t, l < t < l + 1;5To achieve robustness various kinds of preprocessing are appliedto the sequences prior to breaking, such as �ltering for eliminat-ing noise, normalizing and compression. A full discussion of themethods and results is beyond the scope of this paper.6If l = 0; s0 is added right before s1. If l = n; s0 is added rightafter sn .



s.t. F1(t) � s0 < �, (or F2(t)� s0 < �), then the al-gorithm must break S0 s.t. < si; :::; sl; s0 > (or< s0; sl+1; :::; sj > respectively) is one of the sub-sequences. The rest of the subsequences are thesame as those of S. (If the condition holds for bothF1 and F2, any of the two associations of s0 pre-serves robustness).Therefore, adding or deleting \behavior preserving" el-ements to the sequence, where the behavior is capturedby the representing function, does no more than shiftthe breakpoints by at most the number of elementsadded/deleted.Avoids Fragmentation { Most resulting subse-quences should be of length>> 1. This is necessaryfor achieving a substantial compression.We have implemented and experimented with severalbreaking algorithms, which are demonstrated and dis-cussed in Sections 4.4 and 5.4.4 GoalPost Fever { an Example (cont.)To illustrate how the divide and conquer approach han-dles generalized approximate queries, we show how itis applied to the Goalpost fever query, discussed in Sec-tion 2.1. The query looks for all 24 hours sequences withexactly two peaks. To keep things simple we assume thefollowing:1. Each original sequence of 24 hour temperature logsis broken at extremum points, where little local ex-trema are ignored { up to error tolerance �. Sincepeaks are features of interest in the medical domain,it is a very reasonable strategy.One of the algorithms we developed and imple-mented uses linear interpolation to break sequences(see Section 5), and satis�es the above assumption{ as demonstrated in Figure 6.2. The resulting subsequences are represented by lin-ear approximations. This is easily achieved by ei-ther using the interpolation line { a by-productof the breaking algorithm, or by calculating thelinear regression line through each subsequence.(Other information included in the representation,like start/end points of subsequences is of no inter-est for this example). Figure 6 shows the results of
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running our breaking program on a sequence, wherethe program calculates the approximating regres-sion line of each resulting subsequence.3. An index structure that supports pattern matching(like the ones discussed in [Fre60, AHU74, Sub95])is maintained on the \positiveness" of the func-tions' slopes. For a �xed small number �, thereare 3 possible index values: +� (slope > �), ��(slope < ��), or 0 (slope is between �� and �).We take � = 0:3. For example, given the se-quence 0(+�)0(��)0(+�)(��) (over the alphabetf+�; ��; 0g), by using the index, we get the posi-tions of the �rst point of all stored sequences thatmatch that pattern. (Other index structures arenot required for this example).Our approach works as follows:The database { The stored sequences are repre-sented as sequences of linear functions. Each func-tion is an approximation of a subsequence of theoriginal sequence, as demonstrated in Figure 6. It isimportant to note that although for the particularquery of �nding peaks it is su�cient to store onlythe positions of peaks, or even just the number ofexisting peaks (as opposed to complete functions),this would have left us with too little informationto answer any other useful queries regarding the
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behavior of the temperature between the peaks, orto approximately reconstruct the original data.The Query { The most naive way to pose the queryis as a regular expression over the alphabet f+�,��, 0g, as de�ned previously:0�(+�)(��)0�(+�)(��)0�We point out that our approach does not dependon this particular choice of pattern language.The Result { Following the index structure, we can�nd all sequences matching the required pattern.The sequence depicted in Figure 6, does not matchthe query pattern, while those depicted in Figure 7are all exact matches.Note that the correctness of the results depends on �(the steepness of the slopes) and the distance toleratedbetween the linear approximation and the subsequences.Our program was parameterized with distance 2:00 forthe above example7. These values are application de-pendent.Any peak-preserving transformations (such as the oneslisted in Section 2.1) applied to any of the sequences ofFigures 6 and 7, results in similar breakpoints and lin-ear representation of the respective sequences, (proof isbased on the breaking algorithm), and therefore the re-sults for the above query would be only those sequenceswith exactly two (prominent) peaks.5 Breaking Algorithms and ResultsThe goal of the breaking algorithms is to obtain break-points in places where the behavior of the sequencechanges signi�cantly. The �rst part of this section sur-veys the algorithms we use, while the second shows theresults of applying one of them to digitized electrocar-diograms (ECGs).5.1 Algorithms ReviewThere are two classes of algorithms we have studied andimplemented:On-line algorithms, determine breakpoints whiledata is being gathered, based on the data seen so far,with no overall view of the sequence [Kae94]. Theirmain merit is that an additional step of post-processingis not required. Their obvious de�ciency is possible lackof accuracy. Hence, it is di�cult to come up with an on-line algorithm that satis�es all our requirements for awide variety of sequences. We implemented and stud-ied one family of on-line algorithms based on slidinga window, interpolating a polynomial through it, andbreaking the sequence whenever it deviates signi�cantlyfrom the polynomial. Our experiments are documentedin [Sha95], and we are still studying algorithms using arelated approach.O�-line algorithms, are applied to complete se-quences. The basic template of the algorithms we use7This is the � in Figure 8 of the next section.

is given in Figure 8. It is a generalization of an al-gorithm for B�ezier curve �tting [Sch90]. Any type ofcurve, c (such as polynomials of a �xed degree { ratherthan the B�ezier curves in the original algorithm), canbe used within it, resulting in subsequences of the origi-nal sequence S, each of which can be approximated by acurve of type c. In addition to being restricted to B�ezierCurve Fitting AlgorithmLet c be a type of curve.beginGlobal Variables:S Sequence of points ((x1; y1); :::; (xn; yn))� Error tolerance1. Fit a curve of type c to S2. Find point (xi; yi) in S with maximumdeviation from curve.3. If deviation < � return(S).4. Else f(a) Fit a curve c to the subsequenceending at (xi�1; yi�1), S0.(b) Fit a curve c to the subsequencestarting at (xi+1; yi+1), S00(c) If (xi; yi) is closer to the curve ob-tained in (a)make (xi; yi) the last element of S0Else make (xi; yi) the �rst elementof S00.(d) Recursively apply the algorithm toS0 and S00.gendFigure 8: The general template of the curve �tting algo-rithmcurves, (requiring a parameterization step prior to step1 of Figure 8), the original algorithm imposed continuitybetween curves, thus associating the breakpoint foundin step 2 of Figure 8 with both resulting subsequences.Our application doesn't require continuity, and we wantto prevent the breakpoint from appearing as both theend of one subsequence and the beginning of the next.Steps 4(a)-(c) are another adjustment we made to theoriginal algorithm, to decide with which subsequence toassociate the breakpoint.We have instantiated the curve type, (c of Figure 8),in three ways { a modi�ed B�ezier curve8, a linear-regression line, and an interpolation line through theendpoints of the respective sequences. A full report ofour experiments can be found in [Sha95]. Here we con-centrate on the linear interpolation algorithm, and onlybriey review the B�ezier Curves and linear regressionalgorithms.B�ezier Curves are used in computer graphics for rep-8Implementation for Schneider's origi-nal algorithm was available through ftp wuarchive.wustl.edu atgraphics/graphics/books/graphics-gems/Gems.



resenting digitized curves [FvDFH90]. Computer-graphics techniques match our interest in queries basedon \the way sequences look" (as demonstrated in Sec-tion 2.1). They also generalize well to sequences otherthan time-series (not functions of time), and to multi-dimensional sequences. Moreover, having a graphics-oriented representation of sequences, allows the use ofmethods from computer graphics (such as the multi-resolution analysis) for further analysis of data. How-ever, unlike computer graphics applications, we haveno indication of where curves start/end (no \mouseclicks"), nor do we allow user interference in the break-ing process. The algorithm in [Sch90] supports fully au-tomated curve �tting of digitized curves and thereforeis useful for our purposes. Its strengths and weaknessesfor breaking sequences are discussed in [Sha95].A simpler version of curve �tting is the use of linearfunctions for curves. We have experimented with bothlinear regression and linear interpolation of endpoints.The latter is simpler and produces better results, and isdescribed in the remainder of this section.The linear interpolation algorithm takes as its curve theline interpolating the endpoints of the sequence, ande�ectively breaks sequences at extremum points. Theintuitive explanation is that by passing a non-verticalline through the sequence, extremum points are furtheraway from it than others. Thus the point most dis-tant from the line is either some maximum point aboveit or a minimum point below it. Due to the recur-sion step (Figure 8, step 4(d)), the extremum pointbecomes one of the endpoints in the next iteration,thus points close to it would be close to the inter-polation line, and therefore { there is no fragmenta-tion, unless it is justi�ed by extremely abrupt changesin the sequence's value. Hence the algorithm is ro-bust, consistent and avoids fragmentation. Another ad-vantage of the algorithm is that �nding an interpo-lation line through two points does not require com-plicated processing of the whole sequence. Only endpoints need to be considered in order to generate theline. The algorithm's run time is O(number of peaks�n)(where n is the sequence length). It is much fasterthan another approach we have taken, using dynamicprogramming, minimizing a cost function of the forma�(# of segments) + b�(distance from approximating line)which runs in time O(n3).5.2 Linear Interpolation on ECGsWe already demonstrated the applicability of our linearinterpolation program for breaking sequences in the con-text of the goalpost fever query, on data we generatedourselves. We also tested our program on actual dig-itized segments of electrocardiograms9 and the resultsare demonstrated in Figure 9. The prominent peaks inthe �gure are pointed to by R. Such breaking is use-ful for addressing actual queries of the form \Find allECG's with R-R intervals of length n � �", where � is9The segments of ECGs are available through WWW,http://avnode.wustl.edu.
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Figure 9: Two ECG segments of 512 points each, brokenby our algorithm. The distance parameter (� of Figure 8)was set to 60.the error tolerance on the distance. (That is, distancen � � between two consecutive peaks). It can be an-swered easily, if we have an index, such as an invertedindex structure ( [Car75, FJ91] or some variation on it)based on the time elapsed between peaks. Building suchan index is reasonable, since this kind of query is oftenrequired [Eli95], and can be done as follows:1. Find the peaks in the sequences. This can be donewhile storing the data as part of the preprocess-ing { by examining the slopes of the representingfunctions. If data is already stored, an (existing) in-dex structure (see [Sub95] for instance), that �ndsall subsequences of the form (+�)(��) (as de�nedin Section 4.4) and returns their positions, can beused.2. Start and end points of subsequences are part ofthe information obtained from the breaking algo-rithm, and are maintained with any representationof the sequence. Hence, a table like Table 1 can beconstructed for each sequence, in which peaks arefound. The table contains for each peak the approx-imating functions with the positive and negativeslopes, and the start and end points of the respec-tive subsequences approximated by those functions.Each point is a pair of the form (time; amplitude).3. For each peak, compare the amplitude at the endpoint of the rising subsequence (REnd) with thatof the start point of the descending subsequence(DStart). The one with the larger amplitude iswhere the peak actually occurred. Keep time for



Peak Rising Function RStart REnd Descending Function DStart DEnd1 21.333x-2731 (126,-43) (132,85) -14.8x+2045.4 (133,77) (143, -71)2 22x-5839 (263,-53) (268,57) -15x+4114 (269,79) (279, -71)3 26x-10373 (397,-51) (401,53) -14.8x+6028.6 (402,79) (412, -69)Table 1: Peaks information for the top ECG on Figure 9.that point.4. For each pair of successive peaks, �nd the di�erencein time between them. The result is a sequenceof distances between peaks. For the top ECG of�gure 9, the sequence is: < 137; 133>while for the bottom one, the obtained sequence is:< 117; 149; 136>.Since the R-R intervals correspond to the timeelapsed between every two heartbeats, the intervalcan not exceed a certain integer and can not go be-low some threshold (for any living patient). Hencethere is a limited number of interval values, accord-ing to which the sequences can be indexed. A sim-ple inverted �le index is su�cient for this purposeand is used for this example. Using a more elab-orate structure (see [Sub95]) would support morecomplex queries.The inverted-�le index structure for our data is asshown in Figure 10. It consists of a B-Tree struc-
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B-Tree Figure 10: An inverted �le structure for R-R intervalsture, which points to the postings �le. The postings�le contains \buckets" of R-R interval lengths anda set of pointers to the ECG representations whichcontain those interval lengths. This set can also beaugmented with the position of the interval of thislength, but this isn't necessary, because the physi-cian is most likely to look at the complete ECGimage and see the required phenomenon on his/herown.In order to �nd the ECG's with an R-R intervalof duration n� � (suppose n = 150; � = 2), we fol-low the B-Tree structure looking for values between

148-152, and get to the posting list for 149 (Eachbucket in the postings �le is sorted by the valuesstored in it), and �nd that ECG2 (the bottom ECGdepicted in �gure 9) satis�es the query.The \R-R interval" query is a generalized approximatequery according to the criteria set in Section 2.2:1. The pattern characterizing the desired result is:\having distance exactly n between peaks".2. The query de�nes a set S of all electrocardiogramshaving the property, regardless of explicit values.3. The set is closed under transformations that pre-serve the distance between peaks, such as shift intime or in amplitude of the whole sequence.4. A result is an exact match if the distance betweenits peaks is exactly n.5. A result is an approximate match if the distancebetween its peaks is within � distance from n. Ifwe allow the slopes for what is considered a peakto be within some error around � then we get an-other dimension of approximation { with respect to\peakness".Figure 9 illustrates the e�ciency of representation thatis obtained by our technique. 512 points sequences arerepresented by about 12 function segments. Assum-ing each representation requires 4-6 parameters (suchas function coe�cients and breakpoints), we get abouta factor of 10 reduction in space.Thus, the example demonstrates the ability of our tech-nique to facilitate queries unsupported within any otherframework, to reduce signi�cantly the size of a stored se-quence, and to support search by using sequence-basedindex structures.Our breaking algorithms produce as a by-product func-tions that approximate the subsequences. In some cases,the function is a good representation of the subsequence,while in other cases some other representation is re-quired. For instance, in the example given in the Sec-tion 4.4, the by-product functions were interpolationlines, but the ones used for representation were regres-sion lines. It is possible that with some adaptation (seeSection 6) by-product functions can be a good represen-tation.It should be pointed out that since our representationis quite compact, it would be possible to compute andstore multiple representations and indices for the samedata. This would be useful for simultaneously support-ing several common query forms.



6 Conclusions and Future WorkWe have presented a new notion of approximation,which is required in application domains new to thedatabase world, such as medicine, experimental sci-ences, music and many others. We address two basicneeds of these domains. The need for queries based onpatterns of behavior rather than on speci�c values, andthe need to reduce the amount of stored and scanneddata while increasing the speed of access.We formally introduce the new notion of generalizedapproximate queries, and propose a framework thatsupports them. Our \divide and conquer" approach,is based on breaking sequences into meaningful subse-quences and storing an approximate, compact represen-tation of each subsequence as a mathematical function.Since a function's behavior can be captured by proper-ties of the derivatives, indexing can be done accordingto such properties. Queries that specify sequences withcertain behavior can be transformed in the same way,and can be matched to the appropriate sequences usingsuch indices.We presented several algorithms for breaking sequences,and demonstrated the applicability of our approach forsolving real problems in medical applications. Ourmethod also reduces the amount of data to be scannedfor answering such queries.Due to space limitations, we omitted the details of thealgorithms, that we implemented for both breaking se-quences and preprocessing them prior to breaking. Weuse various algorithms for �ltering, compression (usingthe wavelet-transform [FS94, HJS94, Dau92]), and nor-malization (to have mean 0 and variance 1). Such pre-processing is useful for reducing the amount of data andfor ensuring that our breaking algorithms work prop-erly. Normalization is important both for maintainingrobustness of our breaking algorithms (see Section 4),and also for enhancing similarity and eliminating thedi�erences between sequences that are linear transfor-mations (scaling and translation) of each other.Future work includes:� Continue applying our approach to additional prob-lem domains.� Experiment more with compressing the sequencesbefore and after breaking while preserving theirimportant features. Most compression techniques(such as the Lempel-Ziv algorithm) are concernedwith losslessly reducing the amount of data, but notwith making the compressed data have the samefeatures (peaks for instance) as the original. Cur-rently we are experimenting with multiresolutionanalysis and applying the wavelet transform, forcompressing the sequences in a way that allows ex-tracting features from the compressed data, ratherthan from the original sequences.� De�ne a query language that supports generalizedapproximate queries. One of the options is to use avisual query language in which the user draws the
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