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Abstract

Stochastic topological models, and hidden
Markov models in particular, are a useful tool
for robotic navigation and planning. In previ-
ous work we have shown how weak odometric
data can be used to improve learning topologi-
cal models, overcoming the common problems
of the standard Baum-Welch algorithm. Odomet-
ric data typically contain directional information,
which imposes two difficulties: First, the cyclic-
ity of the data requires the use of special circular
distributions. Second, small errors in the head-
ing of the robot result in large displacements in
the odometric readings it maintains. The cumu-
lative rotational error leads to unreliable odomet-
ric readings. In the paper we present solutions
to these problems by using a circular distribu-
tion and relative coordinate systems. We validate
their effectiveness through experimental results
from a model-learning application.

1 INTRODUCTION

Directional data is information consisting of magnitude
anddirection. Such data is an integral part of important ap-
plications in various areas of computer science in general
and artificial intelligence in particular. In computer graph-
ics, automatic production of pen-and-ink drawings and the
production of animation based on magnetic trackers data
requires statistical manipulation of directional data. Incog-
nitive science, modeling routes chosen by animals [4] re-
quires a similar kind of statistical manipulation. In the area
of machine learning we often use probabilistic models for
robot movement. Most aspects of robot movement (arm
movement as well as the whole body movement) can be
described in terms of location and heading change, requir-
ing the use and manipulation of directional data.

Probabilistic models are widely used within the AI com-
munity. Such models may allow continuous probabilities,
as demonstrated in work on Bayesian networks [7], hid-
den Markov models [5, 8], probabilistic clusters [2] and
stochastic maps [19], to name a few. However, the assump-
tion underlying all the above work is that continuous dis-
tributions arelinear — that is — distributions that assign
density to each point on the real line so that the area un-
der the density curve, integrated over the whole real line, is1.1 Such models do not take into account directional data,
which is inherentlycyclic. Under circular distributions the
density of any pointx on the real line is the same as that ofx+ k� wherek is any integer and� is some real number.

The need for circular distributions has long been realized
by statisticians [6], but the practice of using them has not
found its way into the computer science community and
to the machine learning community in particular. One of
the goals of this paper is to point out the usefulness of one
specific circular distribution in the context of robotics, and
provide a short tutorial on circular distributions.

Another special aspect of directional data is its sensitiv-
ity to errors. As most navigators, pilots and skippers have
experienced, a small angular deviation from the original
course causes a big displacement at the final location. This
problem is very prominent in mobile robots, where drifts
and drags of the wheels and disalignment of both engines
and floors can cause a robot to face in the wrong heading
with respect to its own odometric readings. Odometric in-
formation is recorded by the robot along three dimensions;
it consists of the changes along thex and they axis as well
as a change in theheadingof the robot within a global co-
ordinate system. In our previous work on learning topolog-
ical models [17] we made several assumptions about the
odometric data:� All odometric measures are normally distributed.

1Most often the distribution is Gaussian.



� All corridors are perpendicular to each other.� The robot, when collecting the data, is using the per-
pendicularity assumption, and is collecting the data
with respect to one global coordinate system.

This paper demonstrates the problematic aspects of these
assumptions and introduces our solution to the problems,
together with preliminary results that demonstrate the ef-
fectiveness of our solution. The rest of the paper is orga-
nized as follows: Section 2 describes our application and
motivates the need for circular distributions in the context
of machine learning; Section 3 presents the von Mises dis-
tribution, which is a circular version of the normal distribu-
tion; Section 4 discusses the problems faced due to heading
deviations and presents our solution to the problem; Sec-
tion 5 presents experiments and results to demonstrate the
usefulness of our approach; Section 6 concludes the paper.

2 LEARNING TOPOLOGICAL MODELS

Hidden Markov models (HMMs), as well as their gener-
alization to models for partially observable Markov deci-
sion processes (POMDP models), are a useful tool for rep-
resenting environments such as road networks and office
buildings, which are typical for robot navigation and plan-
ning [1, 14, 18]. Previous work on planning with such mod-
els typically assumed that the model is manually provided.
Manual acquisition of these models can be very tedious
and hard. It is desirable to learn such models automati-
cally, both for robustness and in order to cope with new and
changing environments. SincePOMDPmodels are a simple
extension ofHMMs, they can, theoretically, be learned with
a simple extension to the Baum-Welch algorithm [15] for
learningHMMs. However, without a strong prior constraint
on the structure of the model, the Baum-Welch algorithm
does not perform very well: it is slow to converge, requires
a great deal of data, and often becomes stuck in local max-
ima. In previous work [16, 17] we demonstrated how the
simple Baum-Welch algorithm can be enhanced with weak
local odometric information to learn better models faster,
under the assumption listed above. For the sake of com-
pleteness, we briefly review the essentials of this work here.

A robot moves through the corridors in an office environ-
ment. Low-level software provides a level of abstraction
that allows the robot to move through hallways from inter-
section to intersection and turn ninety degrees to the left
or right. At each intersection, ultrasonic data interpretation
lets the robot observe, in each of the four cardinal direc-
tions, whether there is an open space, a door, a wall, or
something unknown. The robot also has encoders on its
wheels that allow it to estimate its current pose (position
and orientation) with respect to its pose at the previous in-
tersection. Of course, the action and perception routines

and the odometric measures are all subject to error. The
learning task is to deduce a model from the recorded obser-
vations and odometric information.

Our learning algorithm gets as an input an experience se-
quenceE of observations and odometric readings, and pro-
duces as output anHMM 2, �, of the environment, such that
the likelihood,Pr(Ej�), is locally maximized. Formally,
the standardHMM is defined as a tuple� = hS;O;A;B; �i,
where:� S = fs1; : : : ; sNg is a finite set ofN states;� O = Qli=1Oi is a finite set of observation vectors

length l; the ith element of an observation vector is
chosen from the finite setOi;� A is a stochastic transition matrix, withAi;j =Pr(qt+1 = sj jqt = si); 1 � i; j � N ; qt is the state
at timet;� B is an array ofl stochastic observation matrices, withBi;j;o = Pr(Vt[i℄ = ojqt = sj); 1� i � l; 1�j�N;o 2 Oj; Vt is the observation vector at timet;� � is a stochastic initial probability vector describing
the distribution of the initial state.

Odometric information gathered by the robot is not an in-
herent part of the topological model, but is used by the
learning algorithm to better identify and distinguish states.
To facilitate the use of this information we augment the
standard model with the odometric relation matrix:� R is a relation matrix, specifying for each pair of states,si andsj , the mean and variance of theD-dimensional

metric relation between them;�dij def= �(Ri;j[d℄) is
the mean of thedth component of the relation be-
tweensi and sj and (�dij)2 def= �2(Ri;j[d℄), the vari-
ance, where1 � d � D. Furthermore,R is geo-
metrically consistent: for each componentd, the rela-

tion Rd(a; b) def= �(Ra;b[d℄) must satisfy the following
properties for all statesa, b, and
:� Rd(a; a) = 0;� Rd(a; b) = �Rd(b; a) (anti-symmetry); and� Rd(a; 
) = Rd(a; b) + Rd(b; 
) (additivity);

The odometric information recorded by the robot at timet,rt, consists of the change in thex andy coordinates of the
odometric readings when moving from stateqt�1 to stateqt, as well as the change of the robot’s heading,�, between
these states.

An arbitrary initial model�0 is assumed. Then an expecta-
tion maximization algorithm [3] is executed as follows:

2We discuss hereHMM s rather thanPOMDPmodels. Extension
to POMDPs is straightforward, but notationally more cumbersome.
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Figure 1: Robot changes heading from statea to stateb.� E-step: computes the state-occupation and transi-
tion probabilities, 
t(i) = Pr(qt = sijE; �) and�t(i; j) = Pr(qt = si; qt+1 = sj jE; �), respectively,
at each timet in the sequence, givenE and the current
model�, and� M-step: finds a new model� that maximizesPr(Ej�; 
; �).

Introducing odometric information requires iterative up-
dates of the odometric relations between pairs of states, in
the relation matrix,R. The updates need to maintain the
properties listed above, although currently the update pro-
cedure only satisfies the first two.

The learning task is further complicated by the special na-
ture of the heading reading and the rotational errors ac-
crued. The following section goes in more detail into the
special issues of handling the heading information. The
rest of the paper deals with resolving the problems caused
by rotational errors.

3 DIRECTIONAL DATA AND
DISTRIBUTIONS

Suppose a robot is in statea, which is in locationhx; yi
facing in direction�, as shown in figure 1. By turning
backwards, it transitions to stateb, and a respective change
of heading of approximately�180Æ is recorded. Thus the
new recorded configuration of the robot ishx+ �1; y + �2;� � 180Æ + �3i; where�i is the error due to inaccuracy in
both measurement and movement. In earlier work [17],
we treated all errors — in both location (x; y) and head-
ing (�) — as if they were normally distributed. However,
the change in heading is different from changes inx andy,
since angular measurements arecyclic. That is, a change
in heading of�Æ is the same as that of� � 360Æk, for any
integerk.

If we knew in advance, for every pair of states, the ap-
proximate change in heading (��) between them, we
could have modeled it as normal with mean��, and
small variance�2. We could have adopted a convention,
normalizing all angles to be within a cyclic range, e. g.[�180Æ; 180Æ℄, (similarly we may use radians), and always
chosen to take as the angular change between two pointsmin(j��j; 360Æ � j��j), and assigned it the correct sign.
Such an approach of using a non-circular distribution is jus-
tified when the estimation of a position is based only on
readings a-priory known to be taken near this position, (see
for example work by Thrun et al [20] and Lu et al [12]).

However,we do not know in advance the angles between
states.The data is a sequence of measurements recorded at
all the states. Weestimatethe probabilities of the states in
which they were recorded, and take aweighted meanof the
measurements in order to estimate the angular change be-
tween every two states. Thus, we are facing the following
problem:What is the interpretation of a “mean angle”?

As an example, suppose we want to estimate the heading
change from statea to stateb of Figure 1. We adopt the
convention of angles being expressed between�180Æ and180Æ. Also, suppose that the robot recorded two measure-
ments of angular distance from statea to stateb: �169Æ and185Æ. The simple average between these measurements is
an estimate of the mean heading change of8Æ. Obviously
this value does not even approximate the change of head-
ing between the two states. The same problem arises if
we use any other convention for expressing angles (e.g.0Æ
to 360Æ). The problem lies in the fact that angles that are
about180Æ away from the mean angle, indeed greatly de-
viate from this mean, while angles that deviate about360Æ
are actually very close to it. To capture this idea, the con-
cept ofcircular distributionis required. We provide a brief
introduction to the concepts and techniques used for han-
dling directional data. In particular we concentrate on the
von Mises distribution— a circular version of the normal
distribution. Further discussion can be found in the statis-
tical literature [6, 10, 13]. Section 3.3 returns to show how
the theory is applied in our model and learning algorithm.

3.1 STATISTICS OF DIRECTIONAL DATA

Directional data in the 2-dimensional space can be
represented as a collection of 2-dimensional vectors,(hx1; y1i; : : : hxn; yni), on the unit circle, as shown in Fig-
ure 2. The points can also be represented as the corre-
sponding angles between the radii from the center of the
unit circle and the x axis,(�1; : : : ; �n), respectively. The
relationship between the two representations is:xi = 
os(�i); yi = sin(�i) ; (1 � i � n) :
The vector mean of then points,hx; yi, is calculated as:x = Pni=1 
os(�i)n ; y = Pni=1 sin(�i)n : (1)

Using polar coordinates, we can express the mean vector in
terms of angle,�, and length,a, where (except for the casex = y = 0):� = ar
tan( yx ); a = (x2 + y2) 12 (2)

The angle� is the mean angle, while the lengtha is a
measure (between0 and1) of how concentrated the sample
angles are around�. The closera is to 1, the more concen-
trated the sample is around the mean, which corresponds to
a smaller sample variance.
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Figure 2: Directional data represented as angles and as vectors
on the unit circle.

Figure 3: The von Mises distribution with mode 0 and various
k values.

A functionf is a density function of a continuouscircular
distributionif and only if: f(x) � 0 and

R 2�0 f(x)dx = 1:
A simple example of a circular distribution is theuniform
circular distribution, whose density function isf(�) = 12�
(where� is measured in radians).

One way of deriving a circular version of an unlimited lin-
ear distribution is through “wrapping” it around a circum-
ference of the unit circle. Ifx is a random variable on the
line with probability density functionf(x), the wrapped
random variablexw = [x mod 2�℄ is distributed according
to a wrapped distribution with the probability density func-
tion: fw(�) =P1�1 f(� +2�k). Applying this derivation
to the normal distribution results in a circular version of
the normal distribution, but estimating its parameters from
sample data can be hard [6, 13]. An easier-to-estimate cir-
cular version of the normal distributionwas derived, by von
Mises [6, 13]. We use this distribution to model the robot
heading in this work, and it is described below.

3.2 THE VON MISES DISTRIBUTION

A circular random variable,�, 0 � � � 2�, is said to have
thevon Mises distributionwith parameters� andk, where0 � � � 2� andk > 0, if its probability density function
is: f�;k(�) = 12�I0(k)ek 
os(���) ;
whereI0(k) is the modified Bessel function of the first kind
and order0: I0(k) = 1Xr=0 1r!2 (12k)2r :
Similar to the linear normal distribution, this is a unimodal
distribution, symmetrical around�. The mode is at� = �
while the antimode is at� = �+�. We observe that the ra-
tio of the density at the mode to the density at the antimode
is e2k, which indicates that the largerk is, the more con-
centrated the density is about the mode. Figure 3 shows an

“unwrapped” plot of the von Mises distribution for various
values ofk where� = 0.

We now describe how to estimate the parameters� andk
given a set of heading samples (angles�1; : : :�n) from a
von Mises distribution [13]. We are looking for maximum
likelihood estimates for� andk. The likelihood function
for the data generated by a von Mises distribution with pa-
rameters� andk is:L�;k = nYi=1 f�;k(�i) = ekPni=1 
os(�i��)(2�)nI0(k)n :
The maximum likelihood estimate for�, �, is:� = ar
tan(yx ), wherey, x are as defined in equation 1.

The maximum likelihood estimate fork is thek that solves
the equation: I1(k)I0(k) = 1n nXi=1 
os(�i � �) : (3)

If we don’t know� and are only interested in estimatingk with respect to theestimate�, by using trigonometric
manipulation and the definition ofa (Equation 2), we can
substitute the right hand side of equation 3 bya and ob-
tain that the maximum likelihood estimate fork is k that
satisfies: I1(k)I0(k) = a .

However, if we do have a given� and want to find a max-
imum likelihood estimate for the concentrationk of the
sample data around that specified�, we need to use as a
maximum likelihood estimate fork, k that satisfies:I1(k)I0(k) = 1nvuut nXi=1 
os(�i)!2+ nXi=1 sin(�i)!2� nXi=1 sin(�� �i)!2:



The above estimation formulae agree with the intuition that
the sample is more concentrated (k is larger) about the sam-
ple mean (�) than about the true distribution mean (�).

The rest of the section explains how the von Mises param-
eters are incorporated into the Hidden Markov model, and
how the learning algorithm is adapted to learn these param-
eters.

3.3 HANDLING ANGULAR ODOMETRIC
READINGS

To model the heading difference between each pair of
states, the relation matrixR, described in Section 2, is 3-
dimensional, consisting of the componentshx; y; �i. The
componentRi;j[�℄ represents the heading change of mov-
ing from statesi to sj , and is assumed to be distributed
according to the von Mises distribution. The notation��i;j def= �(Ri;j[�℄) represents the mean of the distribution

for this heading change, whilek�i;j def= k(Ri;j[�℄) represents
the concentration parameter around the mean3. The three
constraints described before for the components ofR, (ide-
ally) hold for the� component as well.

Similarly, every observed relation item,rt, in the expe-
rience sequenceE, has a heading-change component,�,
which records the robot’s estimated change in heading be-
tween the state at timet, qt, and the stateqt+1.
The reestimation formula for the von Mises mean parame-
ter of the heading change between statessi andsj is:��i;j=ar
tan0BBBB�T�2Xt=0 [sin(rt[�℄)�t(i; j) � sin(rt[�℄)�t(j; i)℄T�2Xt=0 [
os(rt[�℄)�t(i; j) + 
os(rt[�℄)�t(j; i)℄1CCCCA:
The fraction denotes the ratio between the expected sine
and the expected cosine of the heading change from statei to statej. Since the heading change fromj to i is iden-
tical in magnitude but opposite in direction to the heading
change fromi to j, the transitions fromj to i are also ac-
cumulated – with reversed signs. By takingar
tan of this
ratio we get an estimate for the mean heading change itself.

To reestimate the concentration parameter, we need to findk�i;j such that:I1[k�i;j ℄I0[k�i;j ℄ = PT�2t=0 [�t(i; j) 
os(rt[�℄� ��i;j)℄PT�2t=0 �t(i; j) :
3In contrast,x andy are normally distributed and have their

variancerather thanconcentrationstored inR.

Findingk�i;j that satisfies this equation is done through the

use of a lookup table listing values of the quotientI1[x℄I0[x℄ .
The above reestimation formulae agree with the maximum
likelihood estimator formulae given in Section 3.1. Their
correctness can be proved along the lines of the proof pro-
vided in our previous document [16].

4 STATE-RELATIVE COORDINATE
SYSTEMS

In our previous work we assumed that there is a sin-
gle global coordinate system within which the robot op-
erates. Moreover, we assumed that the robot collects its
data within a perpendicular corridor framework and that
it takes advantage of this single perpendicular framework
while recording odometric information. This assumption
may be troublesome in practice. The rest of the paper dis-
cusses the potential problems, presents a method for re-
laxing the assumptions and addressing the problems, and
demonstrates the effectiveness of the solutions through ex-
periments and results.

4.1 MOTIVATION

We tend to think about an environment as consisting of
landmarks fixed in a global coordinate system and corri-
dors or transitions connecting these landmarks. However,
this view may be problematic when robots are involved.

Conceptually, a robot has two levels in which it operates;
the abstract level, in which it centers itself through cor-
ridors, follows walls and avoids obstacles, and thephys-
ical level in which motors turn the wheels as the robot
moves. In the physical level many inaccuracies can oc-
cur: unaligned wheels or unsynchronized motors can cause
sidewards drift, an obstacle under a wheel can cause the
robot to slightly rotate around itself, or uneven floors may
cause the robot to slip in a certain direction. In addition,
the odometric measuring instrumentation may be inaccu-
rate in and of itself. In the abstract level, corrective actions
are constantly executed to overcome the physical drift and
drag. For example, if the left wheel is disaligned and drags
the robot leftwards, a corrective action of moving to the
right is constantly taken in the higher level to keep the robot
centered in the corridor.

Such phenomena greatly effect the odometry recorded by
the robot, if it is interpreted with respect to one global
framework. For example, consider the robot depicted in
Figure 4. It drifts to the left��Æ when moving from one
state to the next, and corrects for it by moving�Æ to the
right to maintain itself centered in the corridor, moving
along the solid arrow. Let us assume that states are lo-
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Figure 4: The robot moves in a corridor along the solid arrow,
correcting for drift in the direction of the dashed arrow.

Figure 5: A path in a perpendicular environment, plotted based
on odometric readings taken by the robot Ramona.

cated along the center of the corridor, which is aligned
with they axis of the global coordinate system. The robot
steps back and forth in the corridor. Whenever it reaches
a state, its odometry reading changes byhx; y; �i along thehX;Y; headingi dimensions, respectively. As the robot
proceeds, the deviation with respect to thex axis becomes
more and more severe. Thus, after going through several
transitions, the odometric changes recorded between every
pair of states, with respect to a global coordinate system,
become larger and larger (especially in theX dimension).

Similar problems of inconsistent odometric changes
recorded between pairs of states can arise along any of the
odometric dimensions. It is especially severe when such
inconsistencies arise with respect to the heading, since this
can lead to confusion between theX and theY axes, as
well as confusion between forwards and backwards move-
ment (when the deviation in the heading is around90Æ or180Æ respectively). An example of our robot view of a per-
fectly perpendicular office environment, based on its odo-
metric readings within a global coordinate system, is shown
in Figure 5. The data was collected by our robot Ramona,
while moving along the corridors in an area of our depart-
ment, depicted in Figure 7.

A solution to such a situation is to model the odometric re-
lations of moving from statesi to statesj using a changing
coordinate system which isrespectiveto statesi, as op-
posed to a global coordinate system anchored at the initial
state. We formalize this idea and provide the update rules
for the odometric information based on this approach in the
rest of this section. We have implemented our solution, and
demonstrate its effectiveness throughout Section 5.

4.2 LEARNING ODOMETRIC RELATIONS WITH
CHANGING COORDINATES

As before, our experience sequenceE consists ofT pairshrt; Vti of recorded odometric relations and observation
vectors. The odometric relations are still recorded with re-
spect to the robot’s global coordinate system. However,
when learning the relation matrix from the odometric read-
ings, we interpret the entryRi;j in the relation matrixR, as
encoding the information with respect to a coordinate sys-

x∆

y∆

∆θ
Si

Sj

y

x

Figure 6: Robot in stateSi, facing in the direction of they axis.

tem whose origin is anchored at the statesi; they axis is
aligned with the robot’s heading in statesi and thex axis is
perpendicular to it. This is depicted in figure 6. The robot
is in statesi facing in the direction pointed to by they axis.
Its relationship to the statesj is described in terms of the
coordinate system shown in the figure. Its heading in each
state is denoted by the bold arrow.

To support this interpretation of the relation matrix we need
to revisit the formulation of the geometrical-consistency
constraints stated in Section 2, as well as the update for-
mulae used when learning the model.

The consistency constraints have to reflect the coordi-
nate system with respect to which the odometry is repre-
sented. Since the heading measurement is independent of
any specific coordinate system, only the constraints over
the x and y components of the odometric relation need
to be redefined. We denote by�hx;yi(a; b) the vectorh�(Ra;b[x℄); �(Ra;b[y℄)i. Let us defineTab to be the trans-
formation which maps anhxa; yai pair represented with re-
spect to the coordinate system of statea, to the same pair
represented with respect to the coordinate system of stateb, hxb; ybi, (note thatTab = T �1ba ).

More explicitly, as before, let��(a; b) be the mean change
in heading from statea to stateb (recall that��(a; b) =���(b; a)). The transformationTab is defined as follows:�xbyb�=Tab��xaya��=�xa 
os(��(a; b))� ya sin(��(a; b))xa sin(��(a; b)) + ya 
os(��(a; b))� :
We can now redefine the consistency constraints for thex
andy components of the odometric relation:
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Figure 7: Model of a prescribed path through a true hallway
environment.

Figure 8: Learned topological model.� �hx;yi(a; a) = h0; 0i;� �hx;yi(a; b) = �Tba ��hx;yi(b; a)� (anti-symmetry);� �hx;yi(a; 
) = �hx;yi(a; b)+Tba ��hx;yi(b; 
)�(additivity);
The reestimation formulae for all the parameters except for
thex andy components of the relation matrixR, remain as
before. However, the reestimation formulae for thex andy parameters are changed to reflect the relative coordinate
systems used.�xi;j and�yi;j are reestimated as follows:��xi;j�yi;j�= T�2Xt=0�t(i; j)� rt[x℄rt[y℄�� T�2Xt=0�t(j; i)Tji��rt[x℄rt[y℄��T�2Xt=0 (�t(i; j) + �t(j; i)) :
These reestimation rules are guaranteed to satisfy the first
two geometrical constraints, but not the additivity con-
straint. Their correctness can be proved along the lines of
the correctness proofs for all other formulae [16].

5 EXPERIMENTS AND RESULTS

The goal of this work is to use odometry to improve the
learning of topological models, while using fewer iterations
and less data. We tested our algorithm in a simple robot-
navigation world. In earlier stages of this work, a strong
assumption underlay our experiments: the corridors in the
environment are all perpendicular to each other, and the
agent was using this perpendicularity to reset its position
while accumulating the odometric readings. Here we have
updated the algorithm and dropped the assumption. The ex-
periments demonstrate that the use of odometry, even with
accumulated rotational error and without using the perpen-
dicularity assumption, is still very beneficial.

5.1 EXPERIMENTAL SETTING

Our experiments use both real robot data and simulated
data. We ran our robot Ramona, a modified RWI B21,
along aprescribed4 directed path in our department corri-
dors. Low-level routines let Ramona move forward through

4Hence, no decisions are executed by the robot, and the model
is anHMM and not a completePOMDP.

hallways from intersection to intersection and to turn ninety
degrees to the left or right. Ultrasonic data interpretation
let her perceive, in three directions – front, left and right
– whether there is an open space, a door, a wall, or some-
thing unknown. Doors and intersections constitutestates.
When they are detected by Ramona, it stops and records its
observations, as well as its odometric change between the
previous and the current state. All recorded measures as
well as the actions are, of course, subject to error.

The path Ramona followed consists of 4 connected corri-
dors, which include 17 states, as shown in Figure 7. Black
dots represent the physical locations of states. Multiple
states (depicted as numbers in the plot) associated with a
single location correspond to different orientations of the
robot at that location. The larger black circle, at the bottom
left corner, represents the starting position. The observa-
tions associated with each state are omitted for clarity. A
projection of the odometric readings that Ramona recorded
along thex andy dimensions, is shown in figure 5.

To statistically evaluate our algorithm, we use a simulated
office environment in which the robot follows a prescribed
path. It is represented as anHMM consisting of 44 states,
and the associated transition, observation, and odometric
distributions. Figure 9 depicts thisHMM . Arrows repre-
sent transitions that have probability0:2 or higher. Solid
arrows represent the most likely transitions between the
states. We generated 5 data sequences from the model, each
of length 800, using Monte Carlo sampling. One of these
sequences is depicted in Figure 10. Again, observations are
omitted, and this is a projection of the odometry readings
onto a global 2-dimensional coordinate system. For each
sequence we ran our algorithm 10 times. We also ran the
standard Baum-Welch algorithm, not using odometric in-
formation, 10 times on each sequence. For both algorithms
we started each run from a randomly picked initial model.

5.2 RESULTS

We used our algorithm to learn a topological model of the
environment from the data gathered by Ramona. Figure 8
shows the topology of one typical learnedHMM . The bold
circle represents the initial state. The arrows semantics is
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Figure 9: Model of a prescribed path through the simulated
hallway environment.

Figure 10: A data sequence generated by our simulator.

as stated before. It is clear that the learned topology corre-
sponds well to the topology of the true environment. The
observation distributions learned are omitted from the fig-
ure, but they too correspond well to the walls, doors and
openings encountered along the path, while incorporating
the identification error resulting from noisy sensors.

Traditionally, in simulation experiments, learned models
are quantitatively compared to the actual model that gen-
erated the data. Each of the models induces a probabil-
ity distribution on strings of observations; the asymmetric
Kullback-Leibler divergence [11] between the two distri-
butions is a measure of how far the learned model is from
the true model. We report our simulation results in terms
of a sampled version of theKL divergence, as described by
Juang and Rabiner [9]. It is based on generating sequences
of sufficient length according to the distribution induced
by the true model, and comparing their likelihoods accord-
ing to the learned model with the true model likelihoods.
We ignore the odometry information when applying theKL

measure, thus allowing comparison between purely topo-
logical models that are learned with and without odometry.

Table 1 lists theKL divergence between the true and learned
model, as well as the number of runs until convergence was
reached, for each of the 5 simulation sequences under the
two learning settings, averaged over 10 runs per sequence.

The table demonstrates that theKL divergence with respect
to the true model for models learned using odometry, is
about4-5 times smallerthan for models learned without
odometric data. To check the significance of our results

Table 1: Average results of 2 learning settings with 5 training
sequences.

Seq. # 1 2 3 4 5
With KL 1.115 1.100 1.095 1.139 1.129
Odo Iter # 69.7 81.8 84.3 52.4 112.9
No KL 5.575 4.499 4.997 4.491 5.791

Odo Iter # 120.4 107.5 116.2 113.3 120.6
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Figure 11: AverageKL -divergence as a function of length.

we used the simple two-sample t-test. The models learned
using odometric information have highly statistically sig-
nificantly (p � 0:9995) lower averageKL divergence than
the others.

In addition, the number of iterations required for con-
vergence when learning using odometric information is
smaller than required when ignoring such information.
Again, the t-test verifies the significance (p > 0:995) of
this result.

To examine the influence of the amount of data on the qual-
ity of the learned models, we took one of the 5 sequences
(Seq.#1) and used its prefixes of length 100 to 800 (the
complete sequence), in increments of 100, as individual se-
quences. We ran the two algorithmic settings over each of
the 8 prefix sequences, 5 times repeatedly. We then used
the KL -divergence as described above to evaluate each of
the resulting models with respect to the true model. For
each prefix length we averaged theKL -divergence over the
5 runs. Table 2 summarizes the results of this experiment.
It lists the meanKL -divergence over the 5 runs for each of
the prefixes, as well as the standard deviation around this
mean. The plot in Figure 11 depicts theKL -divergence as
a function of the sequence length for each of the settings.
Both the table and the plot demonstrate that, in terms of the
KL -divergence, our algorithm, which uses odometric infor-
mation, is robust in the face of data reduction. In contrast,
learning without the use of odometry is much more sensi-



Table 2: Average results with 8 incrementally longer sequences.

Seq. Length 800 700 600 500 400 300 200 100
With Mean KL 1.136 1.201 1.191 1.241 1.216 1.272 1.771 15.076
Odo Std. Dev. 0.091 0.083 0.131 0.082 0.036 0.085 0.510 12.884
No Mean KL 5.790 6.249 8.354 10.390 11.490 14.772 20.044 26.619

Odo Std. Dev. 0.554 0.937 0.179 0.460 0.422 1.280 0.904 0.460

tive to reduction in the amount of data. Again, we applied
the two-sample t-test, which verified the statistical signifi-
cance of these results.

6 CONCLUSIONS

Directional information which comes up in various appli-
cations of computer science in general and machine learn-
ing in particular, requires special treatment. Currently most
statistical models and applications are based on distribu-
tions that are either discrete or continuous along the real
line, rather than circular. It is important to be aware of the
need for circular distributions as well as of their existence.
Moreover, it would be useful to have widely used applica-
tions such as Autoclass [2] support such distributions.

A problematic aspect of directional data which manifests
itself when learning maps and models for robot navigation
is that of cumulative rotational errors. In the context of
our work we have demonstrated that the use of relative co-
ordinate systems rather than global ones supports learning
relationship between states. The main point shown by this
paper is that through correct treatment of directional data,
odometric information which is weak and very noisy still
provides a significant leverage when learning a purely topo-
logical map.
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