
Learning Topological Maps with Weak Local Odometric InformationHagit Shatkay Leslie Pack KaelblingComputer Science Department, Box 1910Brown UniversityProvidence, RI 02912-1910fhs,lpkg @cs.brown.eduAbstractTopological maps provide a useful abstractionfor robotic navigation and planning. Althoughstochastic maps can theoretically be learned us-ing the Baum-Welch algorithm, without strongprior constraint on the structure of the modelit is slow to converge, requires a great deal ofdata, and is often stuck in local minima. Inthis paper, we consider a special case of hid-den Markov models for robot-navigation envi-ronments, in which states are associated withpoints in a metric con�guration space. We as-sume that the robot has some odometric abilityto measure relative transformations between itscon�gurations. Such odometry is typically notprecise enough to su�ce for building a globalmap, but it does give valuable local informationabout relations between adjacent states. Wepresent an extension of the Baum-Welch algo-rithm that takes advantage of this local odo-metric information, yielding faster convergenceto better solutions with less data.1 IntroductionHidden Markov models (hmms), as well as their exten-sion to partially observable Markov decision processes(pomdps) model a variety of nondeterministic dynami-cal systems as abstract probabilistic state-transition sys-tems with discrete states, observations and possibly ac-tions.1 Such models have proven particularly useful asa basis for robot navigation in buildings, providing asound method for localization and planning [Simmonsand Koenig, 1995; Nourbakhsh et al., 1995; Cassandraet al., 1996]. Much previous work has required that themodel be speci�ed manually; this is a tedious processand it is often di�cult to obtain correct probabilities.An ultimate goal is for an agent to be able to learnsuch models automatically, both for robustness and in1Actions are modeled by pomdps but not by hmms.

order to cope with new and changing environments.The Baum-Welch algorithm [Rabiner, 1989] is frequentlyused to learn hmms. Since pomdps are a simple exten-sion of hmms, they can, theoretically, be learned with asimple extension to the Baum-Welch algorithm. How-ever, without strong prior constraint on the structure ofthe model, the Baum-Welch algorithm does not performvery well: it is slow to converge, requires a great deal ofdata, and is often stuck in local minima.In this paper, we consider a special case of hmms(extendable to pomdps) for robot navigation, in whichstates are associated with points in a metric con�gura-tion space. We assume the robot has some odometricability to measure relative transformations between itscon�gurations. Such odometry is typically not preciseenough to su�ce for building a global map, but it doesgive valuable local information about relations betweenadjacent states. This information is readily available inmost robots and is often ignored during the process oflearning topological maps. We present an extension ofthe Baum-Welch algorithm that takes advantage of thislocal odometric information, yielding faster convergenceto better solutions with less data.2 Related WorkThere has been a great deal of work on learning mapsfor mobile robotics and on learning stochastic models ofdynamical systems in general. In this section, we focuson map learning for robots.Sometimes it is necessary for a robot to know its lo-cation accurately in terms of metric coordinates; in suchcases, metric maps are clearly the best choice. In manyother environments, such as o�ce buildings with cor-ridors and rooms, or networks of roads, maps that sim-ply specify the topology of important locations and theirconnections su�ce. Such maps are typically less complexand support much more e�cient planning than metricmaps. Topological maps are built on lower-level abstrac-tions that allow the robot to move along arcs (perhapsby wall- or road-following) and to recognize properties



of the locations; they are 
exible in allowing a more gen-eral notion of state, possibly including information suchas the robot's battery voltage or whether or not it isholding a bagel.There are two typical strategies for deriving topolog-ical maps: one is to learn the topological map directly;the other is to �rst learn a geometric map, then to derivea topological map through some process of analysis.A nice example of the second approach is provided byThrun and B�ucken [1996b; 1996a], who use occupancy-grid techniques to build the initial map. This strategyis appropriate when the primary cues for decompositionand abstraction of the map are geometric. However, inmany cases, the nodes of a topological map are de�nedin terms of other sensory data (e.g. labels on a door).Learning a geometric map �rst also relies on the odo-metric abilities of a robot; if they are weak and the spacelarge, it is very di�cult to derive a consistent map.We take the approach of learning the topological mapdirectly, assuming that abstraction of the robot's per-ception and action abilities has already been done (wedo it by hand, but see work of Pierce and Kuipers [1997]for an automatic method). Some approaches learn anunderlying deterministic map of the world, independentof the noise in the robot's sensing and action processes.We prefer to learn a combined model of the world andthe robot's interaction with the world; this allows ro-bust planning that takes into account likelihood of errorin sensing and action.Kuipers and Byun [1991] provide a strategy for learn-ing deterministic topological maps. It works well in do-mains in which most of the noise in the robot's percep-tion and action is abstracted away, learning from singlevisits to nodes and traversals of arcs. It is unable to han-dle situations in which long strings of actions and obser-vations are necessary to disambiguate the robot's loca-tion. Another set of learning algorithms, based on thetheory of learning deterministic �nite state automata,work in much noisier environments with much less globalinformation. Basye, Dean, and Kaelbling [1995] providealgorithms for learning deterministic maps given fairlystrong assumptions; these algorithms come with proba-bilistic correctness guarantees for learning in polynomialtime with a polynomial amount of data.Engelson and McDermott [1992] learn \diktiometric"maps (topological maps with metric relations betweennodes) from experience. The uncertainty model theyuse is interval based rather than probabilistic, and thelearned representation is deterministic. Ad hoc routineshandle problems resulting from failures of the uncer-tainty representation.The work most closely related to ours is by Koenigand Simmons [1996b; 1996a], who learn pomdp models(stochastic topological maps) of a robot hallway environ-

ment. They also recognize the impossibility of learningsuch a model without initial information; they solve theproblem by using a human-provided topological map, to-gether with further constraints on the shared structureof the model. A modi�ed version of the Baum-Welch al-gorithm learns the parameters of the model. They alsodeveloped an incremental version of Baum-Welch thatallows it to be used on-line in certain kinds of environ-ments. Their models contain very weak metric informa-tion, representing hallways as chains of one-meter seg-ments and allowing the learning algorithm to select themost probable chain length. This method is e�ective,but results in large models with size proportional to thehallways length.We show that, by using odometric information di-rectly, we can avoid the use of a priori models and stilllearn stochastic maps e�ciently and e�ectively.3 Models and AssumptionsIn the following sections, we describe the model and algo-rithms used for learning an hmm, rather than a pomdp.Extension to pomdps is technically straightforward butnotationally more cumbersome.The world is composed of a �nite set of states. Thestates do not necessarily correspond directly to locationsof the robot; they may include other state information,such as orientation or battery level. The dynamics ofthe world are described by state-transition distributionsthat specify the probability of making transitions fromone state to the next. There is a �nite set of observationsthat can be made in each state; the frequency of such ob-servations is described by a probability distribution anddepends only on the current state. In our model, ob-servations are multi-dimensional, so an observation is avector of values, each chosen from a �nite domain. It isassumed that observation values are conditionally inde-pendent, given the state. Each state is assumed to beassociated with a point in some metric space. Whenevera state transition is made, the robot records an odometryvector, which estimates the location of the current staterelative to the previous state. It is assumed that thecomponents of the odometry vector are corrupted withindependent normal noise (extension to dependent noiseis possible, and requires reestimation of the complete co-variance matrix).More formally, a model is a tuple � =hS;O;A;B;R; �i, where� S = fs1; : : : ; sNg is a �nite set of N states;� O = Qli=1Oi is a �nite set of observation vectors oflength l; the ith element of an observation vector ischosen from the �nite set Oi;� A is a stochastic transition matrix, with Ai;j =Pr(qt+1 = sj jqt = si); 1� i; j�N ; qt is the state at



time t;� B is an array of l stochastic observation matri-ces, with Bi;j;o = Pr(Vt[i] = ojqt = sj); 1 � i � l;1 � j � N; o 2 Oj; Vt is the observation vector attime t;� R is a relation matrix, specifying for each pairof states, si and sj , the mean and variance ofthe D-dimensional metric relation between them;�(Ri;j[k]) is the mean of the kth component ofthe relation between si and sj and �2(Ri;j[k]),the variance; furthermore, R is geometricallyconsistent: for each component k, the relationRk(a; b) def= �(Ra;b[k]) must be a directed metric, sat-isfying the following properties for all states a, b,and c:� Rk(a; a) = 0;� Rk(a; b) = �Rk(b; a) (anti-symmetry); and� Rk(a; c) = Rk(a; b) + Rk(b; c) (additivity);� � is a stochastic initial probability vector describingthe distribution of the initial state; for simplicity itis assumed here to be h1; 0; 0; : : : ; 0i, implying thatthe robot is always started in state s0.A learning algorithm starts from an initial model �iand is given a sequence of experience E; it returns arevised model �, with the goal of maximizing Pr(Ej�).The experience sequence E is of length T ; each element isa pair hrt; Vti, where rt is the observed relation betweenqt�1 and qt and Vt is the observation vector at time t.To extend the above model to a pomdp, actions needto be introduced into the model. Each possible actionis associated with a separate set of three matrices A, Band R. In addition, each item in the experience sequenceE contains the action which caused the transition andthe observation associated with it. The algorithmic com-plexity of learning a pomdp compared with that of learn-ing an hmm is within a factor proportional to the numberof possible actions, which is usually much smaller thanthe number of states.4 AlgorithmOur algorithm is a straightforward extension of Baum-Welch to deal with the relational information and thefactored observation sets. The Baum-Welch algorithm isan expectation-maximization (EM) algorithm [Dempsteret al., 1977]; it alternates between� the E-step of computing the state-occupation prob-abilities 
 at each time in the sequence given E andthe current model �, and� the M-step of �nding a new model � that maximizesPr(Ej�; 
).

An EM algorithm is guaranteed to provide monotoni-cally increasing convergence of Pr(Ej�). Baum-Welchhas been proven to be an EM algorithm; it has also beenprovably extended to real-valued observations [Liporace,1982; Juang, 1985]. Our algorithm introduces an addi-tional matrix, and enforces the �rst two geometric con-sistency constraints on the M-step, but like the standardBaum-Welch it is still guaranteed to converge to a localmaximum of the likelihood function [Shatkay and Kael-bling, 1997]. The proof is along the lines of the onepresented by Juang et al [1986] for the standard Baum-Welch algorithm, and is beyond the scope of this paper.4.1 Computing State-OccupationProbabilitiesFollowing Rabiner [1989], we �rst compute the forward(�) and backward (�) matrices. When all measurementsare discrete, �t(i) is the probability of observing E0through Et and qt = si, given �; and �t(i) is the proba-bility of observing Et+1 through ET�1 given qt = si and�. When some of the measurements are continuous (asis the case with R), these matrices contain probabilitydensity values rather than probabilities.The forward procedure for calculating the � matrix isinitialized with�0(i) = � b0i if �(i) = 10 otherwise ;and continued for 0 < t � T � 1 with�t(j) =Xi �t�1(i)Ai;jf(rtjRi;j)bjt ;where f(rtjRi;j) is the density at point rt according tothe normal distribution represented by the means andvariances in entry i; j of the relation matrix R, and bjt isthe probability of observing vector vt in state sj ; that is,bjt = Qli=1Bi;j;vt[i] .The backward procedure for calculating the � matrixis initialized with �T�1(j) = 1 ;and continued for 0 � t < T � 1 with�t(i) =Xj �t+1(j)Ai;jf(rt+1jRi;j)bjt+1 :Given � and �, we now compute the state-occupationand state-transition probabilities (
 and � respectively).The state-occupation probabilities are computed as fol-lows:
t(i) = Pr(qt = sijE; �) = f(qt = si; Ej�)f(Ej�)= �t(i)�t(i)NXj=1�t(j)�t(j) :



Similarly, the state-transition probabilities are computedas:�t(i; j) = Pr(qt = si; qt+1 = sj jE; �)= �t(i)Ai;jbjt+1f(rt+1jRi;j)�t+1(j)NXi=1 NXj=1�t(i)Ai;jbjt+1f(rt+1jRi;j)�t+1(j) :We note that the numerator and the denominator in thefractions are both density functions, but the quotient isa discrete probability function. These are essentially thesame formulae appearing in [Rabiner, 1989], but takinginto account the density of the relational observation.4.2 Updating Model ParametersIn this phase of the algorithm, the goal is to �nd a newmodel, �, that maximizes P (Ej�; 
). Generally, this isdone by simple maximum-likelihood estimation of theprobability distributions in A and B by computing ex-pected transition and observation frequencies. It is moredi�cult in our model, because we must also compute anew relation matrix, R, under the constraint that it re-main geometrically consistent.The A and B matrices can be straightforwardly re-estimated; Ai;j is the expected number of transitionsfrom si to sj divided by the expected number of transi-tions from si: Ai;j = PT�2t=0 �t(i; j)PT�2t=0 
t(i) ;and Bi;j;o is the expected number of times o is observedalong the ith dimension when in sj divided by the ex-pected number of times of being in sj:Bi;j;o = PT�1t=0 I(Vt[i] = o)
t(j)PT�1t=0 
t(i) ;where I(c) is an indicator function with value 1 if c istrue and 0 otherwise.If we were not going to enforce geometrical consis-tency, then the R matrix would be re-estimated by:�(Ri;j[k]) = PT�2t=0 rt[k]�t(i; j)PT�2t=0 �t(i; j)�2(Ri;j[k]) = PT�2t=0 [rt[k]� �(Ri;j[k])]2�t(i; j)PT�2t=0 �t(i; j) :In the current implementation, we enforce only twoof the three constraints of geometrical consistency. Zerodistances between states and themselves are trivially en-forced. Anti-symmetry is enforced by using the data

from sj to si as well as from si to sj when reestimat-ing �(Ri;j). Thus the actual reestimation formula for�(Ri;j) is:�(Ri;j[k]) = PT�2t=0 [rt[k]�t(i; j)� rt[k]�t(j; i)]PT�2t=0 [�t(i; j) + �t(j; i)] :The additivity constraint is not currently enforcedthrough the updates, although it is satis�ed in the ini-tial models, thus biasing the learned model towards sat-isfying it. We are exploring some relaxation techniques,based on spring systems, for enforcing the additivity con-straint. The complexity of the algorithm per iteration isstill O(TN2), like the standard Baum-Welch.4.3 Finding an Initial ModelIt is typical in instances of the Baum-Welch algorithmto simply initialize the model at random, perhaps try-ing multiple initial models to �nd di�erent local like-lihood maxima. We have tried random initial models,as well as starting from a more informed model, basedon the odometry information. In both the random andinformed initializations the initial R matrix satis�es allthree properties of geometrical consistency.To build an informed model, we begin by assigningglobalmetric coordinates to each element in the sequenceE. This is done by accumulating the observed relationsbetween consecutive pairs of states. This data set (ig-noring other observation information) is fed into a simplek-means clustering algorithm, yielding a clustering of thedata into N clusters. The clusters are taken to be thestates, and the observations associated with a given clus-ter are interpreted as having been generated in the asso-ciated state. We then compute 
 and � values, with the 
values being 0 or 1, since we use a deterministic cluster-ing algorithm (it might be bene�cial to use a stochasticclustering algorithm, such as Autoclass [Cheeseman etal., 1990]). The A, B, and R matrices are all estimatedfrom 
 and � as described in the previous section. Fi-nally, an ad hoc process is used to adjust R to satisfy theadditivity constraint.5 ExperimentsThe goal of this work is to use odometry to improvethe learning of topological models, while using fewer it-erations and less data. We tested our algorithm in asimple robot-navigation world. Our experiments consistof running the algorithm both on data obtained froma simulated model and on data gathered by our mobilerobot, Ramona, which is a modi�ed RWI B21 robot. Ithas a cylindrical synchro-drive base, 24 ultrasonic sen-sors and 24 infrared sensors, situated evenly around itscircumference. The infrared sensors are used mostly forshort-range obstacle avoidance. The ultrasonic sensors
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29Figure 3: Learned map of the corridors Ramona tra-versed. Figure 4: Learned map of the simulated hallway en-vironment.are longer ranged, and are used for obtaining (noisy)observations of the environment. The amount of datagathered by Ramona is used here as a proof of conceptbut is not su�cient for statistical analysis. For the lat-ter, we use data obtained from the simulated model.5.1 Robot DomainThe robot follows a prescribed path through the cor-ridors in an o�ce environment. Low-level software pro-vides a level of abstraction that allows the robot to movethrough hallways from intersection to intersection and toturn ninety degrees to the left or right. At each intersec-tion, ultrasonic data interpretation allows the robot toperceive, in each of the four cardinal directions, whetherthere is an open space, a door, a wall, or something un-known. The robot also identi�es doors and openingsthat it passes along the corridors. Of course, both theaction and perception routines are subject to error. Fi-nally, the robot has encoders on its wheels that allow itto estimate its pose (position and orientation) with re-spect to its pose at the previous intersection. The pathRamona followed consists of 4 connected corridors in ourbuilding, which include 17 states, as shown in Figure 1.In our simulation, we manually generated an hmmrepresenting a prescribed path of the robot through thecomplete o�ce environment, consisting of 44 states, andthe associated transition, observation, and odometricdistributions. Figure 2 shows the hmm corresponding to

the simulated hallway environment2. Further interpre-tation of the �gures is provided in the following section.5.2 Evaluation MethodThere are a number of di�erent ways of evaluating the re-sults of a model-learning algorithm. None is completelysatisfactory, but they all give some insight into the utilityof the results.In this domain, there are transitions and observationsthat usually take place, and are therefore more likelythan the others. Furthermore, the relational informationgives us a rough estimate of the metric locations of thestates. To get a qualitative sense of the plausibility of alearned model, we can extract an essential map from thelearned model, consisting of the states, the likely tran-sitions and the metric measures associated with them,and ask whether this map corresponds to the essentialmap underlying the true world.Figures 1 and 2 are such essential versions of the truemaps, while Figures 3 and 4 are essential versions of rep-resentative learned maps. Black dots represent the phys-ical locations of states. Multiple states (depicted as num-bers in the plot) associated with a single location typi-cally correspond to di�erent orientations of the robot atthat location. The larger black circle represents the ini-tial state. Arrows represent transitions that have prob-ability 0:2 or higher. Solid arrows represent the most2Observations and orientation are omitted for clarity.
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Figure 5: A data sequence gathered by Ramona.likely transitions between the states, and dashed arrowsrepresent the less likely ones3. Note that the length ofthe arrows is signi�cant and represents the length of thecorridors, drawn to scale.More traditionally, in simulation experiments, thelearned model is quantitatively compared to the actualmodel that generated the data. Each of the models in-duces a probability distribution on strings of observa-tions; the asymmetric Kullback-Leibler divergence [Kull-back and Leibler, 1951] between the two distributions isa measure of how good the learned model is with respectto the true model. Given a true probability distributionP = fp1; :::; png and a learned one Q = fq1; :::; qng, thekl divergence of Q with respect to P is:D(P jjQ) def= nXi=1 pilog2 piqi :We report our results in terms of a sampled version ofthe kl divergence, as described by Rabiner [1989]. Itis based on generating sequences of su�cient length (5sequences of 1000 observations in our case) according tothe distribution induced by the true model, and compar-ing their likelihoods according to the learned model withthe true model likelihoods. We ignore the odometry in-formation when applying the kl measure, thus allowingcomparison between models that are learned with andwithout odometry.5.3 ResultsWe let Ramona go around the path depicted in Fig-ure 1 and collect a sequence of about 300 observations.Figure 5 plots the sequence of metric coordinates ob-tained by accumulating consecutive odometric readings(as described in Section 4.3). We applied the learningalgorithm to the data 40 times. 20 of these runs werestarted from an informed (cluster based) initial modeland 20 started from a random initial model. (Note thatthere is non-determinism even when using informed ini-tial models, since the clustering starts with random k-means, thus multiple runs give multiple results).3Bold dashed arrows represent transitions that are almostas likely as the most likely.
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Figure 6: A data sequence generated by our simulator.Figure 3 shows an essential representation of a typicallearned map starting from an informed model. The ge-ometry of the learned map strongly corresponds to thatof the true map, and most of the states positions werelearned correctly. Although the �gure does not show it,the learned observation distributions at each state matchwell with the true observation distributions. When start-ing from an uninformed model, the results were not assatisfactory, which was predictable.For obtaining statistically su�cient information, wegenerated 5 data sequences, each of length 1000, usingMonte Carlo sampling from the model shown in Figure 2.One of these sequences is depicted in Figure 6. The �guredemonstrates that the noise model used in the simulationis indeed compatible with the noise pattern associatedwith real robot data.We used three di�erent settings of the learning algo-rithm:� starting from an informed (cluster based) initialmodel and using odometry information;� starting from a random initial model and usingodometry information;� starting from a random initial model without usingodometry information (standard Baum-Welch).For each sequence and each of the three algorithmic set-tings we ran the algorithm repeatedly 5 times. In all theexperiments, N was set to be 44, which is the \correct"number of states; for generalization, it will be necessaryto use cross-validation or regularization methods to se-lect model complexity.Figure 4 shows the essential version of one learnedmap (obtained from the sequence of Figure 6) for a rep-resentative run. We note that some of the states whoselocations overlap in the true model (e.g. 8,9) become sep-arated in the learned model (e.g. 33,17,3), due to noise inthe odometry readings and observations. However, thereis an obvious correspondence between groups of states inthe learned and true models, and most of the transitions(as well as the observations, which are not shown) werelearned correctly.



Seq. Informed Random No Odo# kl Iter. # kl Iter. # kl Iter. #1 2.347 93.40 3.797 110.00 10.129 201.802 2.338 84.00 2.630 82.00 11.400 213.803 2.572 85.80 3.086 150.00 11.583 195.404 3.185 85.20 3.532 114.20 11.810 224.005 4.154 116.20 3.877 102.40 12.258 156.80Table 1: Average results of three learning settings with�ve training sequences.Table 1 lists the kl divergence between the true andlearned model, as well as the number of runs until conver-gence was reached, for each of the 5 sequences under eachof the 3 learning settings, averaged over 5 runs per se-quence. From the table it is clear that the kl divergencewith respect to the true model for models learned usingodometry, starting from either an informed or a randominitial model, is about 4 times smaller than for modelslearned without odometry data. The standard deviationaround the means was about 1.5 for all kl distances. Tocheck the signi�cance of our results we used the simpletwo-sample t-test. The models learned using odometricinformation have statistically signi�cantly (p < 0:005)lower average kl divergence than the others.In addition, the number of iterations required for con-vergence when learning using odometry information isroughly half that required when ignoring odometry in-formation. Again, the t-test veri�es the signi�cance ofthis result.The initial clustering strongly biases the outcome oflearning; it is important to understand whether this biasis useful. When the entire model is initialized at random,the convergence time (measured in number of iterations)as well as the kl measure are somewhat higher on aver-age, than when starting at an initialmodel based on clus-tering. The di�erence between the two starting pointsis not highly statistically signi�cant since the clusteringin many cases is not good. When the initial clusteringis good, most of the work is already done and the EMalgorithm quickly �lls in the details. However, if theinitial clustering is bad, it is often close to a poor localminimum and the algorithm is unable to adjust it well.It will be important to try more sophisticated clusteringalgorithms. It may be best to run the algorithm mul-tiple times, some with initial clustering and some with-out, taking the model with the highest likelihood as the�nal result.To examine the in
uence of the amount of data onthe quality of the learned models, we took one of the5 sequences (Seq. #1) and used its pre�xes of length100 to 1000 (the complete sequence), in increments of100, as individual sequences. We ran each of the threealgorithmic settings over each of the 10 pre�x sequences,10 times repeatedly. We then used the kl-divergence asdescribed above to evaluate each of the resulting models

Seq. Informed Random No Odolength Mean Std. Mean Std. Mean Std.KL Dev. KL Dev. KL Dev.1000 2.097 0.71 3.016 1.24 10.139 1.90800 1.805 0.28 2.954 1.75 13.319 1.26600 2.353 1.14 2.569 1.36 14.542 1.62400 2.953 0.60 2.801 1.69 22.714 4.69300 3.998 1.53 3.892 3.50 ! 1 NA200 9.169 3.09 7.489 5.25 ! 1 NA100 ! 1 NA ! 1 NA ! 1 NATable 2: Average results of three learning settings with10 incrementally longer sequences .
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We note that the data sequence is twice as \wide"when odometry is used than when it is not, that is, thereis more information in each element of the sequence whenodometry data is recorded. However, the e�ort of record-ing this additional odometric information is negligible,and is well rewarded by the fact that fewer observationsand less exploration are required for obtaining a datasequence su�cient for adequate learning.6 ConclusionsOdometric information, which is often readily available,makes it possible to learn hmms (or pomdp models)for robot navigation e�ciently and e�ectively. If weare interested in learning the geometric relationships be-tween states, using the odometry readings is obviouslyvery helpful. Moreover, our experiments show that evenwhen we are only interested in the underlying topologi-cal model, using odometry can both reduce the numberof iterations required by the algorithm and improve theresulting model, while requiring shorter data sequences.The work described in this paper is fairly preliminary.In the very near future, we will extend the example tolearn the fully controllable pomdp rather than the hmm.The current implementation uses a very naive clusteringalgorithm; it will be useful to investigate more sophis-ticated clustering methods. The algorithm described inthis paper is a batch algorithm. It would be useful toadapt it to be an incremental on-line algorithm. Finally,we would like to �nd an improved M-step that wouldpreserve the additivity constraint.AcknowledgmentsWe thank Jim Kurien for providing and supporting thelow level code for Ramona, and William Smart and Ja-son Lango for helping to keep her alive. We are alsoindebted to John Hughes for the term \additivity" andSam Trychin for letting us use his skateboard.This work was supported in part by the Air Force andARPA under grant No. F30602-95-1-0020, by the NSF inconjunction with ARPA under grant No. IRI-9312395,and by the NSF under grant No. IRI-9453383.References[Basye et al., 1995] K. Basye, T. Dean and L. P. Kaelbling.Learning dynamics: System identi�cation for perceptuallychallenged agents. Arti�cial Intelligence, 72(1), 1995.[Cassandra et al., 1996] A. R. Cassandra, L. P. Kaelblingand J. A. Kurien. Acting under uncertainty: DiscreteBayesian models for mobile-robot navigation. In Proceed-ings of IEEE/RSJ International Conference on IntelligentRobots and Systems, 1996.[Cheeseman et al., 1990] P. Cheeseman et al. Autoclass: ABayesian classi�cation system. In J. W. Shavlik and T. G.Dietterich, editors, Readings in Machine Learning, pages296{306. Morgan-Kaufmann, 1990.
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