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Abstract

The immense volume of data resulting from DNA mi-
croarray experiments, accompanied by an increase in
the number of publications discussing gene-related dis-
coveries, presents a major data analysis challenge. Cur-
rent methods for genome-wide analysis of expression
data typically rely on cluster analysis of gene expres-
sion patterns. Clustering indeed reveals potentially
meaningful relationships among genes, but can not
explain the underlying biological mechanisms. In an
attempt to address this problem, we have developed
a new approach for utilizing the literature in order
to establish functional relationships among genes on
a genome-wide scale. Our method is based on re-
vealing coherent themes within the literature, using a
similarity-based search in document space. Content-
based relationships among abstracts are then trans-
lated into functional connections among genes. We
describe preliminary experiments applying our algo-
rithm to a database of documents discussing yeast
genes. A comparison of the produced results with well-
established yeast gene functions demonstrates the ef-
fectiveness of our approach.

Keywords: genomics, microarray, machine learning, infor-
mation retrieval, document databases

Introduction

The development of DNA microarrays during the last
few years (Schena et al. 1995; DeRisi, Iyer, & Brown
1997), allows researchers to simultaneously measure the
expression levels of thousands of different genes. Ex-
periments involving such arrays produce overwhelm-
ing amounts of data. In response, much recent work
has been concerned with automating the analysis of
microarray data. Currently pursued techniques (e.g.
Eisen et. al. (1998), Tamayo et. al. (1999), Ben-Dor
et. al. (1999)) concentrate mostly on applying cluster-
ing methods directly to the expression data, in order
to find clusters of genes demonstrating similar expres-
sion patterns. The assumption motivating such search
for co-expressed genes is that simultaneously expressed
genes often share a common function. However, there
are several reasons that cluster analysis alone cannot
fully address this core issue:

1. Genes that are functionally related may demonstrate

strong anti-correlation in their expression levels, (a
gene may be strongly suppressed to allow another to
be expressed), thus clustered into separate groups,

blurring the relationship between them.

2. As shown later, simultaneously expressed genes do

not always share a function. Moreover, genes that are
expressed at different times may serve complementing
roles of one unifying function.

3. Even when similar expression levels correspond to

similar functions, the function and the relationships
between genes in the same cluster can not be deter-
mined from the cluster data alone. Testing, justify-
ing, and explaining the formed clusters requires a lot
of additional research effort.

4. Due to the interrelated nature of biological processes,

genes may have more than a single function. The
strict assignment of genes to clusters, resulting from
most clustering methods currently used, may prove
overly stringent, potentially preventing the exposure
of complex interrelationships between genes.

The work described in this paper aims to complement
the existing methods by providing a much-needed bi-
ological context, based on a survey of the existing lit-
erature. The assumption underlying our approach is
that the function of many genes is described in the lit-
erature, and by relating documents talking about well
understood genes to documents discussing other genes,
we can predict, detect and explain the functional re-
lationships between the many genes that are involved
in large-scale experiments. We do not attempt here to
draw any functional or relational information from the
expression array itself. Instead, we use a large database
of documents as our information search space. Each
gene is represented by a document, roughly discussing
the gene’s biological function. The literature database
is then searched for documents similar to the gene’s
document. Thus, for each gene we produce a set of
documents that are related to its functional role. We
then look for similarities between the resulting sets of
documents. Since each set corresponds to a gene, we
can map the similar document sets back to their corre-



sponding genes, and establish functional relationships
among these genes.

To accomplish this goal, we use a new statistical
information-retrieval method (Shatkay, Wilbur 2000)
to conduct the similarity search based on the gene’s
document. As an integral part of our algorithm, we
produce an “executive summary”, consisting of a few
characteristic content bearing terms in the set of docu-
ments assigned to each gene. Thus we simultaneously
achieve three goals:

e Finding functional relationships between genes.

e Obtaining the literature specifically relevant to the
function of these genes.

e Producing a short summary justifying why the genes
were considered relevant to each other, and what
their function is.

This functional information can then be correlated with
the expression array cluster analysis to refine the result-
ing hypotheses and, by extension, future experiments.

The rest of this paper is organized as follows: The
next section surveys related work on gene analysis, both
based directly on expression array data and on litera-
ture mining. We then describe our approach of using
the literature to find function and relationships between
genes. Next we discuss our preliminary experiments
and results over the set of well-studied yeast genes dis-
cussed by Spellman et. al. (1998). Our results demon-
strate that the automated usage of literature is an ex-
tremely powerful tool for determining relationships be-
tween genes, for explaining expression-based clusters
obtained from array-based experiments, and for assist-
ing in the design of further experiments.

Related Work

The first part of this section provides further back-
ground on the analysis of data obtained from gene ex-
pression arrays and the challenges it poses; the second
part discusses current methods for using the literature
for gene analysis.

Analyzing Gene Expression Arrays

DNA microarrays represent the latest in a series of pow-
erful tools based on hybridizing a soluble DNA/RNA
molecule to its complementary strand immobilized on a
solid support (Southern 1975; Wahl, Meinkoth, & Kim-
mel 1987; Schena et al. 1995). With DNA microarrays,
cDNA corresponding to known genes is spotted onto
the solid support (usually a glass slide). The mRNA
from cells or tissues is then converted into fluorescently
labeled cDNA and applied to the unlabeled cDNA ma-
trix (Schena 1999). Since each spot on the matrix cor-
responds to a known gene or EST, the expression level
of thousands of genes can be measured in a single ex-
periment. DNA microarrays consisting of the entire

known genome from FEscherichia coli, Mycobacterium
tuberculosis, and Saccharomyces cerevisiae already ex-
ist (Brown & Botstein 1999), and those representing
Caenorhabditus elegans and Drosophilia melanogaster
genome sequences should be available soon. In addition,
commercially available DNA microarrays and oligonu-
cleotide arrays exist for most of the human genes char-
acterized to date and can be expected for the whole
human genome once it is completely sequenced and an-
notated within the next three years.

This new technology allows gene expression experi-
ments to be performed on a genome-wide scale. Ex-
periments with S. cerevisiae have studied changes in
gene expression patterns for over 95% of the protein
coding genes simultaneously under a variety of con-
ditions (Cho et al. 1998; Spellman et al. 1998;
DeRisi, Iyer, & Brown 1997; Chu et al. 1998). This
increase in percentage of genome measured, has an im-
mediate impact on the number of genes awaiting analy-
sis. For example, the number of genes collectively iden-
tified as being induced during sporulation dramatically
increased from a total of 50 to approximately 500 from a
single set of genome wide microarray experiments (Chu
et al. 1998).

With this increased volume of data manual gene anal-
ysis becomes impractical, and there is an immedi-
ate need for more powerful methods of data analy-
sis (Ermolaeva et al. 1998; Bassett, Eisen, & Bo-
guski 1999). Most efforts to date have involved clus-
tering genes based on their expression patterns and
using these clusters to infer functional correlation.
Methods involving hierarchical clustering, commonly
applied in sequence and phylogenetic analysis, have
been used with the yeast data sets described previ-
ously (Eisen et al. 1998). As expected, in many cases
this clustering revealed that genes with a common func-
tion were indeed coexpressed (Spellman et al. 1998;
Eisen et al. 1998). Self- organizing maps (Tamayo et al.
1999) and other clustering methods (Wen et al. 1998;
Ben-Dor & Yakhini 1999) have also been shown to effec-
tively group genes by the observed expression patterns.

While clusters of simultaneously expressed genes can
correlate with shared function, this is not always the
case. The complex and parallel nature of the system
causes some genes to share similar expression profiles
despite the distinct biological processes in which they
are involved. In fact, careful analysis of the CLB2 clus-
ter described by Spellman et. al. (1998) reveals genes in-
volved in several different cellular functions. For exam-
ple, CHS2, BUDS, and IQG1 are all involved in main-
tenance of the cell wall while ACE2, ALK1, and HST3
are involved in nuclear events. This example demon-
strates the wealth of biological information that is not
represented by temporal gene clusters.

In addition, some members of a common signaling path-
way may play antagonistic roles and actually show an
anti-correlation with regards to gene expression. As



a result, the clusters obtained from shared gene ex-
pression profiles must still be analyzed with respect to
known biological roles, before reliable conclusions about
their biological functions can be drawn from the data.

A more recent approach to array analysis uses
Bayesian networks to describe relationships between
genes (Friedman et al. 2000). Rather than simply
group genes according to their related expression pat-
terns, this approach allows the identification of causal
relationships among genes. Indeed, based on the anal-
ysis of 800 genes shown to have regulated gene expres-
sion during the yeast cell cycle (Spellman et al. 1998),
only a few of these genes appeared to dominate the
order of expression (Friedman et al. 2000), and the re-
sults could highlight the critical genes for establishing
the yeast cell cycle. While this analysis can suggest
causal relationships between genes, it does not provide
the biological explanation for these relations. In some
cases, only further experimentation can determine the
involved mechanism. However, it is highly likely that
in many of these cases, this information currently exists
in the published literature.

The current method for explaining the discovered clus-
ters and relationships, has been for individuals to search
through the literature, gene by gene, or rely on their
own knowledge of the biological processes involved.
While such a method can be effective on a small scale,
it produces a major bottleneck when performing exper-
iments on a genome-wide scale.

It is for this reason that we propose the development
of an automated method for relating genes according
to their biological function based on the current lit-
erature. Qur method complements the approaches de-
scribe above, by providing literature-based explanations
to the clusters and the relationships that are discovered
through the expression arrays. The next section surveys
current research aimed at automating literature mining
in the area of gene analysis.

Text Usage in Biological Analysis

With the advancement of genome sequencing tech-
niques comes an overwhelming increase in the amount
of literature discussing the discovered genes. As an il-
lustrative example, the number of PubMed documents
containing the word gene published between the years
1970 — 1980 is a little over 35,000, while the num-
ber of such documents published between the years
1990 — 2000 is 402,700 over a ten fold increase. Thus,
surveying the literature for information about genes
requires a great deal of time and effort. It can not
be effectively and efficiently done using the currently
available search techniques, given the large number of
genes involved in current expression array experiments.
The problem is further aggravated by the non-uniform
nomenclature used in the literature as illustrated below.

The most widely used on-line source for gene-related

abstracts is the PubMed database. An initial step in
the search for relevant literature in PubMed is the spec-
ification of a boolean query. The user provides either
a single term (e.g. OLE1), or a boolean combination of
terms (e.g. OLE1 AND sterol). The result is the set of
all documents found in the database which satisfy the
constraints specified in the query. This form of query
suffers from several well-known deficiencies:

e A prohibitively large number of documents are typ-
ically retrieved.

e A substantial part of the retrieved documents are
irrelevant to the user’s information needs.

e Many relevant documents may not be retrieved, de-
spite their relevance. For instance, documents that
talk about OLE] using one of its aliases such as DNA
repair protein fatty-acid desaturase 1 or ACYL-
COA desaturase 1 will not be retrieved.

A lot of recent work on mining the literature for genes
and proteins aims at supporting the boolean paradigm,
improving it to produce more accurate results (thus
mostly addressing the first two problems). Such work
concentrates on automated natural language processing
for finding relevant phrases and useful facts in text. It
is intended to assist in finding documents about a given
gene, or about the relationships between specific genes.
Leek (1997) suggests a way of using hidden Markov
models (HMM)s for extracting sentences discussing gene
positions on chromosomes from text. Craven and Kum-
lien (1999) introduce a method for transforming flat
text documents into databases of facts about relation-
ships between genes/proteins, performing a task similar
to the one Leek addresses, without the need to obtain
an HMM for discovering these relationships. Rindflesch
et. al. (2000) present a method based on parsing and us-
ing thesauri to automatically extract facts about genes
and proteins from documents. Blaschke et. al. (1999)
also use a similar method for extracting information
about protein interaction from scientific text. Most of
the above methods have only been applied to small and
limited sample sets of documents/terms. They all stem
from the boolean query paradigm, and require the user
to specify a very accurate query in order to provide
high-quality results.

Another recent system aiming at improving the quality
of the results returned from boolean search over genes is
MedMiner by Tanabe et. al. (1999). It provides a good
interface to two databases, Genecards and PubMed. In
order to retrieve documents that are likely to be of in-
terest to the user, it relies on a human-generated list
of keywords, whose presence in a document discussing
genes typically indicates that the document is of high
quality and relevance. Still, MedMiner provides abun-
dant information about a single gene or about the rela-
tionship between two specified genes. Such quantities of
information generated per gene when hundreds of genes
are involved can not be effectively handled by a user.

The above methods all rely on strong assumptions re-



garding the use of natural language, such as the terms
typically used to indicate relationships and the way sen-
tences are structured. With the shift towards the analy-
sis of mammalian systems the problem of non-uniform
nomenclature and language usage is likely to worsen.
Gene symbols are rarely used in the mammalian sys-
tem literature. Instead, the discussion involves a large
variety of terms describing the genes. This additional
complication will make it difficult for the user to form
accurate boolean queries. It is also likely to reduce
the effectiveness of literature mining strategies that are
based on gene symbol identifiers (such as the one sug-
gested by Leek) and on strong assumptions about the
way genes names are used in sentences. Moreover, these
systems can indeed be helpful when searching for infor-
mation about a few genes at a time, but do not address
the need for finding links and functional relationships
among thousands of genes.

An alternative to the boolean query paradigm is the use
of similarity queries; the user provides a sample docu-
ment that is relevant to the subject of interest, and gets
back other documents discussing the same subject mat-
ter. Such a query mechanism does not depend on the
user choice of query terms, but rather on the contents
and quality of the example document. The ability to
retrieve quality documents that are indeed similar in
contents to the example document strongly depends on
defining a similarity measure and a search procedure
that ranks the relevant documents high and the irrele-
vant ones low. We have recently developed a probabilis-
tic algorithm that, given an example document, finds a
set of documents that are most relevant to it (a theme)
and provides a set of terms summarizing the contents
of this set of documents (Shatkay, Wilbur 2000). The
use of similarity queries in general and this algorithm in
particular, forms the basis to our approach as described
in the next section.

The ultimate challenge in the use of literature for an-
alyzing expression arrays is the ability to obtain an
overview of the whole landscape of genes and their re-
lated literature. A good literature analysis tool should
provide information such as which genes are function-
ally related to each other, what their shared function-
ality is and which documents discuss this functionality.
It should also provide summaries that allow easy and
quick browsing through the literature, and an easy ac-
cess to the most relevant documents. The next section
describes the new approach we have developed in order
to meet such challenges.

Discovering Gene Functions and
Relations through the Literature

The hypothesis underlying our approach is that the
function of many individual genes is discussed in the
literature and that a good analysis of the literature is
a primary step both for experimental design and for

result analysis following such experiments.

Acting under this hypothesis, we shift our attention
from the gene-expression space to document space.
Thus we start with a large database of documents con-
taining all the relevant literature discussing the domain
of interest (for instance — all the documents in PubMed
that discuss yeast genes). Each gene is mapped to a
single document discussing it; each such document is
treated as a representative of the gene. We call each
document thus associated with a gene the kernel docu-
ment for that gene.

Using our algorithm for finding similar documents, we
obtain for each gene a body of related literature (20-
50 documents sharing a common theme) based on the
document representing the gene, along with an “exec-
utive summary” containing the terms that characterize
the relevant literature. It is important to note that the
abstracts retrieved by our algorithm are considered rel-
evant not because they contain the same gene name as
the one associated with the kernel abstract, but rather
because they discuss the same issues (which typically
corresponds to functionality) as those discussed in the
kernel document.

There are several ways to use the set of documents re-
trieved for each gene in order to derive relationships
among genes:

e One can simply mine this set for the names of other
genes as done by any of the algorithms described in
the previous section. The main limitation of doing so
is the dependency on explicit rules for detecting gene
names, with the risk of overlooking important infor-
mation while detecting unimportant relationships.

e A more effective way is to automatically compare the
sets of documents retrieved for each gene, and de-
termine that genes share similar functionality if the
literature associated with each of them is similar.

e A third possible way is to use the terms character-
izing the retrieved literature, as they occur in the
summary, and consider genes as related if their sum-
maries consist of the same (or almost the same) set
of terms.

We currently use the second of these methods to deter-
mine relationships among genes, as described later in
this section.

The first step in our approach requires mapping the
set of genes (Gy,...,GnN) to a set of kernel documents
(Ky,...,Kn) (see top of Figure 2). Kernel documents
are currently obtained from the available curated litera-
ture about yeast genes (as explained in the experiments
part of this paper). Our method strongly depends on
the quality of the kernel documents. Abstracts dis-
cussing experimental methods rather than gene func-
tion tend to draw other documents describing the same
experimental methods. The result is a document set
not representative of the gene’s function. On the other
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Figure 1: Typical term distribution for the Nutrition
theme.

hand, kernels discussing gene biology typically lead to
high quality information about the functionality of re-
lated genes. We are currently considering ways to au-
tomate the kernel selection process, so that each kernel
faithfully represents the biology of its associated gene.

The rest of this section provides the details of our ap-
proach. We first outline the similarity query algorithm
used for finding related abstracts starting from a ker-
nel document. (A complete discussion of the models
and the algorithms can be found in (Shatkay, Wilbur
2000)). We then describe how similarities between the
obtained document collections are detected.

Similarity Queries over Documents

Our algorithm is based on the idea that documents
which share a common theme can be modeled as though
they were generated through sampling from a common
set of independent Bernoulli distributions representing
the theme. For example, a set of documents discussing
genes responsible for nutrition during the cell-cycle, are
likely to contain terms such as fructose or glucose and
quite unlikely to contain the term lipid, as illustrated
in Figure 1.

Each document in our document database, DB, is mod-
eled as an M-dimensional binary vector, where M
is the number of distinct terms' {t;, ..., tm} in
the database. Formally, a document d is a vector
(di1, da, ..., dpr), where:
def 1 if tz ed y
di _Jdi_{ 0 otherwise .

(1)

Given a theme T, we view the presence/absence of
terms in document d in the database DB, as a result of
M independent Bernoulli events, each of which stems
from one of three families of Bernoulli distributions:

o pl the probability that the term ¢; occurs in
a document d, given that d is a theme document:

pIEPr(t;eddeT) .
!Terms consist of one or two words, excluding stop words.

They are extracted from the raw text in a standard prepro-
cessing stage.

° qiT — the probability that the term ¢; occurs in a
document d, given that d is an off-theme document:

qz-Td:efPr(ti €dld¢T) .

e DB; — the probability that the term ¢; occurs in
a document d, given that d is a document in the

database, regardless of its being an on-theme or an
def

off-theme document: DB;= Pr(t; € d|/d € DB) .

The distribution D B; models the possible arbitrary us-
age of terms in the language, without being strongly in-
dicative of the main topic discussed. (e.g. the sentence
“He entered the building” is not particularly relevant
to the topic construction, despite the occurrence of the
term building in it).

The a priori probability of any document d € DB, re-
gardless of its contents, to be a theme document is de-
noted as Py: Pdd:efPr(d eT).

Throughout this paper, we assume this parameter to
be known and fixed for all documents, and we do not

attempt to estimate it here. (In the experiments de-
scribed later, P; = 0.01 for all d € DB.)

The last component of our model is the Bernoulli event
representing the choice made for each term ¢;, in each
document d, whether it is to be generated according to
the database probability, DB; or according to the spe-
cific on/off-theme distribution. We denote this proba-
bility, for each term t;, as A;.

The process by which each document d € DB is gen-
erated, given a specific theme, T, can be modeled as
follows: First it is decided if the document d is inside
the theme T or not. The probability for d € T is P,.
Then for each term, t;, it is decided if ¢; is generated
according to the general database distribution, DB;, or
according to its specific theme/off-theme distribution.
The probability of a term t; to be generated according
to the general database distribution DB; is ;.
Finally, the decision whether to include the term in the
document d is based on one of three possibilities:

e If ¢; is to be generated according to the general DB
distribution, it is included in d with probability D B;.
Otherwise:

e If d is a theme document, ¢; is included in d with
probability p!.

e If d is an off-theme document, ¢; is included in d with
probability g7 .

Note that for each document d € DB, we know the
terms it contains. The missing information is which
documents are theme documents and which terms are
generated from the general distribution, DB;, as op-
posed to the theme-specific ones, p! and ¢

Given a single document representing the gene, our task
is to find the characteristic set of Bernoulli distribu-
tions, (p”, ¢" and \)?, for all terms i, and use it to

2Note that estimating DB; is straightforward since all



find the documents that are highly likely to have been
generated by sampling from these distributions. The
latter documents are the ones focused on the theme
represented by these distributions. In addition, we pro-
duce a set of terms characterizing this theme. These
are the terms that have a high probability to occur in
theme documents (high p!) and a much lower proba-
bility to occur in documents outside the theme (high
ratio p!' /ql).

To estimate the Bernoulli parameters under missing
information as described above, we use an Expecta-
tion Maximization algorithm(EM) (Dempster, Laird,
& Rubin 1977); it aims to maximize the likelihood
of the database partition into theme/off-theme docu-
ments, given the Bernoulli parameters, based on the
kernel document. The complete algorithm is described
elsewhere (Shatkay, Wilbur 2000), and we provide only
its outline here. An EM algorithm starts by initializ-
ing the model parameters, (p”,q”,AT), based on some
prior knowledge; in our case the initial assignment is a
rough approximation of the Bernoulli parameters based
on the kernel document and its comparison to the rest
of the database. It then alternates between:

e the F-step of computing the expected values, for the
likelihood of the documents to be in the same theme
as the kernel document, under the current parameter
estimates, and

e the M-step of finding new model parameters that
maximize the likelihood of the database partition into
theme/off-theme documents given the parameters.

This iterative process is guaranteed, under mild condi-
tions, to provide monotonically increasing convergence
of the likelihood function, and we have proven that our
algorithm indeed converges to such a local maximum.

We execute this algorithm for each of the kernel doc-
uments, (K, ..., Ky), representing each of the genes,

(G1,...,GnN), as illustrated in the top part of Figure 2.
The result from the run for each gene consists of:

e a list of the top 50 documents discussing the same
theme as the kernel document, ordered by their de-
gree of relevance to the theme, and

e a list of terms (keywords) characterizing the theme,
ordered by their degree of relevance to the theme.

Note that the keywords provided in the list are not
merely the terms most probable to occur in the set of
documents discussing the theme, but rather those that
are much more probable to occur in this set than in the
rest of the database (p] /q] is high). Simply using the
most frequent terms, (as done, for example, by Tan-
abe et. al. (1999)), typically results in terms that are
common throughout the database and therefore non-
informative. In contrast our method provides keywords

the required information is present in the database.

that are informative and descriptive of the specific sub-
ject matter.

This output, as shown in the results section of this pa-
per, in and of itself, provides valuable support for gene
analysis. Still, we further extend it in the next phase,
to assist in finding relations among the genes.

Finding Functional Relations among Genes

Obviously, establishing firm functional relationships be-
tween genes requires performing carefully designed ex-
periments. However, the literature can be used to sug-
gest possible relations and to provide coherent justifica-
tion for these suggestions. In the following we describe
our approach for utilizing the literature in this manner.

Our primary assumption, which is justified by our re-
sults, is that common relevant literature is a strong in-
dicator of common functionality. That is, genes which
have similar lists of top ranking documents associated
with them, share some common function that is de-
scribed in the common literature.

Our task is thus reduced to finding similarities between
the lists of documents retrieved in the previous phase
of the algorithm, and to associating with each gene all
the other genes that have similar document lists. To
do this we use the PubMed identifiers associated with
the documents, without examining the documents’ con-
tents. Using the identifiers alone, we construct for each
kernel a vector characterizing it based on the documents
deemed relevant to it by the first phase of the algorithm.
Using this vector representation, we can rank, for each
kernel K, all the other kernels according to their prox-
imity to K; in the kernel-vector space. Since each kernel
corresponds to a gene, we can map the inter-related ker-
nels back to their respective genes, and obtain a set of
genes that are closely related. The method is illustrated
at the bottom part of Figure 2 and is further described
in the following paragraphs.

First, we construct the set of PubMed Identifiers of rel-
evant documents, S,., as follows:

Let N be the number of kernel documents used for rep-
resenting genes®. We denote each kernel document by
K; where 1 <i < N.

For each kernel, K;, let L; be the set of PubMed identi-
fiers for the 50 top ranking documents associated with
kernel K;, formally: L;E{IDi ... IDi,} |

where 1D’ is the PubMed identifier of the j'" document

ranked as relevant for kernel K.

Intuitively speaking, if two distinct genes, G; and G},
represented by kernels K; and K;, have similar sets of
relevant PubMed identifiers, L; and L;, then the lit-
erature relevant to these two genes has a lot in com-

*The number of genes we are analyzing may ezceed N
since the same kernel document might discuss and represent
more than a single gene.
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Figure 2: Finding Documents and Terms related to Genes (top), and Sets of Related Genes (bottom).

mon. This in turn suggests that some roles and func-
tions (which are typically described in the literature)
are shared by these two genes.

Note that when looking for similarities between lists of
PubMed identifiers, identifiers that occur only within a
single list L;, and do not occur in any other list, L;, do
not contribute to the evaluation of L; as similar to L;.
Using this observation, we can reduce the number of
PubMed identifiers used for comparing document lists.
Formally, let ID denote a PubMed identifier and |ID |
denote the total number of identifier lists, L;, in which
ID occurs. Our calculations need only take into account
those identifiers for which |ID |> 1.

Thus, S, is defined to be the set of PubMed identifiers
of all documents that are in the relevance list of at least
two kernels. Formally:

N

S, =\ JLi —{ID | |ID| <1} . (2)
i=1

We denote the number of PubMed identifiers in S, |S, |,

by M, , and denote each PubMed identifier in S, as ID’
where 1 < j < M,.

We can now represent each kernel document Kj;, as an

. . def M.,
M,-dimensional vector, V;=(v}...v;"")

vlj are defined as follows:

over S, where

j_ o deff 1 ifIDV € L;
vi =0y _{ 0 otherwise . 3)

We then divide each such kernel vector by its length,
(the length in this case is simply the square root of
the number of non-zero entries), obtaining a normalized
representation of the kernels as vectors of length 1.

To gauge the similarity between each pair of kernels,
we calculate the cosine coefficient between their respec-
tive vectors. The cosine coefficient is a well understood
measure often used in information retrieval to roughly

assess similarity between documents, when documents
are represented as vectors of terms (see, for instance,
Salton (1989)). We use it here in a non-traditional con-
text, where our vector represents the kernels based on
other documents rather than terms. Formally, the co-
sine coefficient between two vectors, V;, Vi, whose re-
spective lengths are ||V;]|, ||Vk|| is the cosine of the an-
gles between the vectors and is defined as:

Z{Vfl v "Ui
Vi, V) sl 1k
cos (Ve Ve = vl

Since the vectors representing the kernels are normal-
ized, their length is 1 and only the numerator needs to
be calculated.

We note that the cosine coefficient is 0 whenever the
vectors V; and V; are orthogonal (independent of each
other), and 1 when V; = V;. Thus, the closer V; and V;
are, the closer the coefficient is to 1. Hence, by calcu-
lating for each kernel vector, V;, the cosine coefficients
with respect to all other kernel vectors, V;, we obtain
for each kernel a ranking of how related it is to each of
the other kernels, K;.

By recalling that each kernel K; corresponds in turn to
a gene (G; we obtain a relationship between the respec-
tive genes. The reasoning for the assumed relationship
is given by the lists of terms associated with the themes
generated from the kernel documents, and thus the rea-
soning behind the suggested relationships can be easily
checked.

It is left to be shown that the documents retrieved as
relevant to the genes, the summaries obtained and the
relationships implied by using our algorithms are indeed
useful. The experiments and the results reported in the
next section demonstrate that our methods are indeed
capable of meeting these criteria.



Experiments and Results

The main goal of the methods presented in this work is
to provide researchers with quality literature and con-
cise contents summaries regarding genes. A secondary
goal is to present and reveal (possibly yet-unknown)
relationships among genes.

To check the performance of our algorithms we apply
them to yeast genes, and show how our methods indeed
find relevant documents and provide accurate summary
terms. Moreover, we also discover meaningful relation-
ships among the genes. We have chosen the yeast DNA
microarray testbed since the validity of our methods can
only be assessed by comparison of the results with exist-
ing summaries of biological information. The Saccha-
romyces Genome Database? (Cherry et al. 1998; Ball et
al. 2000) and the Yeast Proteome Database (Costanzo
et al. 2000), as well as the functional analysis given by
Spellman et. al. (1998), are critical for rapid, objective
evaluation of our results.

We realize, of course, that the fact that the yeast genes
are well studied biases the literature in PubMed to in-
clude many abstracts discussing these genes. However,
given that PubMed consists of abstracts only, which typ-
ically contain little explicit information about the con-
nections among genes, it is obvious that our algorithms
contribute a great deal, finding information that can
not be easily and effectively obtained by any currently
available means.

The rest of this section describes the experimental set-
ting and reports the results obtained by applying our
algorithms to the data. The quality of the results was
verified through comparison to the functional groups
of genes according to Spellman et. al. (1998). The por-
tion of Spellman’s table relevant to the results discussed
here is shown in Table 1. The table categorizes the
yeast genes according to their functionality (rows) and
the phase in the cell-cycle in which they are expressed
(columns).

Experimental Setting

The experiments presented here consist of applying our
algorithms to yeast genome data, in an attempt to find
relevant literature and gene relations for the yeast genes
analyzed by Spellman et. al. (1998). The names of all
the genes used by Spellman® were compared against
the Saccharomyces Genome Database (SGD). Out of
about 800 genes found by Spellman et. al. to be cell-
cycle regulated, only 408 genes had curated PubMed
references in the SGD, and our experiments concentrate
on these 408 genes.

*SGD, the Saccharomyces Genome Database can be ac-
cessed at hitp://genome-wwuw.stanford. edu/Saccharomyces
and YPD, the Yeast Proteome Database, at
http://www.proteome.com/databases/index. html.

% Available through the genome web site at Stanford,
http://genome-www.stanford.edu/cellcycle/ .

For each of the genes, the oldest reference cited in SGD
was chosen to be the kernel document corresponding
to the gene. Since some of the closely related genes
share the same reference, we obtain 344 distinct kernel
documents on which we test our algorithm.

The database used in our experiments is a subset
of PubMed, consisting of 33,700 documents discussing
yeast genes. It was constructed by taking the 344 kernel
documents, and applying the current PubMed neighbor-
ing algorithm (Wilbur & Coffee 1994) to each of the
kernel documents. Neighboring was applied again to
all the resulting documents and then applied a third
time to all the documents in the resulting set. The
resulting database contained 42,335 documents which
included 2,250 documents deemed relevant for our 408
target genes by the SGD curators (86% of the total
curated documents as of August, 1999). Many of the
42,335 had a title only and no abstract, and we elim-
inated them from the database, resulting in a set of
33,700 yeast-related documents. We eliminated from
these documents the Mesh term taggings typically as-
sociated with PubMed entries, as well as all the terms
that occur in over 10% of the documents in the database
orin 2 or fewer documents. All these terms are typically
useless and may have detrimental effect when looking
for descriptive keywords. Eliminating such terms im-
proves both the quality of the results and the running
time of the program.

As afirst phase in our experiments, we applied our simi-
larity search program, described in the previous section,
to the 344 kernels, searching over the database of 33,700
abstracts. For each kernel, the program outputs a list
of the top 50 related documents and a list of keywords
describing the contents of this relevant set.

The next phase consists of looking for relationships
among genes. For each of the kernels, the previous
phase produced a list of 50 relevant documents. The
first step in the current phase is to construct the set of
relevant documents retrieved for all the kernels, elimi-
nating duplicates. That is, if a single document is rele-
vant to more than one kernel, it is still included in the
set of relevant documents only once. We then elimi-
nate all documents that are relevant for a single kernel
only, as explained in the previous section. We are left
with a set of 3063 documents that are relevant to 2 or
more kernel documents, (this is the set S,., defined in
Equation 2).

We then represent each kernel as a 3063-dimensional
vector (as specified in Equation 3), and use the cosine
coefficient to measure similarity between each kernel
and all the other ones. Each kernel is then converted
back to the gene(s) for which it was curated. The genes
that are grouped as similar according to our method
are compared with the ones grouped by functionality
according to Spellman’s table (parts of which are shown
in Table 1).



Biological | G1 S| G2 M M/G1
Function
Replication | CDC45 ORC1 CD(C47 CDC54 CDC6 CDC46
Initiation MCM2 MCM6 MCM3
Fatty Acids/ | EPT1 LPP1 PSD1 AUR1 ERG3 LCB3 | ERG2 ERG5 PMA1 ELO1 FAA1 FAA3
Lipids/ SUR1 SUR2 SUR4 PMA2 PMP1 FAA4 FAS1
Sterols/
Membranes
Nutrition BAT2 PHOS AGP1 BAT1 GAP1 | DIP5 FET3 FTR1 AUA1 GLK1 HXT1

MEP3 PFK1 PHO3 HXT2 HXT4 HXTY7
PHO5 PHO11 PHO12
PHO84 RGT2 SUC2
SUT1 VAP1 VCX1

ZRT1

Table 1: Yeast Genes: expression during cell-cycle and functionality. (Adapted from Spellman et. al. (1998))

To check the validity of the keyword list assigned to
each kernel, we compare each keyword to its associated
functionality using a mini-thesaurus obtained from a
panel of four independent yeast experts. Each func-
tionality description listed in Spellman’s table (such as
Secretion or Chromatin) is associated with the terms
judged most closely related to it according to the ex-
perts. Each expert received a list of the 22 function de-
scriptions listed by Spellman et al, and a separate list
of 330 alphabetically-sorted summary terms resulting
from our program. The experts assigned to each term
in the latter list, the functionality descriptors that they
judged to be most related to it; non-specific terms were
left unassigned. An example of two entries in the re-
sulting thesaurus is shown in Table 2.

Function Associated Terms

Chromatin | chromatids, chromatin, chromosome,
sister chromatids, telomere, telomeric

Secretion acid phosphatase, coatomer, endoplasmic
endoplasmic reticulum, er, golgi apparatus

golgi complex, golgi transport, golgi, v snare

Table 2: Example of thesaurus entries associating gene
function with related terms.

For each gene, we compare its functionality according to
Spellman with the functionality assigned by the panel
to each of its key terms, counting how many of the key
terms indeed correspond to the gene’s functionality ac-
cording to Spellman and how many do not. The results
are described throughout the rest of this section.

Results

As stated before, for each gene represented by a ker-
nel document we obtain through the similarity query
mechanism applied to the whole database:

1. A set of related documents.
2. A set of summarizing keywords.

In addition, from the set of related documents we ob-
tain, for each kernel, through the vector representation
and the cosine coefficient calculation, a set of related
kernels. The latter kernels are mapped back to form a
set of related genes.

To assess the value of the results obtained in the first
phase we examine the set of summarizing keywords.
(Obviously, objectively assessing the quality of the re-
trieved documents themselves would also be desirable
but there is no well-defined way to do it.) We also ex-
amine the lists of related genes obtained in the second
phase. The quality of the results is checked through a
comparison with the functionality assigned to genes by
Spellman et. al., shown in Table 1. Since many of the
genes in the experiment are not assigned any function-
ality by Spellman (120 out of the 344 kernels used) ,
we can only verify in this manner results for the ones
whose functionality was determined by Spellman et. al.

An example of a typical successful search is shown in
Table 3. The left column of the table lists the PubMed
identifiers for two kernel documents together with the
genes they stand for and the functionality of these genes
according to Spellman et. al. The second column lists,
for each of the two kernels, the 10 top keywords associ-
ated with the retrieved set of documents, as determined
by our algorithm. The third column lists the top 10
genes® associated with each of the two kernels, based on
the cosine coefficient. The fourth column lists the func-
tion of each gene according to Spellman et. al, as a mean

SELO1 has only 9 genes associated with it, since there
were only 9 non-zero cosine coefficients associated with its
kernel.



Kernel (PMID, | Keywords Assoc. Function
Gene,Function) Genes
8702485 fatty acid, OLE1 (Fatty Acid, Sterol. Met.)*
ELO1 fatty, FAA4 | Fatty Acid/Lipids/Sterols/Membranes
Fatty Acid/ lipids, FAA3 | Fatty Acid/Lipids/Sterols/Membranes
Lipids/ acid, SUR2 | Fatty Acid/Lipids/Sterols/Membranes
Sterols/ grown, FAA1 | Fatty Acid/Lipids/Sterols/Membranes
Membranes medium, ERG2 | Fatty Acid/Lipids/Sterols/Membranes
carbon, PSD1 | Fatty Acid/Lipids/Sterols/Membranes
synthase, CYB5 (Fatty Acid, Sterol. Met.)*
strains, PGM1 (Carbohydrates Met.)*
deficient
7651133 hexose, HXT1 Nutrition
HXT7 glucose uptake, | RGT2 Nutrition
Nutrition glucose conc., HXT4 Nutrition
fructose, HXT2 Nutrition
glycolytic, GLK1 Nutrition
glucose, SEO1 (Small Molecules Transport)*
sugars, PRB1 (Protein Degradation)*
uptake, AGP1 Nutrition
aerobic, 7ZRT1 Nutrition
utilization MIG2 (Carbohydrates Met.)*

Table 3: Example of a result obtained from two different kernel/gene using our algorithm, compared with function-

ality according to Spellman or YPD (YPD functionality denoted by *).

for checking the validity of our results. Since our ex-
periment included more genes than listed in Spellman’s
table, some of the genes in the third column are not
assigned functionality by Spellman. For these genes,
(denoted by an * in the table), we found the function-
ality in YPD.

The table shows that except for two genes (PGM1 and
PRBI1) all of the genes found for these two kernels
have a strong functional relationship to the genes rep-
resented by the kernels, and the keywords provide a
strong indication of this functionality. (Note that the
keywords are associated as a set with the whole kernel
entry and not separated as one keyword per associated
gene.) We note that PGMI is involved in carbohy-
drates metabolism which is still functionally related to
fatty acids metabolism. PRBI is responsible for pro-
tein degradation, which is not related to nutrition. It is
included in this set, since the abstract chosen for its ker-
nel document discusses regulation of the enzyme prbip
by glucose, rather than the function of prbip.

The results for about 100 out of the 220 kernels for
which we had the Spellman assigned functionality,
closely resemble the ones demonstrated in Table 3 in
the strong agreement with Spellman’s cluster assign-
ment and in the accurate description as given by the
keywords learned by the similarity query algorithm.
As a quantitative measure, we calculated the average
number of correct and incorrect keywords among the 5
top-ranking keywords associated with each of these ker-
nels. A keyword occurring in a list for a specific gene

(kernel), is considered correct if it appears in our the-
saurus entry labeled by the same function as the one
assigned to the gene by Spellman. If its thesaurus en-
try is labeled by a different function, it is considered
wrong. If it was assigned no function by our panel of
experts it is considered non-descriptive. An average of
3.27 out of the 5 top ranking keywords, were associated
with the correct function, while only 1.12 out of the 5
were associated with the wrong function, and 0.61 out
of the 5 were non-descriptive. The difference between
the high rate of correct keyword assignment relative to
the wrong and the non-descriptive assignment is highly
statistically significant (p < 0.005, according to the
two-sample t-test).

For many other kernels the groups of related genes con-
tain many genes not assigned functionality by Spell-
man, which makes the results harder to validate. An-
other set of cases, in which our results deviate from
Spellman’s functionality grouping of genes, are those
for which the kernel document was not primarily fo-
cused on the function of the gene but contained a lot
of detail discussing the experimental methods. In such
cases, any document describing the same experimen-
tal method was considered similar and drawn into the
set of relevant documents, resulting in a mixture of
biologically-unrelated documents. The terms included
in the keywords list indicate potential problems with
this grouping and provide a warning that these results
should not be taken at face value. An example of such
a result is given in Table 4. In this case, the kernel doc-
ument focuses on the technique used for studying the



Kernel (PMID, Keywords Assoc. Function
Gene,Function) Genes
6323245 ars, CDC10 | Site Selection/Morphogenesis
MCM2,MCM3,MCM6 | autonom. replicating, | PHO3 Nutrition

Replication Init. replicating sequence, EST1 DNA Syn
autonomously, MIF2 Chromatin
minichromosomes, PHO12 Nutrition
replicating POL2 DNA Syn.
centromeric DHS1 DNA repair
leu2, SNQ2 *
plasmids, SMC3 Chromat. Cohes.
ura3, EXG2 Cell Wall Synt.

Table 4: Example of a result obtained from an uninformative kernel using our algorithm, compared with functionality

according to Spellman.

MCM genes, rather than the explicit function of these
genes. Consequently, some of the kernels considered
similar to it represent the use of similar techniques for
studying different biological processes, rather than the
biology of their associated genes. The result is a set of
genes for which the commonality is that the documents
curated for them all discuss manipulations within chro-
mosomes rather than gene function. The keyword list
(which highly ranks terms such as autonomous repli-
cation and contains leu2 and ura3 that are commonly
used selectable markers for plasmids), indicates that the
theme underlying this set of documents and genes is not
relevant to functional genomics.

Obviously, obtaining good biological information (as
shown in Table 3) is much preferable to an indication
of poor quality, and for the most part this depends
on starting from good quality kernel documents. The
excellent experience with the 100 high-quality kernel
documents demonstrates that once a single informative
document is given for a gene, many other quality docu-
ments about the related genes are automatically found,
accompanied by a succinct summary of the functional
relationship between the genes.

Conclusions and Ongoing Work

Automatically finding connections among documents
discussing genes has three clear advantages:

1. It is an efficient way for establishing putative relation-
ships between genes as a preliminary step preceding
direct experimental methods.

2. It provides the relevant literature needed by the re-
searchers for performing the results analysis.

3. It generates a summary explaining the discovered re-
lationships. This summary can help researchers ex-
plain and evaluate the relationships found through
direct clustering of the expression levels.

Thus, this method can be used both for generating hy-
potheses prior to the experiments, as well as for post-
experimental interpretation of the results.

The results presented in this paper demonstrate that
given a functionally descriptive kernel document our
program can provide insight into gene functional group-
ings, similar to that currently obtained through labori-
ous, manual literature surveys relying on a lot of human
expertise. Obviously our method can not ascribe func-
tion to genes which have not yet been studied. However,
it can indicate functional relationships among known
genes which heretofore have gone unnoticed.

The main limitation our technique currently faces is
that of obtaining functionally descriptive kernel doc-
uments. We are considering several machine-learning
techniques that can greatly assist in automating the
kernel selection process. The expectation is that such
kernel selection would consistently lead to good results.

Our method complements current techniques used for
cluster analysis of the expression array data. We
strongly believe that by combining this approach with
techniques such as the one suggested by Friedman
et. al. , as well as with expression array clustering ap-
proaches, we can achieve a great deal of automation and
expedite the tedious task of analyzing the overwhelming
amounts of data generated from experiments conducted
over gene expression arrays.
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