
Genes, Themes and MicroarraysUsing Information Retrieval for Large-Scale Gene AnalysisHagit Shatkay Stephen Edwards W. John Wilbur Mark BoguskiNational Center for Biotechnology InformationNLM, NIHBethesda, Maryland 20984fshatkay,edwardsg@ncbi.nlm.nih.govAbstractThe immense volume of data resulting from DNA mi-croarray experiments, accompanied by an increase inthe number of publications discussing gene-related dis-coveries, presents a major data analysis challenge. Cur-rent methods for genome-wide analysis of expressiondata typically rely on cluster analysis of gene expres-sion patterns. Clustering indeed reveals potentiallymeaningful relationships among genes, but can notexplain the underlying biological mechanisms. In anattempt to address this problem, we have developeda new approach for utilizing the literature in orderto establish functional relationships among genes ona genome-wide scale. Our method is based on re-vealing coherent themes within the literature, using asimilarity-based search in document space. Content-based relationships among abstracts are then trans-lated into functional connections among genes. Wedescribe preliminary experiments applying our algo-rithm to a database of documents discussing yeastgenes. A comparison of the produced results with well-established yeast gene functions demonstrates the ef-fectiveness of our approach.Keywords: genomics, microarray, machine learning, infor-mation retrieval, document databasesIntroductionThe development of DNA microarrays during the lastfew years (Schena et al. 1995; DeRisi, Iyer, & Brown1997), allows researchers to simultaneously measure theexpression levels of thousands of di�erent genes. Ex-periments involving such arrays produce overwhelm-ing amounts of data. In response, much recent workhas been concerned with automating the analysis ofmicroarray data. Currently pursued techniques (e.g.Eisen et. al. (1998), Tamayo et. al. (1999), Ben-Doret. al. (1999)) concentrate mostly on applying cluster-ing methods directly to the expression data, in orderto �nd clusters of genes demonstrating similar expres-sion patterns. The assumption motivating such searchfor co-expressed genes is that simultaneously expressedgenes often share a common function. However, thereare several reasons that cluster analysis alone cannotfully address this core issue:

1. Genes that are functionally related may demonstratestrong anti-correlation in their expression levels, (agene may be strongly suppressed to allow another tobe expressed), thus clustered into separate groups,blurring the relationship between them.2. As shown later, simultaneously expressed genes donot always share a function. Moreover, genes that areexpressed at di�erent times may serve complementingroles of one unifying function.3. Even when similar expression levels correspond tosimilar functions, the function and the relationshipsbetween genes in the same cluster can not be deter-mined from the cluster data alone. Testing, justify-ing, and explaining the formed clusters requires a lotof additional research e�ort.4. Due to the interrelated nature of biological processes,genes may have more than a single function. Thestrict assignment of genes to clusters, resulting frommost clustering methods currently used, may proveoverly stringent, potentially preventing the exposureof complex interrelationships between genes.The work described in this paper aims to complementthe existing methods by providing a much-needed bi-ological context, based on a survey of the existing lit-erature. The assumption underlying our approach isthat the function of many genes is described in the lit-erature, and by relating documents talking about wellunderstood genes to documents discussing other genes,we can predict, detect and explain the functional re-lationships between the many genes that are involvedin large-scale experiments. We do not attempt here todraw any functional or relational information from theexpression array itself. Instead, we use a large databaseof documents as our information search space. Eachgene is represented by a document, roughly discussingthe gene's biological function. The literature databaseis then searched for documents similar to the gene'sdocument. Thus, for each gene we produce a set ofdocuments that are related to its functional role. Wethen look for similarities between the resulting sets ofdocuments. Since each set corresponds to a gene, wecan map the similar document sets back to their corre-



sponding genes, and establish functional relationshipsamong these genes.To accomplish this goal, we use a new statisticalinformation-retrieval method (Shatkay, Wilbur 2000)to conduct the similarity search based on the gene'sdocument. As an integral part of our algorithm, weproduce an \executive summary", consisting of a fewcharacteristic content bearing terms in the set of docu-ments assigned to each gene. Thus we simultaneouslyachieve three goals:� Finding functional relationships between genes.� Obtaining the literature speci�cally relevant to thefunction of these genes.� Producing a short summary justifying why the geneswere considered relevant to each other, and whattheir function is.This functional information can then be correlated withthe expression array cluster analysis to re�ne the result-ing hypotheses and, by extension, future experiments.The rest of this paper is organized as follows: Thenext section surveys related work on gene analysis, bothbased directly on expression array data and on litera-ture mining. We then describe our approach of usingthe literature to �nd function and relationships betweengenes. Next we discuss our preliminary experimentsand results over the set of well-studied yeast genes dis-cussed by Spellman et. al. (1998). Our results demon-strate that the automated usage of literature is an ex-tremely powerful tool for determining relationships be-tween genes, for explaining expression-based clustersobtained from array-based experiments, and for assist-ing in the design of further experiments.Related WorkThe �rst part of this section provides further back-ground on the analysis of data obtained from gene ex-pression arrays and the challenges it poses; the secondpart discusses current methods for using the literaturefor gene analysis.Analyzing Gene Expression ArraysDNA microarrays represent the latest in a series of pow-erful tools based on hybridizing a soluble DNA/RNAmolecule to its complementary strand immobilized on asolid support (Southern 1975; Wahl, Meinkoth, & Kim-mel 1987; Schena et al. 1995). With DNA microarrays,cDNA corresponding to known genes is spotted ontothe solid support (usually a glass slide). The mRNAfrom cells or tissues is then converted into uorescentlylabeled cDNA and applied to the unlabeled cDNA ma-trix (Schena 1999). Since each spot on the matrix cor-responds to a known gene or est, the expression levelof thousands of genes can be measured in a single ex-periment. DNA microarrays consisting of the entire

known genome from Escherichia coli, Mycobacteriumtuberculosis, and Saccharomyces cerevisiae already ex-ist (Brown & Botstein 1999), and those representingCaenorhabditus elegans and Drosophilia melanogastergenome sequences should be available soon. In addition,commercially available DNA microarrays and oligonu-cleotide arrays exist for most of the human genes char-acterized to date and can be expected for the wholehuman genome once it is completely sequenced and an-notated within the next three years.This new technology allows gene expression experi-ments to be performed on a genome-wide scale. Ex-periments with S. cerevisiae have studied changes ingene expression patterns for over 95% of the proteincoding genes simultaneously under a variety of con-ditions (Cho et al. 1998; Spellman et al. 1998;DeRisi, Iyer, & Brown 1997; Chu et al. 1998). Thisincrease in percentage of genome measured, has an im-mediate impact on the number of genes awaiting analy-sis. For example, the number of genes collectively iden-ti�ed as being induced during sporulation dramaticallyincreased from a total of 50 to approximately 500 from asingle set of genome wide microarray experiments (Chuet al. 1998).With this increased volume of data manual gene anal-ysis becomes impractical, and there is an immedi-ate need for more powerful methods of data analy-sis (Ermolaeva et al. 1998; Bassett, Eisen, & Bo-guski 1999). Most e�orts to date have involved clus-tering genes based on their expression patterns andusing these clusters to infer functional correlation.Methods involving hierarchical clustering, commonlyapplied in sequence and phylogenetic analysis, havebeen used with the yeast data sets described previ-ously (Eisen et al. 1998). As expected, in many casesthis clustering revealed that genes with a common func-tion were indeed coexpressed (Spellman et al. 1998;Eisen et al. 1998). Self- organizing maps (Tamayo et al.1999) and other clustering methods (Wen et al. 1998;Ben-Dor & Yakhini 1999) have also been shown to e�ec-tively group genes by the observed expression patterns.While clusters of simultaneously expressed genes cancorrelate with shared function, this is not always thecase. The complex and parallel nature of the systemcauses some genes to share similar expression pro�lesdespite the distinct biological processes in which theyare involved. In fact, careful analysis of the CLB2 clus-ter described by Spellman et. al. (1998) reveals genes in-volved in several di�erent cellular functions. For exam-ple, CHS2, BUD8, and IQG1 are all involved in main-tenance of the cell wall while ACE2, ALK1, and HST3are involved in nuclear events. This example demon-strates the wealth of biological information that is notrepresented by temporal gene clusters.In addition, some members of a common signaling path-way may play antagonistic roles and actually show ananti-correlation with regards to gene expression. As



a result, the clusters obtained from shared gene ex-pression pro�les must still be analyzed with respect toknown biological roles, before reliable conclusions abouttheir biological functions can be drawn from the data.A more recent approach to array analysis usesBayesian networks to describe relationships betweengenes (Friedman et al. 2000). Rather than simplygroup genes according to their related expression pat-terns, this approach allows the identi�cation of causalrelationships among genes. Indeed, based on the anal-ysis of 800 genes shown to have regulated gene expres-sion during the yeast cell cycle (Spellman et al. 1998),only a few of these genes appeared to dominate theorder of expression (Friedman et al. 2000), and the re-sults could highlight the critical genes for establishingthe yeast cell cycle. While this analysis can suggestcausal relationships between genes, it does not providethe biological explanation for these relations. In somecases, only further experimentation can determine theinvolved mechanism. However, it is highly likely thatin many of these cases, this information currently existsin the published literature.The current method for explaining the discovered clus-ters and relationships, has been for individuals to searchthrough the literature, gene by gene, or rely on theirown knowledge of the biological processes involved.While such a method can be e�ective on a small scale,it produces a major bottleneck when performing exper-iments on a genome-wide scale.It is for this reason that we propose the developmentof an automated method for relating genes accordingto their biological function based on the current lit-erature. Our method complements the approaches de-scribe above, by providing literature-based explanationsto the clusters and the relationships that are discoveredthrough the expression arrays. The next section surveyscurrent research aimed at automating literature miningin the area of gene analysis.Text Usage in Biological AnalysisWith the advancement of genome sequencing tech-niques comes an overwhelming increase in the amountof literature discussing the discovered genes. As an il-lustrative example, the number of PubMed documentscontaining the word gene published between the years1970 � 1980 is a little over 35; 000, while the num-ber of such documents published between the years1990�2000 is 402; 700 { over a ten fold increase. Thus,surveying the literature for information about genesrequires a great deal of time and e�ort. It can notbe e�ectively and e�ciently done using the currentlyavailable search techniques, given the large number ofgenes involved in current expression array experiments.The problem is further aggravated by the non-uniformnomenclature used in the literature as illustrated below.The most widely used on-line source for gene-related

abstracts is the PubMed database. An initial step inthe search for relevant literature in PubMed is the spec-i�cation of a boolean query. The user provides eithera single term (e.g. OLE1), or a boolean combination ofterms (e.g. OLE1 AND sterol). The result is the set ofall documents found in the database which satisfy theconstraints speci�ed in the query. This form of querysu�ers from several well-known de�ciencies:� A prohibitively large number of documents are typ-ically retrieved.� A substantial part of the retrieved documents areirrelevant to the user's information needs.� Many relevant documents may not be retrieved, de-spite their relevance. For instance, documents thattalk about ole1 using one of its aliases such as DNArepair protein fatty-acid desaturase 1 or ACYL-COA desaturase 1 will not be retrieved.A lot of recent work on mining the literature for genesand proteins aims at supporting the boolean paradigm,improving it to produce more accurate results (thusmostly addressing the �rst two problems). Such workconcentrates on automated natural language processingfor �nding relevant phrases and useful facts in text. Itis intended to assist in �nding documents about a givengene, or about the relationships between speci�c genes.Leek (1997) suggests a way of using hidden Markovmodels (hmm)s for extracting sentences discussing genepositions on chromosomes from text. Craven and Kum-lien (1999) introduce a method for transforming attext documents into databases of facts about relation-ships between genes/proteins, performing a task similarto the one Leek addresses, without the need to obtainan hmm for discovering these relationships. Rindeschet. al. (2000) present a method based on parsing and us-ing thesauri to automatically extract facts about genesand proteins from documents. Blaschke et. al. (1999)also use a similar method for extracting informationabout protein interaction from scienti�c text. Most ofthe above methods have only been applied to small andlimited sample sets of documents/terms. They all stemfrom the boolean query paradigm, and require the userto specify a very accurate query in order to providehigh-quality results.Another recent system aiming at improving the qualityof the results returned from boolean search over genes isMedMiner by Tanabe et. al. (1999). It provides a goodinterface to two databases, Genecards and PubMed. Inorder to retrieve documents that are likely to be of in-terest to the user, it relies on a human-generated listof keywords, whose presence in a document discussinggenes typically indicates that the document is of highquality and relevance. Still, MedMiner provides abun-dant information about a single gene or about the rela-tionship between two speci�ed genes. Such quantities ofinformation generated per gene when hundreds of genesare involved can not be e�ectively handled by a user.The above methods all rely on strong assumptions re-



garding the use of natural language, such as the termstypically used to indicate relationships and the way sen-tences are structured. With the shift towards the analy-sis of mammalian systems the problem of non-uniformnomenclature and language usage is likely to worsen.Gene symbols are rarely used in the mammalian sys-tem literature. Instead, the discussion involves a largevariety of terms describing the genes. This additionalcomplication will make it di�cult for the user to formaccurate boolean queries. It is also likely to reducethe e�ectiveness of literature mining strategies that arebased on gene symbol identi�ers (such as the one sug-gested by Leek) and on strong assumptions about theway genes names are used in sentences. Moreover, thesesystems can indeed be helpful when searching for infor-mation about a few genes at a time, but do not addressthe need for �nding links and functional relationshipsamong thousands of genes.An alternative to the boolean query paradigm is the useof similarity queries; the user provides a sample docu-ment that is relevant to the subject of interest, and getsback other documents discussing the same subject mat-ter. Such a query mechanism does not depend on theuser choice of query terms, but rather on the contentsand quality of the example document. The ability toretrieve quality documents that are indeed similar incontents to the example document strongly depends onde�ning a similarity measure and a search procedurethat ranks the relevant documents high and the irrele-vant ones low. We have recently developed a probabilis-tic algorithm that, given an example document, �nds aset of documents that are most relevant to it (a theme)and provides a set of terms summarizing the contentsof this set of documents (Shatkay, Wilbur 2000). Theuse of similarity queries in general and this algorithm inparticular, forms the basis to our approach as describedin the next section.The ultimate challenge in the use of literature for an-alyzing expression arrays is the ability to obtain anoverview of the whole landscape of genes and their re-lated literature. A good literature analysis tool shouldprovide information such as which genes are function-ally related to each other, what their shared function-ality is and which documents discuss this functionality.It should also provide summaries that allow easy andquick browsing through the literature, and an easy ac-cess to the most relevant documents. The next sectiondescribes the new approach we have developed in orderto meet such challenges.Discovering Gene Functions andRelations through the LiteratureThe hypothesis underlying our approach is that thefunction of many individual genes is discussed in theliterature and that a good analysis of the literature isa primary step both for experimental design and for

result analysis following such experiments.Acting under this hypothesis, we shift our attentionfrom the gene-expression space to document space.Thus we start with a large database of documents con-taining all the relevant literature discussing the domainof interest (for instance { all the documents in PubMedthat discuss yeast genes). Each gene is mapped to asingle document discussing it; each such document istreated as a representative of the gene. We call eachdocument thus associated with a gene the kernel docu-ment for that gene.Using our algorithm for �nding similar documents, weobtain for each gene a body of related literature (20-50 documents sharing a common theme) based on thedocument representing the gene, along with an \exec-utive summary" containing the terms that characterizethe relevant literature. It is important to note that theabstracts retrieved by our algorithm are considered rel-evant not because they contain the same gene name asthe one associated with the kernel abstract, but ratherbecause they discuss the same issues (which typicallycorresponds to functionality) as those discussed in thekernel document.There are several ways to use the set of documents re-trieved for each gene in order to derive relationshipsamong genes:� One can simply mine this set for the names of othergenes as done by any of the algorithms described inthe previous section. The main limitation of doing sois the dependency on explicit rules for detecting genenames, with the risk of overlooking important infor-mation while detecting unimportant relationships.� A more e�ective way is to automatically compare thesets of documents retrieved for each gene, and de-termine that genes share similar functionality if theliterature associated with each of them is similar.� A third possible way is to use the terms character-izing the retrieved literature, as they occur in thesummary, and consider genes as related if their sum-maries consist of the same (or almost the same) setof terms.We currently use the second of these methods to deter-mine relationships among genes, as described later inthis section.The �rst step in our approach requires mapping theset of genes hG1; : : : ; GN i to a set of kernel documentshK1; : : : ;KN i (see top of Figure 2). Kernel documentsare currently obtained from the available curated litera-ture about yeast genes (as explained in the experimentspart of this paper). Our method strongly depends onthe quality of the kernel documents. Abstracts dis-cussing experimental methods rather than gene func-tion tend to draw other documents describing the sameexperimental methods. The result is a document setnot representative of the gene's function. On the other
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Figure 1: Typical term distribution for the Nutritiontheme.hand, kernels discussing gene biology typically lead tohigh quality information about the functionality of re-lated genes. We are currently considering ways to au-tomate the kernel selection process, so that each kernelfaithfully represents the biology of its associated gene.The rest of this section provides the details of our ap-proach. We �rst outline the similarity query algorithmused for �nding related abstracts starting from a ker-nel document. (A complete discussion of the modelsand the algorithms can be found in (Shatkay, Wilbur2000)). We then describe how similarities between theobtained document collections are detected.Similarity Queries over DocumentsOur algorithm is based on the idea that documentswhich share a common theme can be modeled as thoughthey were generated through sampling from a commonset of independent Bernoulli distributions representingthe theme. For example, a set of documents discussinggenes responsible for nutrition during the cell-cycle, arelikely to contain terms such as fructose or glucose andquite unlikely to contain the term lipid, as illustratedin Figure 1.Each document in our document database, DB, is mod-eled as an M -dimensional binary vector, where Mis the number of distinct terms1 ft1; : : : ; tMg inthe database. Formally, a document d is a vectorhd1; d2; : : : ; dM i, where:di = �didef=n 1 if ti 2 d ;0 otherwise : (1)Given a theme T , we view the presence/absence ofterms in document d in the database DB, as a result ofM independent Bernoulli events, each of which stemsfrom one of three families of Bernoulli distributions:� pTi | the probability that the term ti occurs ina document d, given that d is a theme document:pTi def= Pr(ti 2 djd 2 T ) :1Terms consist of one or two words, excluding stop words.They are extracted from the raw text in a standard prepro-cessing stage.

� qTi | the probability that the term ti occurs in adocument d, given that d is an o�-theme document:qTi def= Pr(ti 2 djd =2 T ) :� DBi | the probability that the term ti occurs ina document d, given that d is a document in thedatabase, regardless of its being an on-theme or ano�-theme document: DBidef= Pr(ti 2 djd 2 DB) :The distribution DBi models the possible arbitrary us-age of terms in the language, without being strongly in-dicative of the main topic discussed. (e.g. the sentence\He entered the building" is not particularly relevantto the topic construction, despite the occurrence of theterm building in it).The a priori probability of any document d 2 DB, re-gardless of its contents, to be a theme document is de-noted as Pd: Pddef=Pr(d 2 T ).Throughout this paper, we assume this parameter tobe known and �xed for all documents, and we do notattempt to estimate it here. (In the experiments de-scribed later, Pd = 0:01 for all d 2 DB.)The last component of our model is the Bernoulli eventrepresenting the choice made for each term ti, in eachdocument d, whether it is to be generated according tothe database probability, DBi or according to the spe-ci�c on/o�-theme distribution. We denote this proba-bility, for each term ti, as �i.The process by which each document d 2 DB is gen-erated, given a speci�c theme, T , can be modeled asfollows: First it is decided if the document d is insidethe theme T or not. The probability for d 2 T is Pd.Then for each term, ti, it is decided if ti is generatedaccording to the general database distribution, DBi, oraccording to its speci�c theme/o�-theme distribution.The probability of a term ti to be generated accordingto the general database distribution DBi is �i.Finally, the decision whether to include the term in thedocument d is based on one of three possibilities:� If ti is to be generated according to the general DBdistribution, it is included in d with probability DBi.Otherwise:� If d is a theme document, ti is included in d withprobability pTi .� If d is an o�-theme document, ti is included in d withprobability qTi .Note that for each document d 2 DB, we know theterms it contains. The missing information is whichdocuments are theme documents and which terms aregenerated from the general distribution, DBi, as op-posed to the theme-speci�c ones, pTi and qTi .Given a single document representing the gene, our taskis to �nd the characteristic set of Bernoulli distribu-tions, (pT , qT and �)2, for all terms i, and use it to2Note that estimating DBi is straightforward since all



�nd the documents that are highly likely to have beengenerated by sampling from these distributions. Thelatter documents are the ones focused on the themerepresented by these distributions. In addition, we pro-duce a set of terms characterizing this theme. Theseare the terms that have a high probability to occur intheme documents (high pTi ) and a much lower proba-bility to occur in documents outside the theme (highratio pTi =qTi ).To estimate the Bernoulli parameters under missinginformation as described above, we use an Expecta-tion Maximization algorithm(EM) (Dempster, Laird,& Rubin 1977); it aims to maximize the likelihoodof the database partition into theme/o�-theme docu-ments, given the Bernoulli parameters, based on thekernel document. The complete algorithm is describedelsewhere (Shatkay, Wilbur 2000), and we provide onlyits outline here. An EM algorithm starts by initializ-ing the model parameters, (pT ; qT ; �T ), based on someprior knowledge; in our case the initial assignment is arough approximation of the Bernoulli parameters basedon the kernel document and its comparison to the restof the database. It then alternates between:� the E-step of computing the expected values, for thelikelihood of the documents to be in the same themeas the kernel document, under the current parameterestimates, and� the M-step of �nding new model parameters thatmaximize the likelihood of the database partition intotheme/o�-theme documents given the parameters.This iterative process is guaranteed, under mild condi-tions, to provide monotonically increasing convergenceof the likelihood function, and we have proven that ouralgorithm indeed converges to such a local maximum.We execute this algorithm for each of the kernel doc-uments, hK1; : : : ;KNi, representing each of the genes,hG1; : : : ; GN i, as illustrated in the top part of Figure 2.The result from the run for each gene consists of:� a list of the top 50 documents discussing the sametheme as the kernel document, ordered by their de-gree of relevance to the theme, and� a list of terms (keywords) characterizing the theme,ordered by their degree of relevance to the theme.Note that the keywords provided in the list are notmerely the terms most probable to occur in the set ofdocuments discussing the theme, but rather those thatare much more probable to occur in this set than in therest of the database (pTi =qTi is high). Simply using themost frequent terms, (as done, for example, by Tan-abe et. al. (1999)), typically results in terms that arecommon throughout the database and therefore non-informative. In contrast our method provides keywordsthe required information is present in the database.

that are informative and descriptive of the speci�c sub-ject matter.This output, as shown in the results section of this pa-per, in and of itself, provides valuable support for geneanalysis. Still, we further extend it in the next phase,to assist in �nding relations among the genes.Finding Functional Relations among GenesObviously, establishing �rm functional relationships be-tween genes requires performing carefully designed ex-periments. However, the literature can be used to sug-gest possible relations and to provide coherent justi�ca-tion for these suggestions. In the following we describeour approach for utilizing the literature in this manner.Our primary assumption, which is justi�ed by our re-sults, is that common relevant literature is a strong in-dicator of common functionality. That is, genes whichhave similar lists of top ranking documents associatedwith them, share some common function that is de-scribed in the common literature.Our task is thus reduced to �nding similarities betweenthe lists of documents retrieved in the previous phaseof the algorithm, and to associating with each gene allthe other genes that have similar document lists. Todo this we use the PubMed identi�ers associated withthe documents, without examining the documents' con-tents. Using the identi�ers alone, we construct for eachkernel a vector characterizing it based on the documentsdeemed relevant to it by the �rst phase of the algorithm.Using this vector representation, we can rank, for eachkernel Ki, all the other kernels according to their prox-imity toKi in the kernel-vector space. Since each kernelcorresponds to a gene, we can map the inter-related ker-nels back to their respective genes, and obtain a set ofgenes that are closely related. The method is illustratedat the bottom part of Figure 2 and is further describedin the following paragraphs.First, we construct the set of PubMed Identi�ers of rel-evant documents, Sr, as follows:Let N be the number of kernel documents used for rep-resenting genes3. We denote each kernel document byKi where 1 � i � N .For each kernel, Ki, let Li be the set of PubMed identi-�ers for the 50 top ranking documents associated withkernel Ki, formally: Lidef=fIDi1 : : : IDi50g ;where IDij is the PubMed identi�er of the jth documentranked as relevant for kernel Ki.Intuitively speaking, if two distinct genes, Gi and Gj ,represented by kernels Ki and Kj , have similar sets ofrelevant PubMed identi�ers, Li and Lj , then the lit-erature relevant to these two genes has a lot in com-3The number of genes we are analyzing may exceed Nsince the same kernel document might discuss and representmore than a single gene.
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..Figure 2: Finding Documents and Terms related to Genes (top), and Sets of Related Genes (bottom).mon. This in turn suggests that some roles and func-tions (which are typically described in the literature)are shared by these two genes.Note that when looking for similarities between lists ofPubMed identi�ers, identi�ers that occur only within asingle list Li, and do not occur in any other list, Lj , donot contribute to the evaluation of Lj as similar to Li.Using this observation, we can reduce the number ofPubMed identi�ers used for comparing document lists.Formally, let ID denote a PubMed identi�er and jID jdenote the total number of identi�er lists, Li, in whichID occurs. Our calculations need only take into accountthose identi�ers for which jID j> 1.Thus, Sr is de�ned to be the set of PubMed identi�ersof all documents that are in the relevance list of at leasttwo kernels. Formally:Srdef= N[i=1Li � fID j jIDj � 1g : (2)We denote the number of PubMed identi�ers in Sr, jSrj,by Mr, and denote each PubMed identi�er in Sr as IDjwhere 1 � j �Mr.We can now represent each kernel document Ki, as anMr-dimensional vector, Videf=hv1i : : : vMri i over Sr wherevji are de�ned as follows:vji = �ijdef=n 1 if IDj 2 Li0 otherwise : (3)We then divide each such kernel vector by its length,(the length in this case is simply the square root ofthe number of non-zero entries), obtaining a normalizedrepresentation of the kernels as vectors of length 1.To gauge the similarity between each pair of kernels,we calculate the cosine coe�cient between their respec-tive vectors. The cosine coe�cient is a well understoodmeasure often used in information retrieval to roughly

assess similarity between documents, when documentsare represented as vectors of terms (see, for instance,Salton (1989)). We use it here in a non-traditional con-text, where our vector represents the kernels based onother documents rather than terms. Formally, the co-sine coe�cient between two vectors, Vi; Vk, whose re-spective lengths are kVik; kVkk is the cosine of the an-gles between the vectors and is de�ned as:cos(Vi; Vk)def=PMrj=1 vji � vjkkVik � kVkk :Since the vectors representing the kernels are normal-ized, their length is 1 and only the numerator needs tobe calculated.We note that the cosine coe�cient is 0 whenever thevectors Vi and Vj are orthogonal (independent of eachother), and 1 when Vi = Vj . Thus, the closer Vi and Vjare, the closer the coe�cient is to 1. Hence, by calcu-lating for each kernel vector, Vi, the cosine coe�cientswith respect to all other kernel vectors, Vj , we obtainfor each kernel a ranking of how related it is to each ofthe other kernels, Kj .By recalling that each kernel Ki corresponds in turn toa gene Gi we obtain a relationship between the respec-tive genes. The reasoning for the assumed relationshipis given by the lists of terms associated with the themesgenerated from the kernel documents, and thus the rea-soning behind the suggested relationships can be easilychecked.It is left to be shown that the documents retrieved asrelevant to the genes, the summaries obtained and therelationships implied by using our algorithms are indeeduseful. The experiments and the results reported in thenext section demonstrate that our methods are indeedcapable of meeting these criteria.



Experiments and ResultsThe main goal of the methods presented in this work isto provide researchers with quality literature and con-cise contents summaries regarding genes. A secondarygoal is to present and reveal (possibly yet-unknown)relationships among genes.To check the performance of our algorithms we applythem to yeast genes, and show how our methods indeed�nd relevant documents and provide accurate summaryterms. Moreover, we also discover meaningful relation-ships among the genes. We have chosen the yeast DNAmicroarray testbed since the validity of our methods canonly be assessed by comparison of the results with exist-ing summaries of biological information. The Saccha-romyces Genome Database4 (Cherry et al. 1998; Ball etal. 2000) and the Yeast Proteome Database (Costanzoet al. 2000), as well as the functional analysis given bySpellman et. al. (1998), are critical for rapid, objectiveevaluation of our results.We realize, of course, that the fact that the yeast genesare well studied biases the literature in PubMed to in-clude many abstracts discussing these genes. However,given that PubMed consists of abstracts only, which typ-ically contain little explicit information about the con-nections among genes, it is obvious that our algorithmscontribute a great deal, �nding information that cannot be easily and e�ectively obtained by any currentlyavailable means.The rest of this section describes the experimental set-ting and reports the results obtained by applying ouralgorithms to the data. The quality of the results wasveri�ed through comparison to the functional groupsof genes according to Spellman et. al. (1998). The por-tion of Spellman's table relevant to the results discussedhere is shown in Table 1. The table categorizes theyeast genes according to their functionality (rows) andthe phase in the cell-cycle in which they are expressed(columns).Experimental SettingThe experiments presented here consist of applying ouralgorithms to yeast genome data, in an attempt to �ndrelevant literature and gene relations for the yeast genesanalyzed by Spellman et. al. (1998). The names of allthe genes used by Spellman5 were compared againstthe Saccharomyces Genome Database (SGD). Out ofabout 800 genes found by Spellman et. al. to be cell-cycle regulated, only 408 genes had curated PubMedreferences in the SGD, and our experiments concentrateon these 408 genes.4SGD, the Saccharomyces Genome Database can be ac-cessed at http://genome-www.stanford.edu/Saccharomycesand YPD, the Yeast Proteome Database, athttp://www.proteome.com/databases/index.html.5Available through the genome web site at Stanford,http://genome-www.stanford.edu/cellcycle/ .

For each of the genes, the oldest reference cited in SGDwas chosen to be the kernel document correspondingto the gene. Since some of the closely related genesshare the same reference, we obtain 344 distinct kerneldocuments on which we test our algorithm.The database used in our experiments is a subsetof PubMed, consisting of 33,700 documents discussingyeast genes. It was constructed by taking the 344 kerneldocuments, and applying the current PubMed neighbor-ing algorithm (Wilbur & Co�ee 1994) to each of thekernel documents. Neighboring was applied again toall the resulting documents and then applied a thirdtime to all the documents in the resulting set. Theresulting database contained 42,335 documents whichincluded 2,250 documents deemed relevant for our 408target genes by the SGD curators (86% of the totalcurated documents as of August, 1999). Many of the42,335 had a title only and no abstract, and we elim-inated them from the database, resulting in a set of33,700 yeast-related documents. We eliminated fromthese documents the Mesh term taggings typically as-sociated with PubMed entries, as well as all the termsthat occur in over 10% of the documents in the databaseor in 2 or fewer documents. All these terms are typicallyuseless and may have detrimental e�ect when lookingfor descriptive keywords. Eliminating such terms im-proves both the quality of the results and the runningtime of the program.As a �rst phase in our experiments, we applied our simi-larity search program, described in the previous section,to the 344 kernels, searching over the database of 33,700abstracts. For each kernel, the program outputs a listof the top 50 related documents and a list of keywordsdescribing the contents of this relevant set.The next phase consists of looking for relationshipsamong genes. For each of the kernels, the previousphase produced a list of 50 relevant documents. The�rst step in the current phase is to construct the set ofrelevant documents retrieved for all the kernels, elimi-nating duplicates. That is, if a single document is rele-vant to more than one kernel, it is still included in theset of relevant documents only once. We then elimi-nate all documents that are relevant for a single kernelonly, as explained in the previous section. We are leftwith a set of 3063 documents that are relevant to 2 ormore kernel documents, (this is the set Sr, de�ned inEquation 2).We then represent each kernel as a 3063-dimensionalvector (as speci�ed in Equation 3), and use the cosinecoe�cient to measure similarity between each kerneland all the other ones. Each kernel is then convertedback to the gene(s) for which it was curated. The genesthat are grouped as similar according to our methodare compared with the ones grouped by functionalityaccording to Spellman's table (parts of which are shownin Table 1).



Biological G1 S G2 M M/G1FunctionReplication CDC45 ORC1 CDC47 CDC54 CDC6 CDC46Initiation MCM2 MCM6 MCM3Fatty Acids/ EPT1 LPP1 PSD1 AUR1 ERG3 LCB3 ERG2 ERG5 PMA1 ELO1 FAA1 FAA3Lipids/ SUR1 SUR2 SUR4 PMA2 PMP1 FAA4 FAS1Sterols/MembranesNutrition BAT2 PHO8 AGP1 BAT1 GAP1 DIP5 FET3 FTR1 AUA1 GLK1 HXT1MEP3 PFK1 PHO3 HXT2 HXT4 HXT7PHO5 PHO11 PHO12PHO84 RGT2 SUC2SUT1 VAP1 VCX1ZRT1Table 1: Yeast Genes: expression during cell-cycle and functionality. (Adapted from Spellman et. al. (1998))To check the validity of the keyword list assigned toeach kernel, we compare each keyword to its associatedfunctionality using a mini-thesaurus obtained from apanel of four independent yeast experts. Each func-tionality description listed in Spellman's table (such asSecretion or Chromatin) is associated with the termsjudged most closely related to it according to the ex-perts. Each expert received a list of the 22 function de-scriptions listed by Spellman et al, and a separate listof 330 alphabetically-sorted summary terms resultingfrom our program. The experts assigned to each termin the latter list, the functionality descriptors that theyjudged to be most related to it; non-speci�c terms wereleft unassigned. An example of two entries in the re-sulting thesaurus is shown in Table 2.Function Associated TermsChromatin chromatids, chromatin, chromosome,sister chromatids, telomere, telomericSecretion acid phosphatase, coatomer, endoplasmicendoplasmic reticulum, er, golgi apparatusgolgi complex, golgi transport, golgi, v snareTable 2: Example of thesaurus entries associating genefunction with related terms.For each gene, we compare its functionality according toSpellman with the functionality assigned by the panelto each of its key terms, counting how many of the keyterms indeed correspond to the gene's functionality ac-cording to Spellman and how many do not. The resultsare described throughout the rest of this section.ResultsAs stated before, for each gene represented by a ker-nel document we obtain through the similarity querymechanism applied to the whole database:

1. A set of related documents.2. A set of summarizing keywords.In addition, from the set of related documents we ob-tain, for each kernel, through the vector representationand the cosine coe�cient calculation, a set of relatedkernels. The latter kernels are mapped back to form aset of related genes.To assess the value of the results obtained in the �rstphase we examine the set of summarizing keywords.(Obviously, objectively assessing the quality of the re-trieved documents themselves would also be desirablebut there is no well-de�ned way to do it.) We also ex-amine the lists of related genes obtained in the secondphase. The quality of the results is checked through acomparison with the functionality assigned to genes bySpellman et. al., shown in Table 1. Since many of thegenes in the experiment are not assigned any function-ality by Spellman (120 out of the 344 kernels used) ,we can only verify in this manner results for the oneswhose functionality was determined by Spellman et. al.An example of a typical successful search is shown inTable 3. The left column of the table lists the PubMedidenti�ers for two kernel documents together with thegenes they stand for and the functionality of these genesaccording to Spellman et. al. The second column lists,for each of the two kernels, the 10 top keywords associ-ated with the retrieved set of documents, as determinedby our algorithm. The third column lists the top 10genes6 associated with each of the two kernels, based onthe cosine coe�cient. The fourth column lists the func-tion of each gene according to Spellman et. al, as a mean6ELO1 has only 9 genes associated with it, since therewere only 9 non-zero cosine coe�cients associated with itskernel.



Kernel (PMID, Keywords Assoc. FunctionGene,Function) Genes8702485 fatty acid, OLE1 (Fatty Acid, Sterol. Met.)�ELO1 fatty, FAA4 Fatty Acid/Lipids/Sterols/MembranesFatty Acid/ lipids, FAA3 Fatty Acid/Lipids/Sterols/MembranesLipids/ acid, SUR2 Fatty Acid/Lipids/Sterols/MembranesSterols/ grown, FAA1 Fatty Acid/Lipids/Sterols/MembranesMembranes medium, ERG2 Fatty Acid/Lipids/Sterols/Membranescarbon, PSD1 Fatty Acid/Lipids/Sterols/Membranessynthase, CYB5 (Fatty Acid, Sterol. Met.)�strains, PGM1 (Carbohydrates Met.)�de�cient7651133 hexose, HXT1 NutritionHXT7 glucose uptake, RGT2 NutritionNutrition glucose conc., HXT4 Nutritionfructose, HXT2 Nutritionglycolytic, GLK1 Nutritionglucose, SEO1 (Small Molecules Transport)�sugars, PRB1 (Protein Degradation)�uptake, AGP1 Nutritionaerobic, ZRT1 Nutritionutilization MIG2 (Carbohydrates Met.)�Table 3: Example of a result obtained from two di�erent kernel/gene using our algorithm, compared with function-ality according to Spellman or ypd (ypd functionality denoted by �).for checking the validity of our results. Since our ex-periment included more genes than listed in Spellman'stable, some of the genes in the third column are notassigned functionality by Spellman. For these genes,(denoted by an � in the table), we found the function-ality in YPD.The table shows that except for two genes (PGM1 andPRB1) all of the genes found for these two kernelshave a strong functional relationship to the genes rep-resented by the kernels, and the keywords provide astrong indication of this functionality. (Note that thekeywords are associated as a set with the whole kernelentry and not separated as one keyword per associatedgene.) We note that PGM1 is involved in carbohy-drates metabolism which is still functionally related tofatty acids metabolism. PRB1 is responsible for pro-tein degradation, which is not related to nutrition. It isincluded in this set, since the abstract chosen for its ker-nel document discusses regulation of the enzyme prb1pby glucose, rather than the function of prb1p.The results for about 100 out of the 220 kernels forwhich we had the Spellman assigned functionality,closely resemble the ones demonstrated in Table 3 inthe strong agreement with Spellman's cluster assign-ment and in the accurate description as given by thekeywords learned by the similarity query algorithm.As a quantitative measure, we calculated the averagenumber of correct and incorrect keywords among the 5top-ranking keywords associated with each of these ker-nels. A keyword occurring in a list for a speci�c gene

(kernel), is considered correct if it appears in our the-saurus entry labeled by the same function as the oneassigned to the gene by Spellman. If its thesaurus en-try is labeled by a di�erent function, it is consideredwrong. If it was assigned no function by our panel ofexperts it is considered non-descriptive. An average of3.27 out of the 5 top ranking keywords, were associatedwith the correct function, while only 1.12 out of the 5were associated with the wrong function, and 0.61 outof the 5 were non-descriptive. The di�erence betweenthe high rate of correct keyword assignment relative tothe wrong and the non-descriptive assignment is highlystatistically signi�cant (p � 0:005, according to thetwo-sample t-test).For many other kernels the groups of related genes con-tain many genes not assigned functionality by Spell-man, which makes the results harder to validate. An-other set of cases, in which our results deviate fromSpellman's functionality grouping of genes, are thosefor which the kernel document was not primarily fo-cused on the function of the gene but contained a lotof detail discussing the experimental methods. In suchcases, any document describing the same experimen-tal method was considered similar and drawn into theset of relevant documents, resulting in a mixture ofbiologically-unrelated documents. The terms includedin the keywords list indicate potential problems withthis grouping and provide a warning that these resultsshould not be taken at face value. An example of sucha result is given in Table 4. In this case, the kernel doc-ument focuses on the technique used for studying the



Kernel (PMID, Keywords Assoc. FunctionGene,Function) Genes6323245 ars, CDC10 Site Selection/MorphogenesisMCM2,MCM3,MCM6 autonom. replicating, PHO3 NutritionReplication Init. replicating sequence, EST1 DNA Synautonomously, MIF2 Chromatinminichromosomes, PHO12 Nutritionreplicating POL2 DNA Syn.centromeric DHS1 DNA repairleu2, SNQ2 *plasmids, SMC3 Chromat. Cohes.ura3, EXG2 Cell Wall Synt.Table 4: Example of a result obtained from an uninformative kernel using our algorithm, compared with functionalityaccording to Spellman.MCM genes, rather than the explicit function of thesegenes. Consequently, some of the kernels consideredsimilar to it represent the use of similar techniques forstudying di�erent biological processes, rather than thebiology of their associated genes. The result is a set ofgenes for which the commonality is that the documentscurated for them all discuss manipulations within chro-mosomes rather than gene function. The keyword list(which highly ranks terms such as autonomous repli-cation and contains leu2 and ura3 that are commonlyused selectable markers for plasmids), indicates that thetheme underlying this set of documents and genes is notrelevant to functional genomics.Obviously, obtaining good biological information (asshown in Table 3) is much preferable to an indicationof poor quality, and for the most part this dependson starting from good quality kernel documents. Theexcellent experience with the 100 high-quality kerneldocuments demonstrates that once a single informativedocument is given for a gene, many other quality docu-ments about the related genes are automatically found,accompanied by a succinct summary of the functionalrelationship between the genes.Conclusions and Ongoing WorkAutomatically �nding connections among documentsdiscussing genes has three clear advantages:1. It is an e�cient way for establishing putative relation-ships between genes as a preliminary step precedingdirect experimental methods.2. It provides the relevant literature needed by the re-searchers for performing the results analysis.3. It generates a summary explaining the discovered re-lationships. This summary can help researchers ex-plain and evaluate the relationships found throughdirect clustering of the expression levels.Thus, this method can be used both for generating hy-potheses prior to the experiments, as well as for post-experimental interpretation of the results.

The results presented in this paper demonstrate thatgiven a functionally descriptive kernel document ourprogram can provide insight into gene functional group-ings, similar to that currently obtained through labori-ous, manual literature surveys relying on a lot of humanexpertise. Obviously our method can not ascribe func-tion to genes which have not yet been studied. However,it can indicate functional relationships among knowngenes which heretofore have gone unnoticed.The main limitation our technique currently faces isthat of obtaining functionally descriptive kernel doc-uments. We are considering several machine-learningtechniques that can greatly assist in automating thekernel selection process. The expectation is that suchkernel selection would consistently lead to good results.Our method complements current techniques used forcluster analysis of the expression array data. Westrongly believe that by combining this approach withtechniques such as the one suggested by Friedmanet. al. , as well as with expression array clustering ap-proaches, we can achieve a great deal of automation andexpedite the tedious task of analyzing the overwhelmingamounts of data generated from experiments conductedover gene expression arrays.AcknowledgmentsWe are grateful to Jan Fassler, Ken Katz, Steven Sul-livan and Tyra Wolfsberg for the time and e�ort theyhave put into assigning functional tags to terms.ReferencesBall, C. A. et al. 2000. Integrating functional genomic in-formation into the Saccharomyces genome database. Nu-cleic Acids Res. 28:77-80.Bassett, D. E.; Eisen, M. B.; and Boguski, M. S. 1999.Gene expression informatics { it's all in your mine. NatureGenetics 21:51{5.Ben-Dor, A., and Yakhini, Z. 1999. Clustering gene expres-sion patterns. In Proceedings of the Third Annual Inter-
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