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ABSTRACT 
Computer system sizing involves estimating the amount of 
hardware resources needed to support a new workload not yet 
deployed in a production environment. In order to determine the 
type and quantity of resources required, a methodology is 
required for describing the new workload. In this paper, we 
discuss the sizing process for database management systems and 
describe an analysis for characterizing business intelligence (BI) 
workloads, using the TPC-H benchmark as our workload basis. 
The characterization yields four general classes of queries, each 
with different characteristics. Our approach for sizing a BI 
application’s database tier quantifies a new BI workload in 
terms of the response time goals and mix of the different query 
classes obtained from the characterization analysis.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
mining 

H.2.0 [Database Management]: General 

General Terms 
Design, Experimentation, Performance 

Keywords 
Workload Characterization, Clustering, Sizing, Business 
Intelligence, Capacity Planning 

1. INTRODUCTION 
Database systems continue to play a vital role in a company's IT 
infrastructure. Gartner [6] estimates that the total worldwide 
database software market in 2004 will reach $8815 million and 
$9203 million in 2005. In particular, specialized databases for 
data warehousing and business intelligence (BI) are becoming 
an important segment of the total database market.                                                            

BI workloads have very different characteristics than the 
traditional transaction processing workloads that most capacity 

planning and sizing methods are geared towards. These 
differences include [19]: 

• A greater emphasis is placed on summarized and 
consolidated data versus a focus on individual records. 

• A very large database size is used. 

• Queries are heterogeneous, complex, and ad-hoc in 
nature and vary greatly in elapsed time. 

• Queries often touch millions of records, and may 
perform many table joins, sorts, and aggregations. 

• Queries sometimes produce very large results sets, 
requiring a lot of concurrent I/O. 

While the performance tuning aspect of system configuration is 
vital, equally important is determining what type of hardware 
resources are required to support an application and its 
workload. This can be a complicated task because of the wide 
variety of processor, disk, network and memory technologies 
available. Further, determining the quantity of each resource 
needed and predicting how the different components interact 
with each other under a specific workload are not trivial tasks. 

Computer system sizing attempts to arrive at a first estimate of a 
hardware configuration that will satisfy the performance 
demands, cost constraints, and functional requirements of an 
application. When sizing a system, we assume the following: 

• Detailed information about the application and its 
workload is not available. 

• Experts typically first find published performance 
results for a similar workload with similar 
performance requirements. They then extrapolate on 
these results using a combination of their experience, 
industry rules-of-thumb, and published performance 
relationships between different types of hardware. The 
result is a first estimate of the hardware configuration 
(processor, disk, and memory) needed to meet the 
resource demands of the expected workload and size 
of database. 

• Customers expect a cost-efficient and effective 
hardware solution that meets the performance 
requirements of their application while offering the 
maneuverability to accommodate future expansion. 

In this paper, we first discuss an approach for sizing database 
servers running BI workloads. We then describe a workload 
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characterization analysis that we use as a basis for describing 
new BI workloads in our sizing approach. The analysis applies 
unsupervised data mining techniques to group individual BI 
queries into general classes of queries based on system resource 
usage. The resulting characterization provides insight into the 
resource demands of the queries typical of a BI workload and 
can be exploited in other areas such as workload management 
and meeting quality of service (QoS) requirements. 

The remainder of the paper is organized as follows. Section 2 
reviews related work. In Section 3, we highlight the main 
activities of our sizing process. Section 4 describes our 
workload characterization analysis. We summarize the paper 
and suggest some future work in Section 5. 

2. RELATED WORK 
Much of the research on sizing and capacity planning focuses on 
performance evaluation and workload prediction. Books such as 
Ferrari [4] emphasize tools and techniques for performance 
evaluation. Lam and Chan [14] examine the theory and 
approaches used in computer capacity planning in a more 
rigorous manner than previous studies. Industrial publications 
[8, 11] approach the topic from a more practical perspective and 
focus on specific hardware platforms. Previous work in our 
research group [2, 22] focuses on developing analytical models 
using Queueing Network Models (QNMs) to support capacity 
planning for DB2® Universal Database™ (UDB) [12]. 
Wasserman [19, 20] approaches sizing from an abstract 
perspective and determines the resources requirements of new 
workloads by extrapolating from the performance data of a 
known workload.  

Workload characterization dates back to the 1970's when 
workloads largely consisted of large transactions and batch jobs 
that were run on mainframe computers. Techniques have 
evolved to accommodate some of the modern workloads 
encountered in today's computing environments. For a thorough 
review of the different characterization techniques in the 
literature, the reader is referred to Elnaffar and Martin [3]. 
Clustering is one of the most widely adopted techniques in 
workload characterization (for instance, see Calzarossa and 
Serazzi [1]; Nikolaou et al. [17]; Elms [5]).  

Much of the recent clustering analysis work in the database and 
information retrieval fields is geared towards improving system 
performance. Ghosh et. al. [7] use clustering to reduce the 
complexity of selecting an optimal access plan for a query. In 
their approach, similar queries are grouped together into clusters 
and the optimizer-generated plan for the cluster representative is 
used to execute all future queries assigned to the cluster, 
resulting in significantly improved query optimization times. 
Wen et. al. [21] use clustering in the Information Retrieval 
domain to help human editors identify frequently asked 
questions. Their clustering strategy groups similar queries 
together more effectively than using keywords alone. Finally, 
Golfarelli and Saltarelli [9] use clustering to construct a profile 
of a data warehousing workload in order to summarize its 
characteristics. The profile can be used to help the designer 
during logical and physical optimization and to generate 
workloads useful for evaluating system performance in testing 
and benchmark settings. 

Our analysis differs from previous work in two fundamental 
aspects, the choice of workload characterization 
features/parameters and the clustering algorithms used. The 
majority of prior analyses use a combination of structural query 
properties and statistical parameters to perform a clustering. The 
structural properties of a query are based on the text of the query 
itself, such as the number of table joins, the number of 
predicates, and the type of predicates. Statistical parameters are 
quantitative values contained in the database system catalog 
tables, such as the table size, the size and type of indexes on a 
table, and the skew of the data values in the tables. The 
parameters we use in our analysis are performance-oriented 
measurements. They are obtained by recording the query’s 
consumption of system resources during query processing. The 
clustering algorithms we use also differ than those used in 
previous work. The techniques we employ are known for 
revealing underlying or hidden dimensions in data. This is 
particularly useful in our scenario because of the many different 
interactions that occur during query processing. 

3. SIZING APPROACH OVERVIEW 
It is important not to confuse the sizing process with capacity 
planning. While both processes have many activities in 
common, they have different objectives and methodologies. The 
majority of capacity planning studies and approaches in the 
literature assume that detailed performance measurements from 
a production environment are available to build models of 
system performance. Traditional capacity planning is also 
highly-geared towards estimating the future resource 
requirements of an existing workload. In contrast, sizing 
typically involves estimating the computing resources required 
to support a new workload that has not been run in a production 
environment. Since it is assumed that there are few production 
measurements available for the new workload, estimations, 
assumptions, and extrapolations must be made. 

The capacity planning process also yields more accurate models 
of workload and system performance when performed correctly. 
This is attributed to the greater availability of detailed input. 
Conversely, a methodical sizing exercise has a much higher risk 
of inaccuracy than a capacity planning exercise, mainly due to 
the lack of factual data available about the new workload. There 
is also an inherent time-cost/accuracy trade-off between the two 
processes. The sizing process sacrifices some of the accuracy 
and deep understanding obtained through the capacity planning 
process in return for a quick and straightforward study.  

Our sizing approach entails two main activities: estimating the 
performance requirements of the new workload and selecting 
hardware configurations that meet these requirements. The 
overall process can be summarized as follows: 

1. Collect the required high-level input data from the 
customer. 

2. Cross-check and verify input data, making 
assumptions and estimates if needed. 

3. Determine the required system resource demands for 
each workload class and type. 



4. Aggregate the different workload class and type 
resource demands to determine the overall system 
requirements. 

5. Determine which hardware configurations meet the 
required resource demands. 

6. Produce a ranked list of hardware configurations 
according to desired criteria and recommend a 
configuration to the customer. 

While these steps are general to many relational database 
management systems (DBMSs) and workloads, the 
implementation details are workload and/or DBMS-specific. 

In our approach, the resource requirements of new 
online/production workloads are calculated by extrapolating 
from the observed performance of queries from the Transaction 
Processing Performance Council (TPC) TPC-H™ benchmark 
[18]  as well as using various assumptions, projections, and 
rules-of-thumb. The requirements of batch/ETL workloads are 
calculated using a series of equations that take into account 
parameters such as the input volume, transform complexity, and 
time window. An algorithm, based on our chosen units of 
processing power, is used to determine the minimum processor 
configuration required for each desired server model. Memory is 
determined for each server configuration using rules-of-thumb. 
Networking requirements are not considered in the approach at 
this time and are suggested as future work. An algorithm for 
sizing disk subsystems takes into account the peak throughput 
requirement of the workload and uses pre-configured disk 
systems with known throughput rates to determine how many of 
such units are required. The amount of raw storage required is 
determined using rules-of-thumb. For a full description of the 
sizing process, including calculations and algorithms, the reader 
is referred to Wasserman [19, 20]. 

In order to perform Step 3 in our sizing approach, a 
straightforward technique is needed to describe a new 
online/production workload. We propose one such technique for 
doing so in the next section. 

4. CHARACTERIZING BI WORKLOADS 
BI applications and their workloads vary depending on the type 
of application, the target industry, and the nature of business 
questions being answered. We use the TPC-H benchmark as our 
representative BI workload for this task. The TPC-H benchmark 
consists of 22 ad-hoc queries which answer questions 
representative of any industry which must manage, sell, or 
distribute a product worldwide (car rental, food distribution, 
parts, suppliers, etc.). 

It is difficult to create an accurate workload model if we view a 
BI workload as a single collection of homogeneous queries. A 
model also becomes too complex if we treat each query 
individually, in effect, as its own workload. A more practical 
solution is to partition queries into a few general classes based 
on their resource usage. Each class will comprise the queries 
that are similar to each other based on resource usage and other 
relevant characteristics.  

For our analysis, we follow the general methodology described 
by Menascé et. al. [16] to construct a workload model. It is 

based on a resource-oriented characterization of workloads and 
includes the following steps: 

1. Identification of the basic components. 

2. Choosing characterizing parameters. 

3. Data collection and normalization. 

4. Partitioning the workload into classes. 

5. Identifying the class characteristics. 

We now describe these steps in detail as it applies to our chosen 
workload. 

 

1. Identifying workload components 

We use the 22 queries of the TPC-H benchmark as our 
representative BI workload. TPC-H was designed to simulate 
the type of resource activity commonly found in BI applications. 
TPC-H can be run in different modes of execution. We are 
interested in the "power run" mode of execution where a single-
stream of queries is submitted to the system, with each query 
being executed one after another in a serial fashion. 

 

2. Choosing characterizing parameters 

For our analysis, we monitor several performance-oriented 
parameters for each query, including: 

• Response time - the amount of time elapsed, in 
seconds, from when a query is submitted to the system 
to the time the result set is returned. 

• Average processor (CPU) utilization - the average 
utilization of the processor(s) over the duration of 
query execution. Note that this only includes the 
utilization of user processes, as opposed to the 
operating system kernel or privileged 
threads/processes. 

• Sequential Input/Output (I/O) throughput rate - the 
average rate that data is read from disk over the 
duration of query execution, measured in megabytes 
per second (MB/second). 

• Random I/O operations - the average rate of I/O 
instructions processed over the duration of query 
execution, measured in I/O operations per second 
(IOPS). 

We are also able to monitor other types of parameters, such as 
memory and network utilization; however, the above set is 
sufficient for our analysis. 

 

3. Data collection and normalization 

The input data for our analysis is obtained from six recent pre-
audited DB2 UDB TPC-H benchmark runs. Since the data we 
use was not audited, we can only claim that it is "TPC-H like". 
From now on, when we refer to our TPC-H data, we really mean 
to say "TPC-H like" data. Benchmarks were conducted by the 



IBM DB2 UDB Performance Group and used IBM DB2 UDB 
version 8 as the DBMS. The computer models, hardware parts, 
operating systems, and database scale varied across benchmarks. 
Care was taken to ensure that each benchmarked system 
configuration was balanced. A system is considered balanced 
when all of its resources are working in concert to allow the 
optimal amount of workload through the system to meet specific 
objectives. In the analysis, we assume that the performance of a 
balanced system is relative to the amount of system resources 
available. That is, if we increase the quantity of system resources 
in a balanced fashion, system performance will increase. 
Although one benchmark configuration might be more powerful 
than another, we expect this will be reflected in improved 
performance.  

Raw data was monitored and collected using standard operating 
system performance monitoring tools, which were configured to 
sample the desired parameters at five second intervals. The final 
parameter values for each query were determined by averaging 
all the raw data samples collected over the interval, for each 
respective parameter. 

The choice of units of measurement can affect the 
characterization analysis. For instance, expressing temporal data 
in seconds versus hours could lead to a very different result, 
depending on what type of analysis technique is used. To help 
avoid dependence on the choice of units, the data is 
standardized. In standardizing the data, we attempt to give all 
parameters an equal weight. This is particularly important in our 
case, since the values we measure for each query are partially 
influenced by the configuration of system they are run on, as 
well as on other factors such as database scale. To normalize the 
data, we calculate the z-score of each measured parameter 
variable. Z-scores transform the dataset into one with a mean of 
0 and standard deviation of 1. The z-score of a parameter value 
can be calculated as shown in Equation 1: 

deviationndardtas
valuemeanvaluemeasured

scorez
−

=                  (1) 

Once each benchmark's data is normalized, we can combine all 
the benchmark data into a single matrix (table) for use in the 
next stage of the characterization process, workload partitioning. 

 

4. Partitioning the workload into classes 

We use clustering techniques to partition our workload. 
Clustering is the process of grouping data into classes or clusters 
so that objects within a cluster are similar to each other, but are 
dissimilar to objects in other clusters.  The techniques we use 
are a combination of Singular Value Decomposition (SVD) [10] 
and SemiDiscrete Decomposition (SDD) [13]. Both techniques 
are examples of unsupervised data mining, where the goal is to 
discover structured information in the dataset without knowing 
or providing hints as to what that structure might look like. They 
are also examples of matrix techniques, which view the dataset 
as a matrix and attempt to decompose the matrix in various ways 
depending on the goal of the analysis. SVD and SDD both 
decompose a dataset matrix as the product of three new 
matrices. However, the meaning and structure of each matrix is 
different. 

A SVD decomposes a dataset matrix A into the product of three 
matrices, U, S, and V such that: 

A = U S V T 

where U is n x m, S is a diagonal matrix of non-increasing non-
negative values, and V is m x m. In effect, SVD transforms an m-
dimensional space into a new m-dimensional space such that the 
new axes are orthonormal and the axes are ordered so that the 
maximum amount of variation is contained in earlier axes. The 
entries of S are scaling factors indicating the relative importance 
of each axis. Geometrically, the rows of U represent coordinates 
of the corresponding rows of A in a space spanned by the 
columns of V, while the rows of V represent the coordinates of 
the corresponding columns of A. A common practice in SVD is 
to truncate the representation to k dimensions, where k is some 
arbitrary constant, to make analysis more manageable. Since 
SVD concentrates as much variation as possible into the earliest 
dimensions, truncating is feasible because the least possible 
information is discarded. 

A SDD is similar to a SVD in that it decomposes a dataset 
matrix A into three matrices, such that:  

A = X D Y 

However, the components of the decomposition have a different 
form and meaning than SVD. X is an n x k matrix, D is a k x k 
diagonal matrix, and Y is a k x m matrix, where k is an arbitrary 
constant. The entries of X and Y are from the set {-1, 0, +1}. 
Objects are divided based on their value in the first column of X  
{-1, 0, +1}. They can be subdivided again according to their 
values in the subsequent columns of X. In effect, SDD discovers 
rectilinearly aligned regions of the matrix of similar (positive 
and negative) magnitude. These regions/partitions determine 
which objects are related to each other. 

SVD and SDD can be jointly applied to our dataset by using 
both decompositions, truncating the SVD at k = 3, plotting the 
points corresponding to queries, and labeling each point 
according to its location in the top few levels of the SDD 
decomposition. 

The analysis of our TPC-H benchmark data, including matrix 
calculations and plots, is performed using MATLAB [15]. We 
include one additional attribute in the analysis, the size of the 
largest n-way table join for each query. The addition of this 
extra attribute results in a tighter clustering of data points, due to 
the fact that queries with the same label are more closely related. 
The results from analyzing the query dataset are shown in the 
following figures. Here, the position of the points is determined 
by SVD, while the shape and color used to distinguish among 
them is determined by SDD. 

Before we begin our analysis, we first examine the relevancy of 
the performance attributes we measured for the queries. Figure 1 
shows the result of a joint SVD and SDD classification on the 
attributes. This plot illustrates the relative contribution of each 
attribute to the analysis. Since the five points corresponding to 
the five attributes used are equally spread out in geometric 
space, we can conclude that each attribute is significant and 
adds useful information to the analysis. 



 
 

Figure 2 shows the results of a joint SVD and SDD 
classification. There are a couple of important pieces of 
information we can extract from this plot: 

• Four clusters of queries appear to be present in this 
dataset. We have labeled each cluster in the figure as 
well as provided approximate cluster boundaries 
(illustrated using dotted lines). The cluster boundaries 
are determined by analyzing the raw data values 
produced in the analysis by MATLAB (not shown). 
Visual inspection of the different plots of the data is 
also helpful for determining the approximate location 
of the cluster boundaries. Based on our analysis, the 
queries belonging to each cluster are as follows: 

Cluster 1: Q1, Q3, Q4, Q5, Q6, 

Q11, Q14, Q14, Q19 

Cluster 2: Q2, Q20 

Cluster 3: Q7, Q8, Q9, Q18, Q21 

Cluster 4: Q10, Q13, Q15, Q16, Q22 

 

 

• Queries appear to scale well across different system 
architectures and benchmark scales. For instance, all the 
query 1 points appear very closely together in the plot. The 
same is true for most of the other queries. 

 

5. Identifying class characteristics 

At a high level, we develop an understanding of what each 
cluster represents. Cluster 2 appears to represent fairly simple 
complexity queries that are generally IO-bound in nature and 
have a small number of tables being joined. Cluster 3 represents 
long-running, large and complex queries with a large number of 
tables being joined (5+). Queries in this group also exhibit high 
sequential and random IO usage. Cluster 4 represents short-
running, trivial complexity queries with a varying amount of 
tables being joined (3-8). Finally, Cluster 1 appears to represent 
moderate-complexity queries with a smaller number of tables 
being joined (1-5) and exhibiting high CPU utilization. We 
should also note that Cluster 1 is considered less interesting than 
the others since the data points in that cluster are those closest to 
the origin in the plot.  

To lend support to our belief about the meaning of the different 
clusters, we generate data points for artificial queries that we 
believe belong in each of the clusters and show that they do in-
deed fall into the cluster, hopefully at the cluster center. Figure 3 
is similar to Figure 2 except for the addition of four artificial 
points, X1, X2, X3, and X4, created to confirm our 
understanding of the different clusters.  As we hoped, each new 
point is in close proximity to the center of its intended cluster, 
lending support to our belief about the cluster semantics. 

In general, there is no practical way to decide what the clusters 
represent, since the SVD transforms the original axes into a new 
set of pseudo-axes whose meaning is not immediately clear. One 
way to make a stronger argument about the validity and 
appropriateness of the clustering is to try and understand the 
meaning of the new dimensions. This is again accomplished by 
creating artificial query data points; however, this time, we try to 
generate points that represent extreme examples of what each 
new dimension is thought to represent. If the SVD 
transformation of these additional points result in them being 
placed at the extreme ends of one of the transformed 
dimensions, we can be more confident about our understanding 
of the new dimensions and clustering. Figure 4 is a plot similar 
to Figure 2 except for the addition of two artificial points, AU1a 
and AU1z, created to confirm what we believe is causing the 
variance in the U1 dimension. Both points appear at the extreme 
ends of dimension U1, meaning we have a fairly good 
understanding of what the dimension represents: queries that are 
CPU-bound versus those that are IO-bound.  

 

Figure 1. SVD + SDD plot of attributes, dimensions 1 and 2

Figure 2. SVD + SDD plot of queries, dimensions 1 and 2
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A similar analysis is repeated for dimensions U2 and U3. Figure 
5 and Figure 6 show plots similar to Figure 2 except for the 
addition of two artificial points for what we believe will reveal 
the meaning of the U2 and U3 dimensions, respectively. Each 
set of points appear at the extreme ends of their respective 
dimensions in both plots. Based on this evidence, we believe 
that the variance along dimension U2 is caused by differences in 
query response times, while the variance along dimension U3 is 
thought to distinguish between queries that are sequential-I/O 
intensive and random-I/O intensive. We should note that we can 
not be as conclusive about the meaning of dimension U3 since 
our artificial points do not fall exactly at the extremes as we had 
hoped. There are perhaps other contributing hidden factors we 
have not considered. Since dimension U3 is not as significant as 
the first two, further analysis is left as future work. 
 

 

 

 
 

 

 
 

  

5. CONCLUSION AND FUTURE WORK 
The work presented in this paper is a good step towards a robust 
approach for sizing the database tier of a BI application. The 
main contributions of this paper are an overview of the database 
sizing process and a characterization analysis of BI workloads.  

The characterization analysis was needed in order simplify the 
task of describing new workloads during the sizing process. A 
workload characterization based on resource demands can also 
be useful for other important administrative tasks such as 
workload management and handling QoS requirements. 

 

The analysis used a resource-oriented characterization of the 22 
queries of the TPC-H benchmark. Performance data was 
collected from six non-audited "power runs" of different TPC-H 
benchmarks. The data collected from each system was first 
normalized to remove effects of unit and scale, then combined 
into a single dataset for use in a joint SVD and SDD 
classification analysis. From the analysis, it was shown that the 

Figure 3.  SVD + SDD plot of queries, dimensions 1 and 2 
with four artificial points targeting cluster centers 

Figure 4.  SVD + SDD plot of queries, dimensions 1 and 2 
with two additional points representing extremes of 

dimension 1. 

Figure 5.  SVD + SDD plot of queries, dimensions 1 and 2 
with two additional points representing extremes of 

dimension 2. 

Figure 6.  SVD + SDD plot of queries, dimensions 1 and 3 
with two additional points representing extremes of 

dimension 3. 



queries of TPC-H can be grouped into four broad categories, 
each with different characteristics. One group describes trivial 
complexity queries, with short run times, a small number of 
tables being joined, and exhibiting high CPU utilization. 
Another group represents simple complexity queries which are 
I/O-bound and have a small number of tables being joined. 
Another group represents medium complexity queries with 
moderately high response times and moderate CPU and I/O 
usage. Finally, one cluster represents large and complex queries 
which are long-running, have a large number of tables being 
joined, and exhibit high sequential and random I/O usage. 

We demonstrate that our understanding of the different query 
clusters is correct by first generating performance data for 
artificial queries that we believe belong in each cluster, then 
showing that they do. Second, we attempt to understand the 
meaning of the new dimensions in the SVD space by 
considering the what causes the variance in each dimension.  

Our characterization of a BI workload in terms of trivial, small, 
medium and large complexity queries is used in our sizing 
approach for describing new workloads. The workload of a new 
BI application is described in terms of the quantity and response 
time goals of these different query classes. 

Future work in this area includes improving the quality and 
robustness of the analysis by including performance data from a 
greater number of benchmarks as well as from real customer 
production environments. Extending the analysis to different 
workload types such as OLTP would also be beneficial. In this 
case, characterization and sizing will need to be done differently 
since these workloads exhibit different resource consumption 
patterns and are affected by different types of inputs. 
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