
Developing a Characterization of Business Intelligence
Workloads for Sizing New Database Systems

Ted J. Wasserman, Patrick Martin, and David B. Skillicorn
School of Computing, Queen’s University

Kingston, Ontario Canada
1 (613) 533-6050

{tedjw, martin, skill} @ cs.queensu.ca

Haider Rizvi
IBM Toronto Laboratory

Markham, Ontario Canada
1 (905) 413-3160

haider@ca.ibm.com

ABSTRACT
Computer system sizing involves estimating the amount of
hardware resources needed to support a new workload not yet
deployed in a production environment. In order to determine the
type and quantity of resources required, a methodology is
required for describing the new workload. In this paper, we
discuss the sizing process for database management systems and
describe an analysis for characterizing business intelligence (BI)
workloads, using the TPC-H benchmark as our workload basis.
The characterization yields four general classes of queries, each
with different characteristics. Our approach for sizing a BI
application’s database tier quantifies a new BI workload in
terms of the response time goals and mix of the different query
classes obtained from the characterization analysis.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
mining

H.2.0 [Database Management]: General

General Terms
Design, Experimentation, Performance

Keywords
Workload Characterization, Clustering, Sizing, Business
Intelligence, Capacity Planning

1. INTRODUCTION
Database systems continue to play a vital role in a company's IT
infrastructure. Gartner [6] estimates that the total worldwide
database software market in 2004 will reach $8815 million and
$9203 million in 2005. In particular, specialized databases for
data warehousing and business intelligence (BI) are becoming
an important segment of the total database market.

BI workloads have very different characteristics than the
traditional transaction processing workloads that most capacity

planning and sizing methods are geared towards. These
differences include [19]:

• A greater emphasis is placed on summarized and
consolidated data versus a focus on individual records.

• A very large database size is used.

• Queries are heterogeneous, complex, and ad-hoc in
nature and vary greatly in elapsed time.

• Queries often touch millions of records, and may
perform many table joins, sorts, and aggregations.

• Queries sometimes produce very large results sets,
requiring a lot of concurrent I/O.

While the performance tuning aspect of system configuration is
vital, equally important is determining what type of hardware
resources are required to support an application and its
workload. This can be a complicated task because of the wide
variety of processor, disk, network and memory technologies
available. Further, determining the quantity of each resource
needed and predicting how the different components interact
with each other under a specific workload are not trivial tasks.

Computer system sizing attempts to arrive at a first estimate of a
hardware configuration that will satisfy the performance
demands, cost constraints, and functional requirements of an
application. When sizing a system, we assume the following:

• Detailed information about the application and its
workload is not available.

• Experts typically first find published performance
results for a similar workload with similar
performance requirements. They then extrapolate on
these results using a combination of their experience,
industry rules-of-thumb, and published performance
relationships between different types of hardware. The
result is a first estimate of the hardware configuration
(processor, disk, and memory) needed to meet the
resource demands of the expected workload and size
of database.

• Customers expect a cost-efficient and effective
hardware solution that meets the performance
requirements of their application while offering the
maneuverability to accommodate future expansion.

In this paper, we first discuss an approach for sizing database
servers running BI workloads. We then describe a workload

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DOLAP’04, November 12–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-977-2/04/0011...$5.00.

characterization analysis that we use as a basis for describing
new BI workloads in our sizing approach. The analysis applies
unsupervised data mining techniques to group individual BI
queries into general classes of queries based on system resource
usage. The resulting characterization provides insight into the
resource demands of the queries typical of a BI workload and
can be exploited in other areas such as workload management
and meeting quality of service (QoS) requirements.

The remainder of the paper is organized as follows. Section 2
reviews related work. In Section 3, we highlight the main
activities of our sizing process. Section 4 describes our
workload characterization analysis. We summarize the paper
and suggest some future work in Section 5.

2. RELATED WORK
Much of the research on sizing and capacity planning focuses on
performance evaluation and workload prediction. Books such as
Ferrari [4] emphasize tools and techniques for performance
evaluation. Lam and Chan [14] examine the theory and
approaches used in computer capacity planning in a more
rigorous manner than previous studies. Industrial publications
[8, 11] approach the topic from a more practical perspective and
focus on specific hardware platforms. Previous work in our
research group [2, 22] focuses on developing analytical models
using Queueing Network Models (QNMs) to support capacity
planning for DB2® Universal Database™ (UDB) [12].
Wasserman [19, 20] approaches sizing from an abstract
perspective and determines the resources requirements of new
workloads by extrapolating from the performance data of a
known workload.

Workload characterization dates back to the 1970's when
workloads largely consisted of large transactions and batch jobs
that were run on mainframe computers. Techniques have
evolved to accommodate some of the modern workloads
encountered in today's computing environments. For a thorough
review of the different characterization techniques in the
literature, the reader is referred to Elnaffar and Martin [3].
Clustering is one of the most widely adopted techniques in
workload characterization (for instance, see Calzarossa and
Serazzi [1]; Nikolaou et al. [17]; Elms [5]).

Much of the recent clustering analysis work in the database and
information retrieval fields is geared towards improving system
performance. Ghosh et. al. [7] use clustering to reduce the
complexity of selecting an optimal access plan for a query. In
their approach, similar queries are grouped together into clusters
and the optimizer-generated plan for the cluster representative is
used to execute all future queries assigned to the cluster,
resulting in significantly improved query optimization times.
Wen et. al. [21] use clustering in the Information Retrieval
domain to help human editors identify frequently asked
questions. Their clustering strategy groups similar queries
together more effectively than using keywords alone. Finally,
Golfarelli and Saltarelli [9] use clustering to construct a profile
of a data warehousing workload in order to summarize its
characteristics. The profile can be used to help the designer
during logical and physical optimization and to generate
workloads useful for evaluating system performance in testing
and benchmark settings.

Our analysis differs from previous work in two fundamental
aspects, the choice of workload characterization
features/parameters and the clustering algorithms used. The
majority of prior analyses use a combination of structural query
properties and statistical parameters to perform a clustering. The
structural properties of a query are based on the text of the query
itself, such as the number of table joins, the number of
predicates, and the type of predicates. Statistical parameters are
quantitative values contained in the database system catalog
tables, such as the table size, the size and type of indexes on a
table, and the skew of the data values in the tables. The
parameters we use in our analysis are performance-oriented
measurements. They are obtained by recording the query’s
consumption of system resources during query processing. The
clustering algorithms we use also differ than those used in
previous work. The techniques we employ are known for
revealing underlying or hidden dimensions in data. This is
particularly useful in our scenario because of the many different
interactions that occur during query processing.

3. SIZING APPROACH OVERVIEW
It is important not to confuse the sizing process with capacity
planning. While both processes have many activities in
common, they have different objectives and methodologies. The
majority of capacity planning studies and approaches in the
literature assume that detailed performance measurements from
a production environment are available to build models of
system performance. Traditional capacity planning is also
highly-geared towards estimating the future resource
requirements of an existing workload. In contrast, sizing
typically involves estimating the computing resources required
to support a new workload that has not been run in a production
environment. Since it is assumed that there are few production
measurements available for the new workload, estimations,
assumptions, and extrapolations must be made.

The capacity planning process also yields more accurate models
of workload and system performance when performed correctly.
This is attributed to the greater availability of detailed input.
Conversely, a methodical sizing exercise has a much higher risk
of inaccuracy than a capacity planning exercise, mainly due to
the lack of factual data available about the new workload. There
is also an inherent time-cost/accuracy trade-off between the two
processes. The sizing process sacrifices some of the accuracy
and deep understanding obtained through the capacity planning
process in return for a quick and straightforward study.

Our sizing approach entails two main activities: estimating the
performance requirements of the new workload and selecting
hardware configurations that meet these requirements. The
overall process can be summarized as follows:

1. Collect the required high-level input data from the
customer.

2. Cross-check and verify input data, making
assumptions and estimates if needed.

3. Determine the required system resource demands for
each workload class and type.

4. Aggregate the different workload class and type
resource demands to determine the overall system
requirements.

5. Determine which hardware configurations meet the
required resource demands.

6. Produce a ranked list of hardware configurations
according to desired criteria and recommend a
configuration to the customer.

While these steps are general to many relational database
management systems (DBMSs) and workloads, the
implementation details are workload and/or DBMS-specific.

In our approach, the resource requirements of new
online/production workloads are calculated by extrapolating
from the observed performance of queries from the Transaction
Processing Performance Council (TPC) TPC-H™ benchmark
[18] as well as using various assumptions, projections, and
rules-of-thumb. The requirements of batch/ETL workloads are
calculated using a series of equations that take into account
parameters such as the input volume, transform complexity, and
time window. An algorithm, based on our chosen units of
processing power, is used to determine the minimum processor
configuration required for each desired server model. Memory is
determined for each server configuration using rules-of-thumb.
Networking requirements are not considered in the approach at
this time and are suggested as future work. An algorithm for
sizing disk subsystems takes into account the peak throughput
requirement of the workload and uses pre-configured disk
systems with known throughput rates to determine how many of
such units are required. The amount of raw storage required is
determined using rules-of-thumb. For a full description of the
sizing process, including calculations and algorithms, the reader
is referred to Wasserman [19, 20].

In order to perform Step 3 in our sizing approach, a
straightforward technique is needed to describe a new
online/production workload. We propose one such technique for
doing so in the next section.

4. CHARACTERIZING BI WORKLOADS
BI applications and their workloads vary depending on the type
of application, the target industry, and the nature of business
questions being answered. We use the TPC-H benchmark as our
representative BI workload for this task. The TPC-H benchmark
consists of 22 ad-hoc queries which answer questions
representative of any industry which must manage, sell, or
distribute a product worldwide (car rental, food distribution,
parts, suppliers, etc.).

It is difficult to create an accurate workload model if we view a
BI workload as a single collection of homogeneous queries. A
model also becomes too complex if we treat each query
individually, in effect, as its own workload. A more practical
solution is to partition queries into a few general classes based
on their resource usage. Each class will comprise the queries
that are similar to each other based on resource usage and other
relevant characteristics.

For our analysis, we follow the general methodology described
by Menascé et. al. [16] to construct a workload model. It is

based on a resource-oriented characterization of workloads and
includes the following steps:

1. Identification of the basic components.

2. Choosing characterizing parameters.

3. Data collection and normalization.

4. Partitioning the workload into classes.

5. Identifying the class characteristics.

We now describe these steps in detail as it applies to our chosen
workload.

1. Identifying workload components

We use the 22 queries of the TPC-H benchmark as our
representative BI workload. TPC-H was designed to simulate
the type of resource activity commonly found in BI applications.
TPC-H can be run in different modes of execution. We are
interested in the "power run" mode of execution where a single-
stream of queries is submitted to the system, with each query
being executed one after another in a serial fashion.

2. Choosing characterizing parameters

For our analysis, we monitor several performance-oriented
parameters for each query, including:

• Response time - the amount of time elapsed, in
seconds, from when a query is submitted to the system
to the time the result set is returned.

• Average processor (CPU) utilization - the average
utilization of the processor(s) over the duration of
query execution. Note that this only includes the
utilization of user processes, as opposed to the
operating system kernel or privileged
threads/processes.

• Sequential Input/Output (I/O) throughput rate - the
average rate that data is read from disk over the
duration of query execution, measured in megabytes
per second (MB/second).

• Random I/O operations - the average rate of I/O
instructions processed over the duration of query
execution, measured in I/O operations per second
(IOPS).

We are also able to monitor other types of parameters, such as
memory and network utilization; however, the above set is
sufficient for our analysis.

3. Data collection and normalization

The input data for our analysis is obtained from six recent pre-
audited DB2 UDB TPC-H benchmark runs. Since the data we
use was not audited, we can only claim that it is "TPC-H like".
From now on, when we refer to our TPC-H data, we really mean
to say "TPC-H like" data. Benchmarks were conducted by the

IBM DB2 UDB Performance Group and used IBM DB2 UDB
version 8 as the DBMS. The computer models, hardware parts,
operating systems, and database scale varied across benchmarks.
Care was taken to ensure that each benchmarked system
configuration was balanced. A system is considered balanced
when all of its resources are working in concert to allow the
optimal amount of workload through the system to meet specific
objectives. In the analysis, we assume that the performance of a
balanced system is relative to the amount of system resources
available. That is, if we increase the quantity of system resources
in a balanced fashion, system performance will increase.
Although one benchmark configuration might be more powerful
than another, we expect this will be reflected in improved
performance.

Raw data was monitored and collected using standard operating
system performance monitoring tools, which were configured to
sample the desired parameters at five second intervals. The final
parameter values for each query were determined by averaging
all the raw data samples collected over the interval, for each
respective parameter.

The choice of units of measurement can affect the
characterization analysis. For instance, expressing temporal data
in seconds versus hours could lead to a very different result,
depending on what type of analysis technique is used. To help
avoid dependence on the choice of units, the data is
standardized. In standardizing the data, we attempt to give all
parameters an equal weight. This is particularly important in our
case, since the values we measure for each query are partially
influenced by the configuration of system they are run on, as
well as on other factors such as database scale. To normalize the
data, we calculate the z-score of each measured parameter
variable. Z-scores transform the dataset into one with a mean of
0 and standard deviation of 1. The z-score of a parameter value
can be calculated as shown in Equation 1:

deviationndardtas
valuemeanvaluemeasured

scorez
−

= (1)

Once each benchmark's data is normalized, we can combine all
the benchmark data into a single matrix (table) for use in the
next stage of the characterization process, workload partitioning.

4. Partitioning the workload into classes

We use clustering techniques to partition our workload.
Clustering is the process of grouping data into classes or clusters
so that objects within a cluster are similar to each other, but are
dissimilar to objects in other clusters. The techniques we use
are a combination of Singular Value Decomposition (SVD) [10]
and SemiDiscrete Decomposition (SDD) [13]. Both techniques
are examples of unsupervised data mining, where the goal is to
discover structured information in the dataset without knowing
or providing hints as to what that structure might look like. They
are also examples of matrix techniques, which view the dataset
as a matrix and attempt to decompose the matrix in various ways
depending on the goal of the analysis. SVD and SDD both
decompose a dataset matrix as the product of three new
matrices. However, the meaning and structure of each matrix is
different.

A SVD decomposes a dataset matrix A into the product of three
matrices, U, S, and V such that:

A = U S V T

where U is n x m, S is a diagonal matrix of non-increasing non-
negative values, and V is m x m. In effect, SVD transforms an m-
dimensional space into a new m-dimensional space such that the
new axes are orthonormal and the axes are ordered so that the
maximum amount of variation is contained in earlier axes. The
entries of S are scaling factors indicating the relative importance
of each axis. Geometrically, the rows of U represent coordinates
of the corresponding rows of A in a space spanned by the
columns of V, while the rows of V represent the coordinates of
the corresponding columns of A. A common practice in SVD is
to truncate the representation to k dimensions, where k is some
arbitrary constant, to make analysis more manageable. Since
SVD concentrates as much variation as possible into the earliest
dimensions, truncating is feasible because the least possible
information is discarded.

A SDD is similar to a SVD in that it decomposes a dataset
matrix A into three matrices, such that:

A = X D Y

However, the components of the decomposition have a different
form and meaning than SVD. X is an n x k matrix, D is a k x k
diagonal matrix, and Y is a k x m matrix, where k is an arbitrary
constant. The entries of X and Y are from the set {-1, 0, +1}.
Objects are divided based on their value in the first column of X
{-1, 0, +1}. They can be subdivided again according to their
values in the subsequent columns of X. In effect, SDD discovers
rectilinearly aligned regions of the matrix of similar (positive
and negative) magnitude. These regions/partitions determine
which objects are related to each other.

SVD and SDD can be jointly applied to our dataset by using
both decompositions, truncating the SVD at k = 3, plotting the
points corresponding to queries, and labeling each point
according to its location in the top few levels of the SDD
decomposition.

The analysis of our TPC-H benchmark data, including matrix
calculations and plots, is performed using MATLAB [15]. We
include one additional attribute in the analysis, the size of the
largest n-way table join for each query. The addition of this
extra attribute results in a tighter clustering of data points, due to
the fact that queries with the same label are more closely related.
The results from analyzing the query dataset are shown in the
following figures. Here, the position of the points is determined
by SVD, while the shape and color used to distinguish among
them is determined by SDD.

Before we begin our analysis, we first examine the relevancy of
the performance attributes we measured for the queries. Figure 1
shows the result of a joint SVD and SDD classification on the
attributes. This plot illustrates the relative contribution of each
attribute to the analysis. Since the five points corresponding to
the five attributes used are equally spread out in geometric
space, we can conclude that each attribute is significant and
adds useful information to the analysis.

Figure 2 shows the results of a joint SVD and SDD
classification. There are a couple of important pieces of
information we can extract from this plot:

• Four clusters of queries appear to be present in this
dataset. We have labeled each cluster in the figure as
well as provided approximate cluster boundaries
(illustrated using dotted lines). The cluster boundaries
are determined by analyzing the raw data values
produced in the analysis by MATLAB (not shown).
Visual inspection of the different plots of the data is
also helpful for determining the approximate location
of the cluster boundaries. Based on our analysis, the
queries belonging to each cluster are as follows:

Cluster 1: Q1, Q3, Q4, Q5, Q6,

Q11, Q14, Q14, Q19

Cluster 2: Q2, Q20

Cluster 3: Q7, Q8, Q9, Q18, Q21

Cluster 4: Q10, Q13, Q15, Q16, Q22

• Queries appear to scale well across different system
architectures and benchmark scales. For instance, all the
query 1 points appear very closely together in the plot. The
same is true for most of the other queries.

5. Identifying class characteristics

At a high level, we develop an understanding of what each
cluster represents. Cluster 2 appears to represent fairly simple
complexity queries that are generally IO-bound in nature and
have a small number of tables being joined. Cluster 3 represents
long-running, large and complex queries with a large number of
tables being joined (5+). Queries in this group also exhibit high
sequential and random IO usage. Cluster 4 represents short-
running, trivial complexity queries with a varying amount of
tables being joined (3-8). Finally, Cluster 1 appears to represent
moderate-complexity queries with a smaller number of tables
being joined (1-5) and exhibiting high CPU utilization. We
should also note that Cluster 1 is considered less interesting than
the others since the data points in that cluster are those closest to
the origin in the plot.

To lend support to our belief about the meaning of the different
clusters, we generate data points for artificial queries that we
believe belong in each of the clusters and show that they do in-
deed fall into the cluster, hopefully at the cluster center. Figure 3
is similar to Figure 2 except for the addition of four artificial
points, X1, X2, X3, and X4, created to confirm our
understanding of the different clusters. As we hoped, each new
point is in close proximity to the center of its intended cluster,
lending support to our belief about the cluster semantics.

In general, there is no practical way to decide what the clusters
represent, since the SVD transforms the original axes into a new
set of pseudo-axes whose meaning is not immediately clear. One
way to make a stronger argument about the validity and
appropriateness of the clustering is to try and understand the
meaning of the new dimensions. This is again accomplished by
creating artificial query data points; however, this time, we try to
generate points that represent extreme examples of what each
new dimension is thought to represent. If the SVD
transformation of these additional points result in them being
placed at the extreme ends of one of the transformed
dimensions, we can be more confident about our understanding
of the new dimensions and clustering. Figure 4 is a plot similar
to Figure 2 except for the addition of two artificial points, AU1a
and AU1z, created to confirm what we believe is causing the
variance in the U1 dimension. Both points appear at the extreme
ends of dimension U1, meaning we have a fairly good
understanding of what the dimension represents: queries that are
CPU-bound versus those that are IO-bound.

Figure 1. SVD + SDD plot of attributes, dimensions 1 and 2

Figure 2. SVD + SDD plot of queries, dimensions 1 and 2

C1

C4

C2

C3

A similar analysis is repeated for dimensions U2 and U3. Figure
5 and Figure 6 show plots similar to Figure 2 except for the
addition of two artificial points for what we believe will reveal
the meaning of the U2 and U3 dimensions, respectively. Each
set of points appear at the extreme ends of their respective
dimensions in both plots. Based on this evidence, we believe
that the variance along dimension U2 is caused by differences in
query response times, while the variance along dimension U3 is
thought to distinguish between queries that are sequential-I/O
intensive and random-I/O intensive. We should note that we can
not be as conclusive about the meaning of dimension U3 since
our artificial points do not fall exactly at the extremes as we had
hoped. There are perhaps other contributing hidden factors we
have not considered. Since dimension U3 is not as significant as
the first two, further analysis is left as future work.

5. CONCLUSION AND FUTURE WORK
The work presented in this paper is a good step towards a robust
approach for sizing the database tier of a BI application. The
main contributions of this paper are an overview of the database
sizing process and a characterization analysis of BI workloads.

The characterization analysis was needed in order simplify the
task of describing new workloads during the sizing process. A
workload characterization based on resource demands can also
be useful for other important administrative tasks such as
workload management and handling QoS requirements.

The analysis used a resource-oriented characterization of the 22
queries of the TPC-H benchmark. Performance data was
collected from six non-audited "power runs" of different TPC-H
benchmarks. The data collected from each system was first
normalized to remove effects of unit and scale, then combined
into a single dataset for use in a joint SVD and SDD
classification analysis. From the analysis, it was shown that the

Figure 3. SVD + SDD plot of queries, dimensions 1 and 2
with four artificial points targeting cluster centers

Figure 4. SVD + SDD plot of queries, dimensions 1 and 2
with two additional points representing extremes of

dimension 1.

Figure 5. SVD + SDD plot of queries, dimensions 1 and 2
with two additional points representing extremes of

dimension 2.

Figure 6. SVD + SDD plot of queries, dimensions 1 and 3
with two additional points representing extremes of

dimension 3.

queries of TPC-H can be grouped into four broad categories,
each with different characteristics. One group describes trivial
complexity queries, with short run times, a small number of
tables being joined, and exhibiting high CPU utilization.
Another group represents simple complexity queries which are
I/O-bound and have a small number of tables being joined.
Another group represents medium complexity queries with
moderately high response times and moderate CPU and I/O
usage. Finally, one cluster represents large and complex queries
which are long-running, have a large number of tables being
joined, and exhibit high sequential and random I/O usage.

We demonstrate that our understanding of the different query
clusters is correct by first generating performance data for
artificial queries that we believe belong in each cluster, then
showing that they do. Second, we attempt to understand the
meaning of the new dimensions in the SVD space by
considering the what causes the variance in each dimension.

Our characterization of a BI workload in terms of trivial, small,
medium and large complexity queries is used in our sizing
approach for describing new workloads. The workload of a new
BI application is described in terms of the quantity and response
time goals of these different query classes.

Future work in this area includes improving the quality and
robustness of the analysis by including performance data from a
greater number of benchmarks as well as from real customer
production environments. Extending the analysis to different
workload types such as OLTP would also be beneficial. In this
case, characterization and sizing will need to be done differently
since these workloads exhibit different resource consumption
patterns and are affected by different types of inputs.

6. ACKNOWLEDGEMENTS
This research is supported by IBM Canada Limited, the
Government of Ontario, and Communication and Information
Technology Ontario (CITO).

7. TRADEMARKS
IBM, DB2, and DB2 Universal Database are trademarks or
registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

8. REFERENCES
[1] M. Calzarossa and G. Serazzi. "Construction and Use of

Multiclass Workload Models", Performance Evaluation, 9,
4, 1994.

[2] X. Cui, P. Martin, and W. Powley. "A Study of Capacity
Planning for Database Management Systems With OLAP
Workloads", Proceedings of CMG 2003, December 2003.

[3] S. Elnaffar and P. Martin. "Characterizing Computer
Systems' Workloads", Technical Report 2002-461, School
of Computing, Queen's University, Canada, 2002.

[4] D. Ferrari, Computer Systems Performance Evaluation,
Prentice Hall, 1978.

[5] C. Elms. "Clustering - One method for Workload
Characterization", Proceedings of the International

Conference on Computer Capacity Management, San
Francisco, California, 1980.

[6] Gartner, Press Room - Quick Statistics. Retrieved from
http://www.dataquest.com/press_gartner/quickstats/databas
es.html on June 1, 2004.

[7] A. Ghosh, J. Parikh, V.S. Sengar and J. R. Haritsa. “Plan
Selection Based on Query Clustering”, Proceedings of
VLDB, 2002.

[8] G.B. Gibbs et. al. IBM e-server pSeries Sizing and
Capacity Planning: A Practical Guide. IBM Redbook SG-
247071, March 2004,
http://www.redbooks.ibm.com/redbooks/pdfs/sg247071.pdf.

[9] M. Golfarelli and E. Saltarelli. “The Workload You Have,
the Workload You Would Lik”, Proceedings 6th ACM
International Workshop on Data Warehousing and OLAP
(DOLAP 2003), 2003.

[10] G.H. Golub and C.F. van Loan. Matrix Computations,
Johns Hopkins University Press, 3rd edition, 1996.

[11] S. Hahn et. al. Capacity Planning for Business Intelligence
Applications: Approaches and Methodologies, IBM
Redbook SG24-5685, November 2000,
http://www.redbooks.ibm.com/redbooks/pdfs/sg245689.pdf

[12] IBM. DB2 Universal Database,
http://www.software.ibm.com/data/db2/udb.

[13] T.G. Kolda and D.P. O'Leary. "Computation and uses of
the semidiscrete matrix decomposition", ACM Transactions
on Information Processing, 1999.

[14] S. Lam and K. H. Chan. Computer Capacity Planning:
Theory and Practice, Academic Press, 1987.

[15] Mathworks Incorporated. MATLAB,
http://www.mathworks.com.

[16] D. Menascé, V.A.F. Almeida, and L. Dowdy. Capacity
Planning and Performance Modeling: From Mainframes to
Client-Server Systems, Prentice Hall, 1994.

[17] C. Nikolaou et. al. "The Impact of Workload Clustering on
Transaction Routing", Technical Report FORTH-ICS TR-
2238, 1998,

[18] Transaction Processing Performance Council. TPC
Benchmark H Standard Specification, Revision 2.1.0
http://www.tpc.org/tpch/spec/tpch2.1.0.pdf.

[19] T.J. Wasserman. Sizing Database Systems for Business
Intelligence Workloads, M.Sc. Thesis, School of
Computing, Queen's University, 2004.

[20] T.J. Wasserman, P. Martin, and H. Rizvi. "Sizing DB2
UDB Servers for Business Intelligence Workloads",
Proceedings of CASCON 2004, October 2004.

[21] J-R Wen, J-Y Nie and H-J Zhang. “Query clustering using
user logs”, ACM Transactions on Information Systems, 20,
1, 2002.

[22] H. Zawawy, P. Martin and H. Hassanein. "Supporting
Capacity Planning for DB2 UDB", Proceedings of
CASCON 2003, September 2003.

