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Abstract. High throughput technologies produce large biological datasets
that may lead to greater understanding of the biological mechanisms be-
hind diseases such as cancer. However, progress has been slow in extract-
ing meaningful information from these datasets. We describe a method of
clustering lists of genes mined from a microarray dataset using functional
information from the Gene Ontology. The method uses relationships be-
tween terms in the ontology both to build clusters and to extract mean-
ingful cluster descriptions. The approach is general and may be applied
to assist explanation other datasets associated with ontologies.

1 Introduction

Rapid developments in bio—technology, measurement and collection of diverse
biological and clinical data have led to revolutionary changes in bio—medicine
and biomedical research. The data collected in bio—medical experiments or as a
result of medical examination ranges from gene expression levels measured using
microarray technologies to data collected in therapy research. Researchers are
looking at discovering relations between patterns of genes (sequences, interac-
tions between specific genes, dependencies between changes in gene expressions
and patient’s responses to treatment). The confluence of bio—technology and sta-
tistical analysis is known as bioinformatics. The “classical” statistical techniques
used in bioinformatics — a broad range of cluster, classification and multivari-
ate analysis methods, have been challenged by the large number of genes that
are analysed simultaneously and the curse of dimensionality of gene expression
measurements. As a rule, the gene—to—data points ratio is high, the so-called
“wide” data problem. In other words, if we are looking at N genes (collected
as a result of identical microarray measurements) and our sample is of size m



(corresponding to samples from patients), then usually N > m (in other words
we are looking typically at tens of thousands of genes and only tens to hundreds
of patients)). There is a number of ways in which data mining is expected to be
able to assist the bio—data analysis (see [1] for brief overview).

One important area are the tasks of similarity search, comparison and group-
ing of gene patterns and assisting in understanding these patterns in medical
bio—data, as many diseases are triggered by a combination of genes acting to-
gether. The diagram presenting the proposed methodology is shown in Fig. 1.
The methodology includes three stages. Stage 1 (“DMI1: extract”) is a data—
driven data mining cycle, during which the aim is to reduce the vast number
of genes coming out of the microarray experiments to dozens of genes. The ma-
trix decomposition methods that are used are a way of transforming microarray
datasets into new forms that reveal their structure more clearly. Two different
techniques are used: singular value decomposition (SVD) and semidiscrete de-
composition (SDD). The output of this stage is interesting from a statistical
point of view (an example of visualised clusters is shown in Fig. 2), however it
is difficult for biological interpretation.

Stage 2 (“DM2: explain”) aims at assisting the interpretation of the outputs
of Stage 1. The results of the Stage 1 of our proposed methodology give a list
of genes associated with high risk patients. Although such a list is important
information to biologists, it is of limited use and appeal. This is because biologists
wish to gain an understanding of the disease. They ask questions like: why are
these genes important? and what is the biological meaning of the genes?

During the next stage of our methodology, data mining is applied to assist
the explanation of the relations between the genes in the clusters identified in
Stage 1. The data mining algorithms operate over the information from the
Gene Ontology [2] dubbed “Congo”. The list of genes is reclustered into groups
of genes with similar biological functionality. Descriptions of the clusters are au-
tomatically determined using the Gene Ontology data and provided to biologists
for interpretation which leads to the Stage 3 (“DM3: generate hypotheses”).

Stage 3 aims to summarise what is known about the genes and to coarsely
group them in the context of the microarray measurements, so that biologists
can quickly focus their energies on potentially promising hypotheses. Depending
on the formulated hypotheses biologists and data miners may return to Stage 1.

The focus of this paper is on Stage 2. In the next section, we present the
data that is used in our methodology.

2 The Data

The broad goals of this work are to improve the understanding of genes related to
a specific form of childhood cancer. Three forms of data are combined at different
stages. Patient data includes data about the relative expression levels of genes
combined with clinical data concerning the tumours and patients. Based on this
data during the Stage 1 we produce a list of genes that are associated with high
risk patients. In the second step, ontological terms (from the Gene Ontology
data) associated with the genes are used to cluster the genes into functional
groups.
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Fig. 1. Diagram showing methodology used to analyse microarray data
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Fig. 2. Diagram showing an example of the output of DM1



Patient Data

Microarray and clinical data are available for nine patients.

The ¢cDNA microarray experiment is a recent technology [3] available to
cellular biologists that measures the relative expression levels of thousands of
genes in cells at one time. Microarrays are microscope slides with a grid of
DNA probes (called spots), each associated with a different gene. A sample of
complementary DNA (cDNA) is taken from cells (indicative of the expression
of genes at a time) and labelled with a fluorescent dye (green). It is mixed with
another control sample of ¢cDNA labelled with a different coloured dye (red).
The mixture is washed over the microarray and cDNA molecules hybridize with
the matching DNA probe on the slide. Measurements of the fluorescence of the
spots under laser light are taken and normalised. The resulting gene expression
data is a set of log ratios for each gene on the microarray. Usually between 2 and
10 repeat experiments of the same data (ie. patient) are made. For each patient,
there are around 9000 genes with between 2 and 10 log ratios (ie. experiment
repeats) for each gene.

A small clinical dataset is associated with each patient’s cDNA microarray
dataset that describes the patient in detail, as well as the effect of different
treatment protocols. Our method uses only one piece of information from this
dataset: a binary indicator of whether the patient is classified as high risk. Of
the nine patients, four are labelled as high risk.

Gene Ontology Data

The Gene Ontology [2] is a large collaborative public set of controlled vocab-
ularies constructed by researchers world—wide. Gene products are described in
terms of their effect and known place in the cell. Terms in the ontology are in-
terrelated. For example, a “glucose metabolism” is a “hexose metabolism” (see
Fig. 3). Each node is a term in the ontology. Inside each node is the identifier
for the term and beside is the term itself. More general terms are at the top of
the diagram. All links shown are is—a relationships that are directed upwards.
There are currently around 16,000 terms in the Gene Ontology and each gene is
associated with between two and ten terms.

Each term in the ontology has a number of attributes: the term itself (eg.
glycolysis), a unique accession number (eg. GO:0006096), and a definition (eg.
the breakdown of a monosaccharide (generally glucose) into simpler components,
including pyruvate). There may also be technical references to the definition
(eg. links to PubMed articles), cross references into other biological databases,
synonyms and comments.

There are a number of benefits of using the Gene Ontology as part of the data
mining process. It is large (7045 terms in the Molecular Function ontology, 7763
terms in the Biological Process ontology and 1335 terms in the Cellular Com-
ponent ontology as of 16 September 2003 [4]) and well worked on by researchers
(16 member organisations of the Gene Ontology Consortium as of August 2003
[4]). Entries are curated before being added to the ontology. The ontology may
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Fig. 3. Diagram showing an example of GO hierarchy from the “biological processes”
ontology

be accessed in the RDF XML file format. In this computer legible form it is
easier to apply the information to data mining methods and immediately richer
than by determining similar information with text mining methods.

GO terms may be associated with genes using databases like SOURCE [5]
as long as accession numbers of genes or gene names are known. This is true
for the vast majority of the genes in our microarray dataset. See table 1 for an
example.

3 DM2: Assisting Biological Explanation

The cluster analysis and visualisation described in this paper takes as input (i)
a list of genes highlighted from a previous data mining step and (ii) data from
the Gene Ontology. The previous data mining step used gene expression data
(from ¢cDNA microarray experiments) and clinical data describing the tumour
cells in detail, effect of drug protocols and (human) classifications of patients
into high or low risk categories. cDNA microarray experiments are a recent
technology available to cellular biologists that measure the relative expression
levels of thousands of genes in cells at one instant. Expression levels of genes
in a test sample (i.e. tumour cells) compared to genes in a control sample (i.e.
“normal” cells) are measured.



Table 1. GO terms associated with an example gene (named CLK1) for each of the
three ontologies.

CLK1 (CDC-like kinase 1)

Molecular Function

G0:0004715 non—membrane spanning protein tyrosine kinase activity
GO:0005524 ATP binding activity

G0:0004674 protein serine/threonine kinase activity

G0:0016740 transferase activity

Biological Process

GO:0006468 protein amino acid phosphorylation
G0O:0008283 cell proliferation
GO:0000074 regulation of cell cycle

Cellular Component

G0O:0005634 nucleus

Gene Ontology terms are associated with each gene in the list by searching in
the SOURCE database [5]. The list of genes is clustered into groups with similar
functionality using a distance measure that explicitly considers the relationship
between terms in the ontology. Finally, descriptions of each cluster are found by
examining Gene Ontology terms that are representative of the cluster. Graphs
of Gene Ontology terms for each cluster together with cluster descriptions give
a visualisation of each cluster in functional terms.

Taking the list of genes associated with high risk patients identified in Stage 1
(an example of such genes are shown in the first column in Table 2), we reclus-
tered them using terms in the Gene Ontology (the GO:nnnnnnn labels in the
right column in Table 2) into groups of similarly described genes, for example,
genes that control signal transduction, or genes associated with transcription
regulatory behaviour.

Currently, biologists would take such a list of genes and search one—by—one
through Internet databases and search engines comparing the massive amount of
information about each gene in an effort to find commonalities and differences.
The aim of this step in our methodology is to summarise what is known about
the genes and coarsely group them so that biologists can quickly focus their
energies into promising areas.

Clustering data according to an ontology is a new procedure described in [6].
It entails using a special distance measure that considers the relative positions
of terms in the ontological hierarchy.

The distance measure used essentially compares the number of GO terms that
two data points have in common to the total number of GO terms associated
with the data points. Since terms higher in the ontology are also important to
the comparison they are also included but are “weighted down” and count for
less than the lower level terms. We calculate “weighted” cardinalities of the bags
of GO terms in common (the intersection) between data points and in total (the



Table 2. The first few rows of the dataset for the second step in the methodology.

Gene GO terms directly associated with gene

AA040427 GO:0004715 GO:0005524 GO:0004674 GO:0006468 GO:0008283
G0:0000074 GO:0005634 GO:0016740

AA046690 GO:0003777 GO:0005524 GO:0007018 GO:0005871

AA055946 GO:0004894 GO:0005057 GO:0004888 GO:0007166 GO:0006968
GO:0005887

union). Terms then are weighted by their distance from the GO terms directly
associated with the genes.

As described in [6] the distance measure used is an extension of the Tanimoto
similarity measure between sets [7] [8]. The distance measure used is

/ li
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where X and Y are the two bags of GO terms being compared and n'y, nj, and
n'yny are the weighted cardinalities of the bags X, Y and X NY respectively

given by
n'y = Z cdi (2)
ieX

where X is the bag of GO terms, d; is the distance of element of X with index 4
from its associated descendent in the original set of GO terms for the gene, and
c is the weight constant. The weighted cardinality of the other bags is similarly
defined.

The more general terms (ie. those higher in the ontology) provide a context
for the more specific terms directly associated with genes. The ¢ parameter
allows variation of the importance of the “context” to the comparison. A value
of ¢ = 0 means that higher level terms are not considered, whilst a value of
1 considers all terms equally. Plainly, the latter is unreasonable because very
general terms would be given undue importance. We arbitrarily chose ¢ = 0.9
for our experiments.

The particular clustering algorithm is not as important as the distance mea-
sure. We used the Modified Basic Sequential Algorithmic Scheme (MBSAS) as
described in [7] as it was simple and did not a priori presume a fixed number
of clusters. The details of the clustering algorithm are presented in [6]. Table 3
shows the algorithm parameters necessary for understanding the experimental
results in the next section.

4 Results of DM2

With the parameters values given above five clusters are found as shown in
Table 4. Half of the genes have been allocated to one cluster. The rest of the



Table 3. Parameters used in the Modified Basic Sequential Algorithmic Scheme clus-
tering algorithm. The last parameter is used only in the distance measure and is not
formally part of MBSAS. See text for a detailed description of c.

Parameter Meaning Value

e Minimum distance for points to be considered to be in the same 0.001
cluster. (Theodoridis and Koutroumbas [7] call this the “thresh-
old of dissimilarity”).

q Maximum allowable number of clusters. 0.1

M, Minimum distance for clusters to be deemed separate before 5
they are merged.

c Discount weight applied to GO nodes in the ontology. 0.9

genes have been split into four smaller clusters with one cluster containing only
two genes. Such a tabular representation does not increase our understanding of
the clusters as the gene accession codes are not descriptive. Moreover, it does
not help biologists.

Table 4. Clusters found with the MBSAS clustering algorithm. The codes AAnnnn
are GenBank accession codes.

Cluster Gene Genes
Number Count

0 6  AA040427 AA406485 AA434408 AA487466 AA609609
AA609759

1 2 AA046690 AA644679

2 6  AA055946 AA398011 AA458965 AA487426 AA490846
AA504272

3 9  AA112660 AA397823 AA443547 AA447618 AA455300
AA478436 AA608514 AA669758 AA683085

4 20  AA126911 AA133577 AA400973 AA464034 AA464743

AA486531 AA488346 AA488626 AA497029 AA629641
AA629719 AA629808 AA664241 AA664284 AA668301
AA669359 AA683050 AA700005 AAT00688 AATT5874

With this in mind, we plotted the subset of terms associated with the clus-
tered genes as nodes on a graph with relationships represented by edges and the
GO nodes of a cluster localised to one part of the graph as much as possible
(Fig.4). The clusters are represented by the five large boxes with the cluster
numbers (as listed in Table 4) given inside each box. Nodes inside the clusters
are the GO terms associated with genes in that cluster. More general terms are
on the right hand side of the diagram. Edges between nodes represent the links
in the ontology. Some terms, particularly the more general ones at the right
hand side of the diagram, have links from terms in a different cluster. Each node



is shown in only one cluster box, but links between the boxes show where GO
terms are shared by genes in the different clusters. The grey scale of the link
represents the cluster that link is in. Also, a darker grey scale is used for links in
the original dataset whilst a lighter shade is used for relationships inferred from
traversing the ontology.

The GO terms lying along the right edges of the cluster boxes (particularly in
cluster 1) are important. These terms are part of the most general descriptions for
a cluster that do not also describe another cluster. Figure 5 shows a closer view
of the terms at the right edge of cluster 1. These terms are used to automatically
determine cluster descriptions. They provide a functional description of a cluster.
Starting with all the GO terms directly associated with genes in a particular
cluster, we climb the hierarchy replacing GO terms with their parent terms.
Terms are replaced only if the parent node is not associated with genes in another
cluster.

Cluster descriptions derived in this way are shown in Table 5. Only the is—
a relationships were followed to build this table. There are far fewer part—of
relationships in the hierarchies so we do not believe that omitting them affects
the results. The terms listed in the table are associated only with genes in each
cluster and not in any other cluster. Cluster 0 in Table 5 has no terms that
are associated with more than one gene. This suggests that the genes in the
cluster are either unrelated or related only in ways that are sufficiently high
level that the terms exist in other clusters. This suggests that the quality of
the cluster is not good. Cluster 1 contains at least two genes that are related
to the cell cytoskeleton and to microtubules (microtubules are components of
the cytoskeleton). Cluster 2 contains three or four genes associated with signal
transduction and cell signalling. Cluster 3 contains three or four genes related
to transcription of genes and cluster 4 seems to contain genes associated with
RNA binding.

5 Conclusions

This paper presents a methodology for extracting and explaining biological
knowledge from microarray data. This is a two step approach involving cluster-
ing lists of genes mined from a microarray dataset using functional information
from the Gene Ontology. The method uses relationships between terms in the
ontology both to build clusters and to extract meaningful cluster descriptions.
In this work we have limited generation of cluster descriptions to the “is-a”
ontological relationships.

Applying information from the Gene Ontology to cluster genes allows for
an understanding of the genes and their interrelationships in functional terms.
Currently biologists search through such lists gene-by—gene analysing each one
individually and trying to piece together the many strands of information. Au-
tomating the process, at least to some extent, allows biologists to concentrate
more on the important relationships rather than the minutiae of searching. Con-
sequently they are enabled to formulate hypotheses to test in future experiments.
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Fig. 4. Diagram showing parts of the GO hierarchy associated with genes being clus-
tered. More general terms are at the right of the diagram. See text for description of
graph.



Table 5. Principal cluster descriptions for the genes clustered with the MBSAS algo-
rithm derived as stated in the text. The last column gives the number of genes in the

cluster associated with the term.

GO ID

GO Term

Number
of Genes

|

Cluster 0 — 6 genes

|

|

[20 GO terms but each associated with only one gene

|

|

Cluster 1 — 2 genes

|

GO:0008092
GO:0007028
GO:0003774
GO:0005875

cytoskeletal protein binding activity
cytoplasm organization and biogenesis
motor activity

microtubule associated complex

5 GO terms but each associated with only one gene

NN NN

|

Cluster 2 — 6 genes

GO:0004871
GO:0007154

signal transducer activity
cell communication

GO:0005887
GO:0005886

integral to plasma membrane
plasma membrane

G0:0005194

cell adhesion molecule activity

11 GO terms but each associated with only one gene

N[ W Wl =

|

Cluster 3 — 9 genes

GO:0030528

transcription regulator activity

GO0:0008134
GO:0006366
G0O:0003700
GO:0006357

transcription factor binding activity
transcription from Pol II promoter
transcription factor activity

regulation of transcription from Pol II promoter

5 GO terms but each associated with only two genes each

13 GO terms but each associated with only one gene

N[ W W W Wk

|

Cluster 4 — 20 genes

GO:0003723

RNA binding activity

—_
o

GO:0030529
G0O:0009059
GO:0006412
GO:0005829

ribonucleoprotein complex
macromolecule biosynthesis
protein biosynthesis
cytosol

GO:0003735

structural constituent of ribosome

2 GO terms but each associated with only four genes each

5 GO terms but each associated with only three genes each

1 GO term associated with only two genes

33 GO terms but each associated with only one gene
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Fig. 5. Diagram showing a close up of the most general GO terms in the large cluster.
See text for further description.

The approach is general and may be applied to assist explanation other
datasets associated with ontologies.
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