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Abstract

Our goal is to detect localized regions of excessive activity in

a network, distinguishing networks that contain such regions

from networks whose activity is more homogeneous. We

consider inference on random graphs from a latent position

model whose latent position space is a torus, using edge

density and maximum degree on as test statistics.

1 Torus Latent Position Models

By now, it goes without saying that random graph
models are a popular and fruitful area of study, with
applications to physics, biology, sociology, and other
fields. We consider a random graph model whose
edge probabilities depend on the latent positions of the
graph’s vertices; in our model, these latent positions lie
on a torus.

1.1 Latent Position Models Latent position mod-
els, or latent space models, were introduced by Hoff,
Raftery and Handcock [3]. In general, these random
graph models propose a latent position (in some space
of interest) for each vertex; the probability of the edge ij
is a function of the distance between the latent positions
of the vertices i and j.

To generate a random graph from a latent position
model, we use a two-stage process: First, latent posi-
tions, `1, . . . , `n, are drawn (i.i.d.) from a specified dis-
tribution on the latent position space. Given the latent
positions, we generate a random graph G(`1, . . . , `n) by
drawing

(
n
2

)
Bernoulli random variables Y12, . . . , Yn−1,n

for the edges. The edge variables are conditionally inde-
pendent (conditioning on the positions `1, . . . , `n), with
Yij having success probability pij , some function of the
distance between the latent positions `i and `j .

Formally, a latent (fixed) position model for graphs
with n vertices is a sample space on Gn;. The collection
is defined by a metric space (X , d) (the space in which
the vertices take their latent positions)1 and a function
f : R→ [0, 1] (used to convert distances between points
into probabilities of vertex adjacency). Thus, we may
call the model LPM(X , d, f). This model consists of

1Note that Hoff, Raftery, and Handcock do not require (X , d)
to be a metric space; indeed, one of their examples makes use of
non-symmetric projections.

the samples spaces (Gn, P`), where ` : [n] → X assigns
a latent position to each vertex. In a particular sample
space (Gn, p`) ∈ LPM(X , d, f), the probability of a
specific graph G is

P`(G) =
∏

u<v,u∼v
f [d (`(u), `(v))]

×
∏

u<v,u�v
[1− f [d (`(u), `(v))]]

A latent random position model (LRPM) for graphs
with n vertices is also a collection of sample spaces
on Gn. Its construction is similar to that of a latent
fixed position model; instead of the position function
`, however, the LRPM is indexed by µ, a probability
measure on X . The latent positions `1, . . . , `n are
random variables drawn independently according to µ.
(We may therefore think of `, in this model, as a random
function from [n] to X .) We write LRPM(X , d, f) for
the model, and (Gn, Pµ) for its sample spaces. The
probability of a specific graph G in the sample space
(Gn, Pµ) takes just the same form as in a latent fixed
position model:

Pµ(G) =
∏

u<v,u∼v
f [d (`(u), `(v))]

×
∏

u<v,u�v
[1− f [d (`(u), `(v))]] .

The difference is that in this case the `(i) are random
variables.

Our torus model is a latent random position model
whose latent space X is a k-torus, Sk, with d being
Euclidean distance along the surface of the torus. A
torus, like a sphere, is compact without having edges
or corners; the k-torus has the additional advantage of
being naturally representable as a rectangular region
in Rk (variously named the “Asteroids,” glued-square,
or Poincaré polyhedron embedding). Notice that, al-
though a square with opposite edges identified is topo-
logically equivalent to any other torus, there is no isom-
etry between the glued-square embedding and a donut-
shaped embedding of Sk. Our model uses the glued-
square embedding; any visualization involving donut-
shaped embeddings must therefore be taken with a grain
of salt. (For further explanation, see [2].)



We embed Sk as the k-dimensional unit cube. The
edge probability function is f(d) = 1 − d

2−k = 1 − 2kd.
Since the maximum possible interpoint (torus) distance
in the unit cube is 2−k, this f allows edge probabilities
to range from 0 (for vertices with latent positions as far
apart as possible) to 1 (for vertices with the same latent
position). The edge probability decreases linearly as the
distance between the endpoints increases.

Using a torus as the latent space is one way of
dealing with problems presented by more typical la-
tent spaces.[3] A torus is both compact and edgeless.
Furthermore, the glued-square representation is a pre-
ferred embedding for performing multidimensional scal-
ing onto a torus (as noted by [2]), which may be useful
for estimating latent positions if we observe only the
resulting graph.

1.2 Uniform Models and Mixture Models To
fully define our torus random graph model as a latent
random position model, we must stipulate a distribu-
tion for the latent positions of the vertices. We consider
latent positions distributed uniformly on Sk, as well as
latent positions distributed as a mixture of two uniform
distributions whose supports partition Sk. For the pur-
poses of this paper, we consider mixture-model graphs
of the form Tn,w,p, where w is the side length (between
0 and 1) of a square region2, and each latent position
is drawn from this square region with probability p and
from its complement with probability 1− p.

For example, to generate a random graph from the
uniform-mixture 1-torus model, we draw `1, . . . , `n from
a mixture of two uniform distributions on the 1-torus
(embedded as the unit interval). With probability p, we
draw `i from the interval [0, w); with probability 1− p,
we draw `i from the interval [w, 1]. Given `i, `j , the
edge variable Yij is Bernoulli with success probability

pij = 1− d(`i, `j)
1/2

,

where d is the 1-torus distance,

d(`i, `j) = min(|`i − `j |, |(1 + `i)− `j |).

We generally assume w is small, so that vertices
with latent positions inside the square are quite likely
to be adjacent in the random graph (more so than in
the larger remainder of the graph); thus, this model
captures in a simple way the idea of a local subregion
of excessive activity. In general, we could admit a
mixture model with more components, each capturing

2Since the latent position space is a torus, and the positions are

uniformly distributed, we may assume without loss of generality
that this region has one corner at the origin.
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Figure 1: This figure illustrates the role of p and w in the
mixture model: w defines the size of a square region, and
each point is drawn from that square with probability
p and from the rest of the torus with probability 1− p.
At the top is a 1-torus; at the bottom is a 2-torus.

a subgroup within the vertex set whose members are
likely to communicate amongst themselves.

For simplicity, we write Tn for the n-vertex torus
random graph model with uniformly distributed latent
positions. We denote by Gn,p the standard Erdős-Rényi
random graph with n vertices and edge probability p.

2 Motivation and Hypotheses

Suppose we observe a graph G, representing, for exam-
ple, a social network. Our goal is to detect local subre-
gions of excessive activity – regions of the network where
the edges are unusually dense.[6] We therefore choose a
homogeneous null hypothesis: for example, a torus ran-
dom graph whose latent positions are distributed uni-
formly.

Note also that the model with uniformly distributed
latent positions is not a standard Erdős-Rényi random
graph, since the edges are not independent – for ex-
ample, edges ij and ik both depend on the position of
vertex i. Below, we consider each of these models as
potential null hypothesis graphs.

Our potential alternative hypothesis graphs are
torus graphs whose latent positions may not be dis-
tributed uniformly. Here, we consider mixtures of uni-
form distributions for the latent positions; in particular,
we consider graphs with a small square region of higher
probability.

We have, then, two classes of null hypotheses



and one class of alternative hypotheses concerning our
observed graph G:

H0 : G ∼ Gn,p

H ′0 : G ∼ Tn
HA : G ∼ Tn,w,p

Notice that, in the 1-torus model, we can write H ′0 :
G ∼ Tn,p,p (that is, as a mixture model with p = w).
In general, for a k-torus model, we can write H ′0 as
G ∼ Tn,w,p where p = wk, so that the probability Xi

comes from this cubical region with side length w is
equal to the volume of the region.

We will consider inference in this framework.

3 Statistics

Since we assume that only the graph is observed (and
not the latent positions), we must choose statistics that
can be calculated from the graph alone.

3.1 Edge density Edge density (number of edges
divided by number of possible edges) is one statistic
that may be used to distinguish between a “quiet”
null hypothesis graph and one containing a subregion
of excessive activity. Note that this statistic is only
useful if we postulate a specific edge density for our
null-hypothesis graph – the edge density tells us nothing
about the graph structure, but only tells us if the graph
is more active (has more edges) than we expected.
So, then, graph size is a useful test statistic for H ′0 :
G = Gn,p0 versus HA : G = Tn,w=1/4,p=1/2, since
the alternative graph may be expected to have more
edges than the null graph. It is not so useful for
H0 : G = Gn,p0 versus H ′A : G = Tn,w=1/2,p=1/4, since
this alternative graph actually has uniformly distributed
latent positions, and thus its expected edge density is
1/2, the same as for the Erdős-Rényi null.

3.1.1 (Edge Density) Null Distribution – Exact
The expected edge density of an Erdős-Rényi random
graph with edge probability p (our H0) is p. In
such a graph, the total number of edges is a sum of
independent Bernoulli random variables, so it has a
binomial distribution.

The expected edge density of a torus random graph
with uniformly distributed latent positions (our H ′0) is
1
2 , since P (i ∼ j) = 1

2 for arbitrary vertices i and j
with unspecified latent positions. This probability is
easily calculated by conditioning on the positions j –
see Appendix. (If the distribution of latent positions
is uniform, we may assume, without loss of generality,
that the position of vertex i is 0; if it weren’t, we could
simply rotate the torus to make it so.)

The variance (under H ′0) of the edge density of
Tn is 1

4(n
2)

, so the edge density’s second moment is

1
4

(
1 +

(
n
2

)−1
)

. For calculation of the variance, see
Appendix.

We do not yet have a closed form for the exact
distribution of the edge density under H ′0; its first few
moments are the same as those for the H0 distribution,
but Kolmogorov-Smirnov goodness-of-fit tests 3 suggest
that the H ′0 distribution of the number of edges is in
fact not binomial.

3.1.2 (Edge Density) Null Distribution – Ap-
proximate For large n, the (normalized binomial) edge
density of an Erdős-Rényi random graph is approxi-
mately normal.

Since the edge density of a torus random graph with
uniformly distributed latent positions is a classical U-
statistic, its distribution should also be asymptotically
normal as n goes to infinity; for large n, then, we can
approximate the edge density as Gaussian.

3.1.3 (Edge Density) Power Characteristics
(Alternative Distribution) – Exact We don’t yet
know the exact distribution of the number of edges in a
torus random graph with mixed-uniform latent position.

The expected edge density of such a graph is P (i ∼
j), since expected number of edges is simply

(
n
2

)
P (i ∼

j), and P (i ∼ j) can be calculated by conditioning on
the latent positions of i and j. (In the mixed-uniform
scenario, we cannot assume that i has latent position 0,
since we don’t know from which mixture component it
is drawn.) The dependence of the edge density on both
p and w is displayed in Figure 2.

3.1.4 (Edge Density) Power Characteristics –
Monte Carlo The Monte Carlo power of the edge
density statistic for our problem, when α = 0.05, H ′0 :
G ∼ Tn, and HA : G ∼ Tn,w,p, varies from 0.05 (when
p = w and so HA = H ′0) to approximately 1 (when
(|p− w| is greater than about 0.3). See Figure 3.

3.2 Maximum degree The maximum degree might
be expected to have greater power for detecting local re-
gions of excessive activity; the homogeneous main part
of the graph will wash out some of the edge-density sig-
nal, whereas maximum degree, being a local statistic,
contains less noise to prevent it from detecting exces-
sively active small regions. As we shall see, if our null
and alternative hypotheses are, respectively, uniform

3For justification of the use of Kolmogorov-Smirnov test in this
case, see [4]; for the test itself, see [5].
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Figure 2: P (i ∼ j) as a function of p and w in a mixed-
uniform 1-dimensional torus random graph. Note that
P (i ∼ j) is not symmetric in p and w. For example,
the starred points mark, respectively, p = 1/2, w = 0
and p = 0, w = 1/2, but they do not have the same
value for P (i ∼ j). Since P (i ∼ j) is never less than
1/2, scaling is always required to create sparser graphs.
Scaling is likewise required to create very dense graphs,
except when p = 0 or p = 1.

and mixed-uniform torus random graphs, maximum de-
gree is very rarely a more powerful statistic than edge
density; however, this statistic is useful for selecting an
appropriate null hypothesis (choosing between Erdős-
Rényi and uniform-torus random graphs for a quiet or
homogeneous null hypothesis).

3.2.1 (Maximum Degree) Null Distribution –
Exact The exact distribution of the maximum degree
is not known in closed form for Erdős-Rényi or torus
random graphs.

3.2.2 (Maximum Degree) Null Distribution –
Approximate For large n, the maximum in an Erdős-
Rényi random graph Gn,p is approximately Gumbel. In
particular, as n increases to infinity, the maximum de-
gree in such a graph has a limiting Gumbel distribution
with shape and location parameters (calculated by Bol-
lobás, [1])

a0 = pn+
√

2pqn log n
(

1− log log n
4 log n

− log (2
√
π)

2 log n

)
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Figure 3: Monte Carlo power of edge density statistic.
Note that this power is not symmetric in p and w,
though it may appear to be.

b0 =
√

2pqn log n
2 log n

3.2.3 (Maximum Degree) Null Distribution –
Monte Carlo Monte Carlo simulations make it clear
that the maximum degree of Tn does not have the same
distribution as the maximum degree of Gn,1/2 – the
Gumbel distribution with Bollobás’s parameters is a
very poor fit.

Max Degree of a Uniform 1−Torus Random Graph
 (with estimated Gumbel distributions:

 blue = Bollobas, magenta = MLE)
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Figure 4: Maximum degree for a 1-torus random graph
with uniformly distributed latent positions.

Note that this difference opens up the possibility
of doing inference, not just between H0 and HA, but
between H0 and H ′0. Unlike the edge density, the



maximum degree may be able to distinguish between
our two null hypotheses – see Section 3.2.5 for details.

3.2.4 (Maximum Degree) Power Character-
istics (Alternative Distribution) Even if the
alternative-hypothesis random graph has the same over-
all edge density as the null-hypothesis graph, vertices in
its more active subregion can be expected to have higher
degree than vertices in the more homogeneous null-
hypothesis random graph. This intuition does not nec-
essarily hold; see Figure 6. Indeed, when |p− w| ≈ 0.3,
the edge density has greater power.
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Figure 5: Monte Carlo power of maximum degree
statistic.

3.2.5 Other tests using maximum degree The
maximum degree, then, is no more useful than edge
density for distinguishing H ′0 (uniform torus graph)
from HA (mixture torus graph). However, it may be
useful for distinguishing H0 (Erdős-Rényi graph) from
H ′0. As Figure 7 suggests, the expected maximum
degree of a uniform torus random graph is somewhat
lower than that of an Erdős-Rényi random graph.

4 Science News Data

We apply two kinds of hypothesis tests to a network
of Science News articles. We embed a set of 579
Science News articles in term-document space, reduce
that space to the span of its 573 principal components
(the principal components matrix was not full rank
because of underflow), and construct a simple distance-
based graph: two points are adjacent exactly when they
lie within a certain distance of each other in this latent
semantic space. We examine the induced subgraph of
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Figure 6: This plot shows the excess power achieved
by the maximum degree over that achieved by the edge
density.

this network whose vertices are articles on mathematics
and physics. In this case, the adjacency distance was
selected so that this induced subgraph would have edge
density approximately 1/2. Edge density is therefore
not an appropriate test statistic in this case; we restrict
our attention to tests using maximum degree.

First, we select an appropriate null hypothesis: we
test H0 (Erdős-Rényi graph) versus H ′0 (uniform torus
graph). Monte Carlo simulations suggest that, for
α = 0.05, a critical value of 104 is appropriate for the
maximum degree statistic. The math and physics article
network has maximum degree 145. Recall that, for H0

v. H ′0, we reject for small values of maximum degree;
thus, we have no cause to reject the simpler Erdős-Rényi
null hypothesis.

Next, we test our homogeneous null hypothesis
against a model allowing for subregions of excessive
activity: that is, we test H0 (Erdős-Rényi) versus HA

(mixed-uniform torus graph). In this case, we reject
for large values of the maximum degree. Monte Carlo
simulations suggest that, in this case, an appropriate
critical value (for α = 0.05) is 113. Since the math and
physics article network has maximum degree 145, we
reject the null in this case; this network appears more
likely to be a mixed-uniform torus graph than an Erdős-
Rényi graph.

5 Higher Dimensions

If the latent positions of the vertices lie on a torus of
dimension greater than 1, there is no longer just one
natural choice of metric to associate with the latent
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Histogram of maximum degree for torus graphs
 with 1000 vertices (1000 Monte Carlo replicates)

Maximum degree

D
en

si
ty

530 540 550 560 570 580

0.
00

0.
02

0.
04

0.
06

0.
08

Figure 7: These plots illustrate the difference between
H0 and H ′0 in terms of the distribution of the maxi-
mum degree. The red curves are maximum-likelihood
Gumbels; the blue curves show the approximate Gum-
bel distribution for the maximum degree of an Erdős-
Rényi random graph, as determined by Bollobas [1].
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Figure 8: Estimates of P (i ∼ j) for uniformly dis-
tributed latent position on S2 with lp distance as the
associated metric. When p =∞, P (i ∼ j) = 1/3.

space. On S1, all lp distances are equivalent to l1 or
angular distance. For any lp distance on S1, and for l1
distance on any Sk, P (i ∼ j) = 1

2 . On S2, the choice of
metric can greatly affect the structure of the resulting
graph. Figure 8 shows the results of Monte Carlo
estimation of P (i ∼ j) when the latent positions are
uniformly distributed on S2 and the associated metric
is the lp metric on the torus, for several values of p.
Under the l∞ norm, P (i ∼ j) = 1

3 .

A Calculation of P (i ∼ j) in a simple case

If the latent positions are uniformly distributed on Sk

and the metric associated with the latent space is l1
distance, then P (i ∼ j) = 1

2 The calculation proceeds
as follows:

P (i ∼ j) =
∫ 1

0

. . .

∫ 1

0

(
1− d1(~x,~0)√

k

)
1

(2)k
dx1 . . . dxk

=
1

(2)k

∫ 1

0

. . .

∫ 1

0

(
1−

∑k
r=1 |xr|
k

)
dx1 . . . dxk

=
2k

(2)k

∫ 1/2

0

. . .

∫ 1/2

0

(
1−

∑k
r=1 xr
mk

)
dx1 . . . dxk

=
∫ 1/2

0

. . .

∫ 1/2

0

1dx1 . . . dxk

−1
k

∫ 1/2

0

. . .

∫ 1/2

0

k∑
r=1

xrdx1 . . . dxk

= −1
k

∫ 1/2

0

. . .

∫ 1/2

0

k∑
r=1

xrdx1 . . . dxk



= 1− 1
k

∫ 1/2

0

. . .

∫ 1/2

0

k∑
r=1

xrdx1 . . . dxk

= 1− 1
k

k

2

= 1− 1
2

=
1
2

B Calculation of Edge-Density Variance for Tn
Let Xn be the number of edges in Tn, and let Iij be an
indicator random variable whose value is 1 if the edge
ij is present and 0 otherwise. Then, clearly, we have

Xn =
∑
i<j

Iij ,

so calculating the variance of Xn is straightforward:

V ar[Xn] = V ar

∑
i<j

Iij


=
∑
i<j

V ar[Iij ] +
∑

i<j,k<l,(i,j)6=(k,l)

Cov[Iij , Ikl]

Since edge probabilities depend only on the position of
the edge’s own endpoints, Cov[Iij , Ikl] = 0 when i, j, k, l
are all distinct. So we have

V ar[Xn] = · · · =
∑
i<j

V ar[Iij ] +
∑

i 6=j 6=k,i<k

Cov[Iij , Ijk].

Now, Iij is a Bernoulli random variable, and we es-
tablished above that p := P [Iij = 1] = 1

2 ; therefore,
V ar[Iij ] = p(1− p) = 1

4 . Conditioning on the positions
of i (which may be assumed to be 0), j (which may be
assumed to be between 0 and 1

2 ), and k (which may only
be assumed to be somewhere on the torus), we calculate
Cov[Iij , Ijk = 0 (for i 6= j 6= k, i < k). So now we have

V ar[Xn] = · · · =
∑
i<j

1
4

+
∑

i6=j 6=k,i<k

0

=
1
4

(
n

2

)
.

Now, the edge density of Tn is Xn

(n
2)

; its variance,

therefore, is
V ar[Xn](

n
2

)2 =
1

4
(
n
2

) .
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