
Better Bond Angles in the Protein Data Bank

C.J. Robinson and D.B. Skillicorn
School of Computing
Queen’s University

{robinson,skill}@cs.queensu.ca

Abstract

The Protein Data Bank (PDB) contains, at least im-
plicitly, empirical information about the bond angles
between pairs of amino acids. There is considerable
variation in the observed values for a given amino
acid pair, and it is not clear whether this variation
represents a wide range of conformal possibilities or
is due to noise. We show, by applying singular value
decompositions to the sets of examples of particular
amino acid sequences, that there appear to be rela-
tively few possible conformations for a given amino
acid pair, and hence noise is a plausible explanation
for the variation in the raw data. This has implica-
tions for secondary structure prediction which typi-
cally depends on the PDB values.

1 Introduction

The Protein Data Bank (PDB) is a repository
of protein structure, mainly gathered using X-
ray Crystallography (XC) and Nuclear Magnetic
Resonance (NMR). Implicit in the PDB is the
conformation of each protein’s backbone sequence,
that is its primary structure. This can be described
using the bond angles, φ and ψ, between each pair
of amino acids along the backbone. These angles
are constrained by the structure and size of the
side-chains of the amino acid. The possible bond
angles can be displayed using a Ramachandran
plot, a two-dimensional representation of φ versus
ψ showing regions that are admissible on physical
or energetic grounds.

The actual bond angles associated with a given
pair of amino acids in the PDB show wide varia-
tions. In some cases, it is clear that this is due to
different conformations; the bond angle values are
far apart. In other cases it is not clear whether

the variations in values correspond to conformal
possibilities or simply to noise. We address this
question empirically and show that it is plausible,
perhaps likely, that most of the variation in values
is due to noise. As a result, we are able to show
distinct conformations of amino acid pairs that are
not distinguishable in the raw data. By extending
these results to chains of amino acids, we suggest
that secondary structure can be built from primary
structure in a bottom-up fashion. As a side-effect
we are able to produce Ramachandran plots with
much more tightly constrained admissible regions.

Our strategy is to select all occurrences of a
particular amino acid sequence from the PDB, to-
gether with the bond angles between its members.
Singular Value Decomposition (SVD) is then ap-
plied to the resulting dataset; the resulting ma-
trices are truncated at some k components; and
then remultiplied to produce a matrix analogous
to the original bond angles. This new matrix can
be thought of as defining canonical bond angles for
the amino acid sequence being considered. The dif-
ferent occurrences show strong tendencies to clus-
ter in the transformed space, providing evidence of
a limited set of conformations distorted by noise
rather than a wide range of possible conforma-
tions. Since most secondary structure prediction
uses data from the PDB, much improved results
would be expected from using canonical, rather
than measured, bond angles.

2 Related Work

The effects of neighboring amino acids, n-1, n+1,
on the conformation of amino acid n was studied as
early as the 1970’s. Advanced, automated analysis
of this variety is now possible over the WWW via



the Conformation Angles Database (CADB) [9].
Interfaces to CADB can automatically generate
Ramachandran plots of specific amino acids with
respect to neighboring residues. This is currently
limited to three amino acids and is also restricted
by the nature of information contained in the
CADB.

Aggregating PDB data to create empirical
Ramachandran plots (as opposed to ones based on
energy minima, see Section 4.1) has been done by
Kleywegt and Jones [5] and later by Hovmoller et
al. [3]. The plots were created by extracting bond
angles for every instance of an amino acid within
the PDB. These types of analysis are useful in that
they utilize all the information available to provide
a detailed plot, but the relative simplicity limits
the application of the results.

Clustering algorithms have been applied to
length 5 amino acid sequences obtained from the
PDB [6]. The clustering was done based on
amino acid type and not related to bond angles or
sequence conformation. Though similar in concept
to our work, the results are fundamentally different
as the clustering is not based on bond angles.

A geometric analysis of bond angles for a
specific protein structure is available directly at the
PDB website. The analysis can show bond angles
that deviate from the generally accepted values by
more than a given threshold. This is a generally
accepted method to identify potential noise and/or
errors introduced from the XC or NMR process [1].
Since it is a simple comparison of threshold values,
the results obtained do not reflect great confidence
and the analysis is limited to one protein structure
at a time.

The paper by Rost et al. [8] summarizes work
on secondary structure prediction. Much of this
work is derived from the conformation information
implicit in the PDB.

3 Matrix Decompositions

The singular value decomposition of a matrix A is

A = USV ′

where the dash indicates the transpose. If A is
n × m and has rank r, then U is n × r, S is
an r × r diagonal matrix with decreasing entries

σ1, σ2, . . . , σr (the singular values), and V is r×m.
In addition, both U and V are orthogonal, so that
UU ′ = I and V V ′ = I. In most practical datasets,
r = m.

The most useful property of SVD for our pur-
poses is that the transformation captures as much
variation in the original data as possible in the
first transformed dimension, as much as possible of
what remains in the second dimension, and so on.
Hence, if we truncate the decomposition so that U
is n×k, S is k×k, and V is k×m, for some small k,
then we have discarded dimensions that have little
influence on the correlational structure of A. The
dimensions from k + 1 to r can be considered to
represent noise in the original data.

Remultiplying the truncated matrices produces
a new matrix that has the same shape and interpre-
tation as A but has been ‘denoised’. The trunca-
tion parameter, k, should be chosen so that signif-
icant information is retained but insignificant dis-
carded. The magnitudes of the singular values are
a measure of how important each dimension of the
decomposition is. Plotting the values of the diago-
nal of S and choosing k at the earliest point where
these values become small is often a good selection
mechanism.

An alternate interpretation of the transformed
space produced by an SVD is that points are placed
close to other points with which they are corre-
lated. Hence if the original data describes ob-
jects of a few different kinds, distorted by noise,
we would expect to see tight clusters in the trans-
formed space (which can be plotted and visualized
directly if k = 2 or 3). On the other hand, if the
original data describes data without much similar-
ity, we would not expect to see clusters in the trans-
formed space in any dimensions. SVD reveals the
latent cluster structure of data.

4 Background and Methods

This section describes current methods of obtain-
ing protein structure and the inherent problems,
databases of acquired protein structure, and the
limitations of applying SVD and other data min-
ing algorithms to such data.



4.1 Obtaining structure Current methods for
determining the 3-dimensional structure of a pro-
tein are slow, error-prone and expensive. The read-
ily available methods employed today are X-ray
crystallography (XC) and Nuclear Magnetic Reso-
nance (NMR); both are physical processes. XC and
NMR involve determining the 3-dimensional coor-
dinates of every atom in a protein within a known
error range. Data collected from both methods are
not directly converted to atomic co-ordinates but
require human input, interaction and heuristics to
refine the data. This is a further possible source of
error [4]. The structure of about 28,000 proteins
has been determined using these methods but mil-
lions of proteins are known to exist.

The Protein Data Bank (PDB) is the world-
wide depository for protein structure, almost all
of which have been obtained from XC and NMR.
The format for protein structure has been carefully
designed to be as flexible as possible allowing the
data to be utilized in many different fields of study
[1]. The PDB consists of individual files for each
protein entry, and contains the atomic co-ordinates
of atoms within the protein, but does not directly
contain bond angles for amino acids in the primary
sequence. Unfortunately, data mining applications
are not natively supported by this standard format
of the PDB.

4.2 Database formats There are many deriva-
tives of the PDB, only a few of which contain bond
angles of amino acids in an easily accessible for-
mat. The Conformation Angles Database (CADB)
[9] and Dihedral Angle Database (DAB) [2] are the
newest and most comprehensive sources. CADB
is a self-limited database which excludes protein
with homologous sequences up to a certain thresh-
old. For data mining purposes, it would be benefi-
cial not to exclude any data a priori. CADB also
will only supply bond angles for small sequences
of amino acids. DAB contains bond angles for ev-
ery possible set of length 2, 3, 4 and 5 amino acid
sequences. However, the database is not currently
publicly available. Both of these databases lack the
ability to supply a set of bond angles in a matrix
format based on a simple query (i.e. for a specific
sequence of amino acids, or for every set of 8 amino

acids). Since most data mining applications, and in
particular SVD, require data to be in matrix form,
a new database was required.

4.3 Ramachandran plots Ramachandran
plots are a way to display the possible confor-
mation of an amino acid pair by plotting the
admissible regions based on energy considerations.
Figure 1 shows a typical plot. The region near the
top left corresponds to conformations associated
with a β sheet, with the two peaks corresponding
to parallel and anti-parallel secondary structure.
The region midway down and to the left corre-
sponds to conformations associated with α helices.
The third region corresponds to conformations
of anticlockwise α helices. Not all amino acids
are constrained in this way; for example pairs
involving glycine can exhibit a much larger range
of conformations. We will use Ramachandran
plots to compare the conformations possible in the
raw PDB data and those suggested after denoising
with SVD.

Figure 1: Typical Ramachandran plot (from Kley-
wegt and Jones (1996) [5]).



4.4 Methods Every protein file listed in the
Protein Data Bank was downloaded, converted
and appended to a datafile. Bond angles were
computed from atomic coordinates for each pair
of amino acids in the primary sequence using
TORSIONS [7]. The output of TORSIONS was
appended to a datafile in the format: ..., amino-
acid(location), φ, ψ,... (e.g. ..., ALA(150), -
150.595, -63.539, SER(151), ... ), where each
line is the structure of one protein. Due to the
time-intensive nature of compiling a database into
this format, this intermediate, flexible format was
chosen for ease of access for other possible studies.
The results presented here are based on 27,544
files which were downloaded from the PDB on
November 16, 2004 and transformed into the new
format. From this new derivative of the PDB,
datasets of specific sets of bond angles can easily
be accessed.

The natively implemented svd function in Mat-
lab 6.5r13 was used to perform the decomposition
on small datasets. For larger datasets JAMA v5
was used with Java 1.4.2-04 to perform SVD. The
resultant decomposed data was geometrically in-
terpreted by plotting the first three dimensions of
the U matrix.

The following steps were performed:

• Given an amino acid sequence of length m,
the 2m − 2 internal bond angles associated
with each occurrence of this sequence were
extracted from the PDB. There are typically
1000–5000 examples of an amino acid sequence
of length 3 in the PDB, 100–500 examples of
sequences of length 4, and 0–200 examples of
sequences of length 5.

• An SVD was performed on the resulting ma-
trix whose rows correspond to examples of the
given amino acid sequence and whose columns
correspond to a bond angle at a particular po-
sition in the sequence.

• The resulting decomposition was truncated at
k = 3, a value chosen after inspection of a
large number of plots of singular values. The
first 3 columns of the U matrix was plotted for
visualization.

• The truncated matrices were remultiplied to
give a matrix of canonical bond angles.

• Each cluster in the transformed space was fit-
ted with a 3-dimensional ellipse and the ellipse
mapped back into bond angle space using the
SVD ‘in reverse’. This ellipse defines a region
of the Ramachandran plot corresponding to
the cluster.

5 Results
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Figure 2: Histogram of the φ angles of the LEU-
VAL bond in the sequence LEU-VAL-ARG.

There are many possible sequences of length 3,
4, and 5, so we only show some typical results here.

We being by considering the sequence LEU-
VAL-ARG of length 3. There are 4529 examples of
this sequence in the dataset. Figures 2 and 3 show
histograms of the bond angles of the LEU-VAL
bond taken from these examples. There is obvious
structure in both histograms, but it is hard to make
use of it. The distribution of ψ angles suggests
two clusters; but is the distribution of φ angles one
big and one small cluster, or two big clusters and
one small one? It is not straightforward to build
conformations from such information. It is also not
clear how much of the visible variation is due to
noise and how much represents different possible
conformations. Figure 4 is a Ramachandran plot of
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Figure 3: Histogram of the ψ angles of the LEU-
VAL bond in the sequence LEU-VAL-ARG.
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Figure 4: Ramachandran plot for the LEU-VAL
bond in the sequence LEU-VAL-ARG.

the bond angles for the LEU-VAL bond. It is clear
that there are some α helix conformations, some
β sheet conformations, and a few anticlockwise
α helix conformations, but the space of possible
conformations is apparently not restricted beyond
this.

Figure 5 shows the first 3 dimensions of the

U matrix obtained from an SVD of the matrix
of bond angles for the sequence LEU-VAL-ARG.
There are four clusters visible, two large and two
much smaller. There are a number of outliers, and
perhaps some smaller clusters, but they represent
a small fraction of the total number of examples.
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Figure 5: 3-dimensional plot of SVD transformed
space for the amino acid sequence LEU-VAL-ARG.

Figure 6: A Ramachandran plot overlayed with
regions obtained from mapping clusters from SVD
transformed space back to bond angle space for the
amino acid sequence LEU-VAL-ARG. Each region
is labelled in gray, darker where regions overlap.
Compare with Figure 4

Figure 6 shows the location of these clusters
when mapped back into bond angle space for each



of the pair bond angles. There are four possible
conformations for each of the bond angles: the
LEU-VAL bond exists in 4 α helix conformations
(with different pitches) and 1 β sheet conformation.
These 5 conformations for the VAL-ARG bond
split more evenly, with 2 α helix conformations,
and 3 β sheet conformations. In other words, 2
of the conformations of the overall sequence are
α helices, 1 is a β sheet, and two others exhibit
transitions from one shape to another at the VAL
amino acid. Note that these transitions are abrupt;
there is little evidence that the ‘end’of the α helix
changes shape because of the conformation of the
adjacent bond.
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Figure 7: 3-dimensional plot of SVD transformed
space for the amino acid sequence LEU-VAL-ARG-
ILE.

Figure 7 shows the equivalent SVD transformed
space for a sequence that extends the one we have
just been considering: LEU-VAL-ARG-ILE. There
are 417 examples of this sequence in the dataset.
We see that there are two well-separated clusters
with hardly any outliers. Figure 8 shows the
singular values for the matrix of examples of this
amino acid sequence. Almost all of the variation is
in the first two dimensions.

Figure 9 shows the Ramachandran plot derived
from these two clusters. As expected, the plots of
each of the bond shows well-separated conformal
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Figure 8: Plot of the singular values of SVD for the
amino acid sequence LEU-VAL-ARG-ILE.

possibilities, an α helix and a β sheet; and the
conformations for the first two bonds are subsets
of those computed from the sequence of length
three. It seems likely that each of the possibilities
for the bonds match, so that there are only two
conformations for this entire length four sequence
(and notice the tightening towards the right hand
end for both conformations). We have looked at
many sequences of length 3 and 4, and the results
are similar for most of them.

These results suggest that a much improved
version of the PDB’s bond angles could be pro-
duced by systematically denoising the existing
data. However, this is difficult in practice. There
are a large number of amino acid sequences of short
length, so a great deal of computation is required
even to apply the techniques described here to all
of their bond angles. It then remains to check
whether the canonical bond angles derived from se-
quences of length 3 agree with (or can be fitted to)
those obtained from sequences of length 4 for the
same amino acid pair. However, this suggests the
possibility of a dynamic programming style algo-
rithm for determining conformations for a sequence
of length l from the conformations of overlapping
sequences of length l − 1. We are exploring this



Figure 9: A Ramachandran plot overlayed with
areas obtained from mapping cluster from SVD
transformed space back to bond angle space for the
amino acid sequence LEU-VAL-ARG-ILE.

possibility further.

5.1 Larger structure A random sampling of
1,557,072 length 5 amino acid sequences (approx-
imately a 10% sample of all possible length 5 se-
quences) was extracted from the PDB. Figure 10
shows the 3-dimensional plot of the SVD trans-
formed space that results. The overall structure
is a diamond of clusters. The leftmost cluster cor-
responds to sequences whose basic conformation is
straight (i.e. they are part of β sheets) while the
rightmost cluster corresponds to α-helices for the
entire sequence. The clusters along the edge of the
diamond appear to be sequences in transition be-
tween these two basic conformations. For example,
the first amino acid in a sequence can be part of
an α helix, while the remaining amino acids form
a straight segment. The intermediate clusters cap-
ture these different conformation possibilities (each
conformation appears as two different clusters be-

cause it depends on which end we consider first).
Clusters in the middle appear to capture conforma-
tions with more than one transition, for example
from α helix to straight segment to α helix. This
figure shows how an SVD analysis of bond angle
data can help to elucidate average structure in the
PDB. These experiments have been repeated for
longer amino acid chains with similar results. One
conclusion that can be drawn from this figure is
how rare conformations other than α helices and β
sheets are.

Figure 10: 3-dimensional plot SVD transformed
space for a large set of arbitrary amino acid se-
quences of length 5.

6 Conclusions

We have applied singular value decomposition to
datasets of bond angles for particular short se-
quences of amino acids, using the values from the
PDB. The raw data contains a great deal of vari-
ability, and it is not clear to what extent this rep-
resents noise (or errors) or different conformal pos-
sibilities. By examining the clustering structure in
the space to which SVD transforms the data, we
have provided some evidence that the main source
of variation in the raw data is noise. Relatively few



conformal possibilities are revealed in the trans-
formed space.

Mapping the clusters back to the original bond
angle space produces a version of each dataset con-
taining ‘canonical’ bond angles, that is values that
have been denoised. These bond angles are con-
strained to much smaller regions of Ramachandran
plots, and exhibit coherence when the same cluster
is followed along a sequence of bond angle pairs.

Many secondary structure prediction algo-
rithms and functional studies are based on the
PDB. Our results suggest that some effort should
be spent on denoising the data before drawing con-
clusions about more complex structure from it.
The techniques described here cannot be applied
directly to the entire PDB. Although a single SVD
on the entire PDB is (just) possible, new entries
are being added all the time, and it is not a com-
putation that is attractive to repeat regularly at
this time. Replacement of bond angle data piece-
meal using our techniques on sequences of medium
length should be straightforward, but requires fur-
ther analysis of the variation in results for an amino
acid pair considered as part of a sequence of length
3, of length 4, and so on.

The elicitation of more robust conformations
for short amino acid sequences suggests a method
for discovering the conformations of longer se-
quences by assembling the short conformations into
longer ones. We are pursuing this direction.
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