
Preface

This book was written to support a short course in the second or third year of
an undergraduate computer science, software engineering, or software design
program. The prerequisites are fairly modest: some programming experience
(ideally in C or C++ or a related language such as Java) and some exposure
to the most basic concepts of discrete mathematics (sets, functions, binary re-
lations, sequences) and to the language of elementary logic (connectives and
quantifiers). It is intended to be only an introduction to software specifications,
not a systematic survey of requirements engineering, formal methods, compil-
ers, or computation theory suitable for a senior or graduate-level course. A
course based on this book would provide a good foundation for such courses
but should not replace them.

The contents may be summarized briefly as follows:

• specification, verification, and development of simple algorithms using
pre- and post-conditions and loop invariants;

• specification, verification, and development of simple data representa-
tions using abstract models and representation invariants; and

• specification and systematic development of recognizers for formal lan-
guages using regular expressions, grammars, and automata.

These techniques have been well studied and are sound and useful. They may
be presented to and immediately used by undergraduate students on sim-
ple but nontrivial examples. They may be taught without requiring upper-
level prerequisites or major investments of time to teach complex notations or
computer-based tools. But such material is not often presented at this level,
nor in this combination. To explain why I have written this book, I will briefly
describe its origins. Perhaps readers will recognize some similarities with the
situations at their institutions.

At Queens’s University, the undergraduate program in computer science
has for many years included the following final-year courses:

ix



x Preface

• a “theory” course: formal languages, automata, and elementary com-
plexity and computability theory;

• a “compilers” course: aspects of formal languages and automata relevant
to development of scanners and parsers, as well as other topics on com-
pilers such as symbol tables, code generation, and optimization;

• a “formal methods” course: various notations and tools for software
specification and validation.

But a few years ago a controversy arose about whether such courses should
be required of every graduating student. Some argued that every graduate of
our degree programs should know basic material on computability and com-
plexity, syntax analysis, and specification methods. But the instructors of the
courses complained that there was not enough time available to treat all the
material they thought should be covered and that many of the students were ill
prepared for material involving mathematical formalism. On the other hand,
many students were of the opinion that much of the material in these courses,
which they called “abstract theory,” had no practical relevance.

These issues were addressed by creating a new course. It was to be taken
in the second or third year of our program and was to cover “basic” material
formerly in the three final-year courses. The new course is now a prerequisite
to these three courses and also to a variety of other courses in our program,
including software engineering and foundations of programming languages.
The final-year courses are now selected as options by students who are inter-
ested in those particular subjects (subject to some “breadth” constraints).

This approach to curriculum design has had several benefits. The basic ma-
terial previously covered in the final-year courses is now required for almost all
graduating students, without forcing every student to study advanced special-
ized material in areas of little interest to them. The duplication of material on
formal languages and automata in the theory and compiler courses has been
avoided by moving basic material into the new course. The final-year courses
now have time to do advanced material, and the students in those courses are
better prepared and more motivated. Perhaps the most important benefit has
been that many students discover early in their programs that “theory” is actu-
ally useful because they now have an opportunity to apply mathematical rigor
to programming problems at their level of expertise.

The main difficulty in presenting a “nonstandard” course is in finding a
suitable text. Material on program and data specifications may be supported
by a number of specialized texts [Rey81, Bac86, Gor88, Dro89, LG00], and a
few books give an applications-oriented introductory presentation of formal-
language material [Gou88, AU92], in addition to many specialized books on
compilers; however, many of these books are now out of print, and a unified



Preface xi

treatment of the two bodies of material is clearly preferable. Also, students are
unhappy if less than half of the material is covered from each of two expensive
texts.

The present book, based on my lecture notes for the new course, addresses
these problems. The main pedagogical novelties would seem to be the follow-
ing:

• the hands-on and pragmatic approach to what is usually taught as theory,
or as abstract discussion of “large complex systems”;

• the way the material on formal languages has been integrated into a
specification-oriented framework by treating state diagrams, regular ex-
pressions, and context-free grammars as specialized specification lan-
guages: formalisms for specifying language recognizers.

Students seem to find this approach far more relevant and convincing than
traditional approaches to formal methods and formal languages. It must
be emphasized, however, that the material presented here is intended to be
only a prelude to, and not a replacement for, conventional compiler, theory-of-
computation, and software-engineering courses.

I have not provided an introductory survey of discrete mathematics and
logic on the assumption that students studying this material have recently
taken or are concurrently taking a course in basic concepts of discrete math-
ematics and logic and have available a suitable textbook that they will be able
to use as a reference. Some of the notation used here is superficially nonstan-
dard, such as the “C-like” bounded quantifiers described in Section 1.3.2, but
the concepts should be familiar.

The choice of a programming language to use for the examples was dif-
ficult. Java has become the most popular introductory language in com-
puter science programs, despite some rather serious deficiencies in this role
[BT97, AB+98, Gre]. But Java seems even less well suited to this material: it uses
reference assignment and reference equality for = and == on objects, it lacks
enum and (assignable) struct types, its scope rules and exception handling are
complex and intrusive, it lacks a standard library for straightforward textual
input, and simple algorithmic code doesn’t fit easily into its object-oriented
framework. Pascal and similar languages such as Modula, Ada, and Turing
might be the most appropriate for the material, but students these days find
the syntax strange and do not perceive them as being “practical” languages.

I decided to use a small fragment of C, with some simple use of C++ classes
when information hiding is needed. Students who have programmed in Java
or in another imperative language have very little difficulty reading and adapt-
ing simple C programs when unfamiliar idioms such as pointer arithmetic are
avoided, as they have been here.



xii Preface

I am grateful to Michael Norrish (University of Cambridge), David Gries
(University of Georgia), several anonymous reviewers, my Ph.D. student Dan
Ghica, and my colleagues Jürgen Dingel and David Skillicorn for comments on
draft versions of the material and to Tim Marchen and Tran Pham for program-
ming assistance. Any remaining errors are my responsibility.

I would be pleased to receive comments and corrections; these may be sent
to me at rdt@cs.queensu.ca. Errata will be posted here:

http://www.cs.queensu.ca/home/specsoft

R. D. T.
January 4, 2002

References

[AB+98] P. Andreae, R. Biddle, G. Dobbie, A. Gale, L. Miller, and E. Tempero.
Surprises in teaching CS1 with Java. Technical Report CS-TR-98/9,
Department of Computer Science, Victoria University, Wellington, New
Zealand, 1998.

[AU92] A. V. Aho and J. D. Ullman. Foundations of Computer Science. W. H. Freeman,
1992.

[Bac86] R. C. Backhouse. Program Construction and Verification. Prentice Hall
International, 1986.

[BT97] R. Biddle and E. Tempero. Learning Java: Promises and pitfalls. Technical
Report CS-TR-97/2, Department of Computer Science, Victoria University,
Wellington, New Zealand, 1997.

[Dro89] G. Dromey. Program Derivation: The Development of Programs from
Specifications. Addison-Wesley, 1989.

[Gor88] M. J. C. Gordon. Programming Language Theory and Its Implementation.
Prentice Hall International, 1988.

[Gou88] K. J. Gough. Syntax Analysis and Software Tools. Addison-Wesley, 1988.
[Gre] R. Green. Java gotchas. Available here:

http://www.mindprod.com/gotchas.html.
[LG00] B. Liskov and J. Guttag. Program Development in Java: Abstraction,

Specification, and Object-Oriented Design. Addison-Wesley, 2000.
[Rey81] J. C. Reynolds. The Craft of Programming. Prentice Hall International, 1981.


