
Explaining Software Defects Using Topic Models

Tse-Hsun Chen, Stephen W. Thomas, Meiyappan Nagappan, Ahmed E. Hassan

Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University, Canada

{tsehsun, sthomas, mei, ahmed}@cs.queensu.ca

Abstract—Researchers have proposed various metrics based
on measurable aspects of the source code entities (e.g., methods,
classes, files, or modules) and the social structure of a software
project in an effort to explain the relationships between soft-
ware development and software defects. However, these metrics
largely ignore the actual functionality, i.e., the conceptual
concerns, of a software system, which are the main technical
concepts that reflect the business logic or domain of the system.
For instance, while lines of code may be a good general measure
for defects, a large entity responsible for simple I/O tasks is
likely to have fewer defects than a small entity responsible for
complicated compiler implementation details. In this paper, we
study the effect of conceptual concerns on code quality. We use
a statistical topic modeling technique to approximate software
concerns as topics; we then propose various metrics on these
topics to help explain the defect-proneness (i.e., quality) of the
entities. Paramount to our proposed metrics is that they take
into account the defect history of each topic. Case studies on
multiple versions of Mozilla Firefox, Eclipse, and Mylyn show
that (i) some topics are much more defect-prone than others,
(ii) defect-prone topics tend to remain so over time, and (iii)
defect-prone topics provide additional explanatory power for
code quality over existing structural and historical metrics.

Keywords-software concerns; code quality; topic modeling

I. INTRODUCTION AND MOTIVATION

Code quality is an important issue in software engineering

because the cost of fixing software defects can be pro-

hibitively high [1]. As a result, researchers have tried to

uncover the possible reasons for software defects using dif-

ferent classes of software metrics, such as product metrics,

process metrics, and project metrics [2, Chapter 4] [3].

Indeed, such metrics have shown a certain success in ex-

plaining the defect-proneness of certain software entities

(e.g., methods, classes, files, or modules) [3]. However, these

classes of metrics do not take into account the actual con-

ceptual concerns of the software system—the main technical

concepts and business logic embedded with the entities [4].

Recent studies propose a new class of metrics based

on conceptual concerns [4]–[7]. These studies approximate

concerns using statistical topic models, such as latent Dirich-

let allocation [8]. Statistical topic models discover topics

(i.e., sets of related words) within the source code entities,

which researchers use as surrogates for conceptual concerns.

These studies provide initial evidence that topics in software

systems are related to the defect-proneness of source code

entities, opening a new perspective for explaining why some

entities are more defect-prone than others.

In this paper, we build on this line of research by

considering the defect history of topics, and propose a new

set of metrics based on this history. We study the effects of

our new topic metrics on code quality. We perform a detailed

case study on three large, real-world software systems, with

a focus on the following research questions.

RQ1: Are some topics more defect-prone than others?

We find that some topics, such as those related to

new features and the core functionality of a system,

have a much higher defect density than others.

RQ2: Do defect-prone topics remain defect-prone over

time?

We find that defect-prone topics remain so over

time, indicating that prior defect-proneness of a

topic can be used to explain the future behavior

of topics and their associated entities.

RQ3: Can our proposed topic metrics help explain

why some entities are more defect-prone than

others?

We find that including our proposed topic metrics

provides additional explanatory power about the

defect-proneness of entities over existing product

and process metrics.

The rest of this paper is organized as follows. In Sec-

tion II, we describe our approach to discover topics in source

code entities, and we define the topic metrics that we use to

answer our research questions. In Section III, we introduce

the subject systems that we study, and outline the design of

our case studies. We present our results in Section IV. We

discuss the potential threats to the validity of our case studies

in Section V, and describe related work in Section VI.

Finally, we conclude in Section VII.

II. PROPOSED APPROACH

In this section, we outline our approach to use topics to

explain defects. First, we briefly introduce topic modeling

and describe how it can be applied to source code entities

to approximate conceptual concerns. Next, we motivate and

describe our new topic metrics.

Top words

z1 os, cpu, memory, kernel

z2 network, speed, bandwidth

z3 button click mouse right

(a) Topics (Z).

z1 z2 z3

f1 0.3 0.7 0.0

f2 0.0 0.9 0.1

f3 0.5 0.0 0.5

(b) Topic memberships (θ).

Figure 1. Example topic model in which three topics are discovered from
three entities. (a) The three discovered topics (z1, ..., z3) are defined by
their top (i.e., highest probable) words. (b) The three original source code
entities (f1, ..., f3) are represented by a topic membership vector.

A. Topic Modeling

Our goal is to determine which concerns are in each

source code entity. This information is often not easily

available, since developers do not often manually categorize

each entity [6]. In this paper, we approximate concerns

using statistical topics, following the work of previous

research [6], [9], [10]. In particular, we extract the linguistic

data from each source code entity, i.e., the identifier names

and comments, which helps to determine the functionality of

the entity [11]. We then treat the linguistic data as a corpus

of textual documents, which we use as a basis for topic

modeling.

In topic modeling, a topic is a collection of frequently

co-occurring words in the corpus. Given a corpus of n doc-

uments f1, ..., fn, topic modeling techniques automatically

discover a set Z of topics, Z = {z1, ..., zK}, as well as the

mapping θ between topics and documents (see Figure 1).

The number of topics, K, is an input that controls the

granularity of the topics. We use the notation θij to describe

the topic membership value of topic zi in document fj .

Intuitively, the top words of a topic are semantically

related and represent some real-world concept. For example,

in Figure 1a, the three topics represent the concepts of

“operating systems,” “computer networks,” and “user input.”

The topic membership of a document then describes which

concepts are present in that document: document f1 is 30%

about operating systems and 70% about computer networks.

More formally, each topic is defined by a probability

distribution over all of the unique words in the corpus. Given

two Dirichlet priors, α and β, a topic model will generate

a topic distribution θj for fj based on α, and generate a

word distribution φi for zi based on β. Choosing the right

parameter values for K, α, and β is more of an art than

a science, and depends on the size of the corpus and the

desired granularity of the topics [12].

B. Proposed Topic Metrics

To help explain the defect-proneness of source code

entities, we propose two categories of topic metrics: static

and historical. Static topic metrics use only a single snapshot

of the software system, while historical metrics use the

defect history of topics. In the formulation of our topic

metrics, we also consider traditional software metrics:

• LOC(fj) The lines of code of entity fj .

• PRE(fj) The number of pre-release defects of entity fj ,

which are those defects related to fj up to six months

before a given version.

• POST(fj) The number of post-release defects of entity

fj , which are those defects found up to six months after

a given version.

Using these software metrics and the results of topic mod-

eling, we propose the following topic metrics.

1) Topic Defect Density: The defect density of a source

code entity is a well-known software metric, defined as the

ratio of the number of defects in the entity to its size. Using

this ratio as motivation, we define the pre-release defect

density (DPRE) of a topic zi as

DPRE(zi) =

n
∑

j=1

θij ∗

(

PRE(fj)

LOC(fj)

)

, (1)

where n is the total number of source code entities and θij
is the topic membership of topic zi in source code entity fj .

Similarly, we define post-release defect density (DPOST) of

a topic zi as

DPOST(zi) =

n
∑

j=1

θij ∗

(

POST(fj)

LOC(fj)

)

. (2)

Since the topic membership value represents the proba-

bility that a source code entity belongs to a certain topic,

the topic defect density represents the possible number of

defects in the topic per line of code across all entities that

contain the topic.

2) Static Metrics: We propose static metrics to capture

the number of topics an entity contains, and the topic

membership of each entity. We define the Number of Topics

(NT) of an entity fj as

NT(fj) =
K
∑

i=1

I(θij ≥ δ) (3)

where I is the indicator function that returns 1 if its

argument is true, and 0 otherwise. δ is a cut-off threshold

that determines if a topic plays an important role in a given

entity. The NT metric measures the level of cohesion in an

entity: entities with a large number of topics may be poorly

designed or implemented, and thus may have higher chances

to have defects [4].

We define the Topic Membership (TM) of an entity fj as

the topic membership values returned by the topic modeling

technique:

TM(fj) = θj . (4)

The intuition behind this metric is that we assume different

topics have different effects on the defect-proneness of an

entity. Some topics (e.g., a compiler-related topic) may

����������

����������

����������

�	

��

�

��

�

�

�������
�����������

�����������
	�
�������

������������

Figure 2. Process of calculating topic metrics. After preprocessing the source code, we run LDA on all versions of the source code entities together.
Using the topics and topic memberships that LDA returns, we calculate the topic metrics.

increase the defect-proneness of an entity, but other topics

(e.g., an I/O-related topic) may actually decrease the defect-

proneness. By using all the topic membership values, the

TM metric captures the full behavior of an entity.

3) Historical Metrics: We extend the static metrics by

considering the defect history of each topic. In order to

calculate the number of defect-prone topics in an entity, we

define a defect-prone topic as a topic that has more defects

than the average of all topics. The set of defect-prone topics,

B, is defined by

B = {zi ∈ Z s.t. DPRE(zi) > µ(DPRE(Z))}, (5)

where µ(DPRE(Z)) is the mean of the topic defect densities

of all topics.

We define the Number of Defect-prone Topics (NDT) in

entity fj by

NDT(fj) =
K
∑

i=1

I((zi ∈ B) ∧ ((θij) ≥ δ)). (6)

We define the Defect-prone Topic Membership (DTM)

metric of entity fj as the topic memberships of defect-prone

topics:

DTM(fj) = θij where zi ∈ B. (7)

DTM is the same as TM, except it only contains the topic

memberships of defect-prone topics.

III. CASE STUDY DESIGN

In this section, we introduce the subject systems that we

use for our case study and we describe our analysis process,

depicted in Figure 2.

A. Subject Systems

We focus on three large, real-world subject systems:

Mylyn, Eclipse, and Firefox (Table I). For each system,

we look at three different versions (versions 1.0, 2.0, and

3.0 of Mylyn, versions 2.0, 2.1, and 3.0 of Eclipse, and

versions 1.0, 1.5, and 2.0 of Firefox). Eclipse is a popular

IDE, which has an extensive plugin architecture. Mylyn

is a popular plugin for Eclipse that implements a task

management system. Firefox is a well-known open source

web browser that is used by millions of users.

Table I
STATISTICS OF THE SUBJECT SYSTEMS.

Total lines No. of Pre-release Post-release Programming
of code (K) files defects defects language

Mylyn 1.0 161 1,917 1,142 775 Java
Mylyn 2.0 198 3,710 2,504 1,206 Java
Mylyn 3.0 245 1,521 2,616 624 Java

Firefox 1.0 3,008 5,862 642 457 C
Firefox 1.5 3,329 6,322 721 960 C
Firefox 2.0 3,447 6,468 1,151 456 C

Eclipse 2.0 800 6,729 7,635 1,692 Java
Eclipse 2.1 988 7,888 4,975 1,182 Java
Eclipse 3.0 1,306 10,593 7,422 2,679 Java

B. Data Preprocessing

The source code entities that we use in this paper are at

the granularity level of source code files. We first collect

the source code entities from each version of each subject

system, and then preprocess the entities using the prepro-

cessing steps proposed by Kuhn et al. [11]. Namely, we

first extract comments and identifier names from each entity.

Next, we split the identifier names according to common

naming conventions, such as camel case and underscores.

Finally, we stem the words and remove common English-

language stop words.

C. Topic Modeling

We use a popular topic modeling technique called latent

Dirichlet allocation (LDA) [8]. (We note that other topic

models can be used.) We choose LDA because LDA is a

generative statistical model, which helps to alleviate model

overfitting, compared to other topic models such as Prob-

abilistic LSI [13]. In addition, LDA has been shown to

be effective for a variety of software engineering purposes,

including analyzing source code evolution [14], calculating

source code metrics [15], and recovering traceability links

between source code and requirements documents [16].

Finally, LDA is fast and can easily scale to millions of

documents.

We apply LDA to all versions of the preprocessed entities

of a system at the same time, an approach proposed by

Table II
FIVE-NUMBER SUMMARY AND SKEWNESS OF DEFECT DENSITIES OF

ALL SUBJECT SYSTEMS. THE DEFECT DENSITIES ARE HIGHLY SKEWED,
AND MOST OF THE TOPICS HAVE A DENSITY VALUE CLOSE TO ZERO.

Min. 1st Qu. Median 3rd Qu. Max. Skewness

Mylyn 1.0 0.00 0.00 0.00 0.01 0.33 7.18
Mylyn 2.0 0.00 0.00 0.01 0.02 0.50 7.41
Mylyn 3.0 0.00 0.00 0.00 0.01 0.18 6.00

Eclipse 2.0 0.00 0.00 0.01 0.03 1.66 13.28
Eclipse 2.1 0.00 0.00 0.01 0.03 1.16 7.92
Eclipse 3.0 0.00 0.01 0.02 0.06 1.25 4.90

Firefox 1.0 0.00 0.00 0.00 0.00 0.07 6.44
Firefox 1.5 0.00 0.00 0.00 0.00 0.09 5.88
Firefox 2.0 0.00 0.00 0.00 0.00 0.07 7.96

Linstead et al. [7]. For this study, we use K=500 topics for

all subject systems. Lukins et al. found that 500 topics is a

good number for Eclipse and Mozilla [17], and we also feel

this is a reasonable choice for Mylyn. Section V discusses

this choice further.

We use MALLET [18] as our LDA implementation, which

uses Gibbs sampling to approximate the joint distribution of

topics and words. We run MALLET with 10,000 sampling

iterations, and use the parameter optimization in the tool

to optimize α and β. In addition, we build the topics using

both unigrams (single words) and bigrams (pairs of adjacent

words), since bigrams help to improve the performance for

word assignments in topic modeling [19].

We set the membership threshold δ in Equations 3 and 6

to 1%. This value prevents topics with small, insignificant

memberships in an entity from being counted in that entity’s

metrics.

IV. CASE STUDY RESULTS

In this section, we present the results of our case study.

We present each research question with three sections: the

approach we used to address the question; our experimental

results; and a discussion of the results.

RQ1: Are some topics more defect-prone than other topics?

Approach: We use Equation 2 to calculate the topic defect

density (DPOST) for each topic in the software system. We

visualize the distribution of defect densities using box plots,

and we provide a table of the five number summary and

skewness of the densities. We then perform Kolmogorov-

Smirnov non-uniformity tests to statistically determine if

there is a significant difference between the defect densities

of the various topics.

Results: The box plots of the density values of each

software system are shown in Figure 3. Box plots show

outliers and the five-number summary of the data (mini-

mum, first quartile, median, third quartile, maximum). The

Mylyn 1.0 Mylyn 2.0 Mylyn 3.0

0
.0

0
.2

0
.4

D
ef

ec
t

D
en

si
ty

 (
D

P
O

S
T
)

Firefox 1.0 Firefox 1.5 Firefox 2.0

0
.0

0
0

.0
4

0
.0

8

D
ef

ec
t

D
en

si
ty

 (
D

P
O

S
T
)

Eclipse 2.0 Eclipse 2.1 Eclipse 3.0

0
.0

0
.5

1
.0

1
.5

D
ef

ec
t

D
en

si
ty

 (
D

P
O

S
T
)

Figure 3. Box plots of the topic defect density of three versions of Mylyn,
Firefox, and Eclipse. The y-axis represent the topic defect density.

actual values of the five-number summary and skewness

of the defect densities is shown in Table IV. The outliers

in Figure 3 are the defect-prone topics, which indicate

that some topics have much higher defect densities than

others. Table IV further indicates that most topics have a

low (almost zero) defect density value, and the values are

significantly postively skewed.

The number of topics and defect-prone topics for each

system is consistent across versions (Table III). We find

that Mylyn has more defect-prone topics than the other

two systems, while Firefox has the least number of defect-

prone topics. In addition, Eclipse has the highest mean defect

density among three systems.

Finally, we apply the Kolmogorov-Smirnov test on the

topic defect density values of each version of each subject

system to verify the non-uniformity illustrated by our vi-

sualizations. If the p-value computed using Kolmogorov-

Smirnov test is high, then the data is more likely to be

uniformly distributed. However, we find that the p-values

for all systems are significantly small (< 0.001), indicating

Table III
FOR EACH SYSTEM, WE SHOW THE MEAN DEFECT DENSITY VALUE

ACROSS ALL TOPICS (µ(DPOST)), THE NUMBER AND PERCENTAGE OF

DEFECT-PRONE TOPICS (NDT), THE MEDIAN NUMBER OF TOPICS IN

EACH ENTITY (MED. NT), AND THE MEDIAN NUMBER OF

DEFECT-PRONE TOPICS IN EACH ENTITY (MED NDT).

K µ(DPOST) NDT Med. (NT) Med. (NDT)

Mylyn 1.0 500 0.01 139 (27.8%) 9 7
Mylyn 2.0 500 0.02 137 (27.4%) 9 7
Mylyn 3.0 500 0.01 128 (25.6%) 9 7

Eclipse 2.0 500 0.03 122 (24.4%) 9 5
Eclipse 2.1 500 0.03 124 (24.8%) 9 5
Eclipse 3.0 500 0.06 136 (27.2%) 10 6

Firefox 1.0 500 0.00 106 (21.2%) 5 3
Firefox 1.5 500 0.00 111 (22.2%) 5 3
Firefox 2.0 500 0.00 82 (16.4%) 5 2

that the distribution of defect density values is indeed not

uniform [20].

Discussion: To better understand why some topics are

more defect-prone than others, we investigated the relevant

words of the top three most and least defect-prone topics

(Table IV).

Mylyn (previously known as Mylar) is an Eclipse plugin

for task management. We find that the topics with the

highest defect densities are (i) those dealing with the Eclipse

integration (topic 421), likely because the Eclipse plugin

API changes so often; (ii) those that are related to the core

functionality of the system, i.e., tasks and the task UI (topics

164 and 168); and (iii) those dealing with the test suite of

Mylyn (topic 400), likely because of adding test cases for

new defect fixes.

On the other hand, the least defect-prone topics deal

with images and color (topics 405 and 178) and data

compression (topic 175). We postulate that the logic behind

these functions may be simpler and better defined than that

of the core functionality topics.

Regarding Eclipse, two of the most defect-prone topics

(topics 496 and 492) in Eclipse 2.0 are about CVS plug-ins.

The build notes for this release indicate that the plug-ins

supporting CVS-related functionalities were first introduced

in this version, making it an active area of development.

(In fact, according to Eclipse’s defect repository, 17 defects

relating to CVS remained unfixed after the 2.0 release.) A

similar story holds for Eclipse 2.1, when integration for the

Apache Ant build system was actively developed, leading to

many defects in topic 131.

Another set of defect-prone topics in Eclipse deals with

low-level details such as memory operations and message

passing (topics 462, 169, and 233). We hypothesize that the

logic needed to implement these topics are more complex,

leading to more defects.

The least defect-prone topics in Eclipse include those

about bit-wise operations (topic 116), arrays (topic 182),

and parameter parsing (topic 192). One reason that these

might contain fewer defects is that errors in these topics may

be observed during run time (e.g., ”array out-of-bounds”)

and are thus more easily detected by developers during the

testing phase of the project.

One of the most defect-prone topics in Firefox 1.0 and

1.5 deals with event handing (topic 101), which is respon-

sible for dispatching events according to network protocol

responses. The topic is likely more defect-prone because

the network stack has been modified several times to enable

the dynamic re-rendering of complex webpages as they are

being loaded.

Another defect-prone topic in Firefox 2.0 deals with

accessing saved states (topic 80). The release notes for this

version indicate that new features were introduced that allow

the browser to restore previous sessions, and that the tabbed

browsing functionality is updated.

Scanner Access Now Easy (SANE), an API that enables

a scanner/digital camera application to be created with

JavaScript, is one of the least defect-prone topics in all

versions of Firefox (topic 280). Another topic that is not

defect-prone deals with Base64 encoding (topic 359—the

characters are segments of encoded characters), a known

character standard.

RQ2: Do defect-prone topics remain defect-prone over

time?

Approach: In RQ1, we found that some topics are more

defect-prone than other topics. In order to verify that these

topics are consistently defect-prone over time, we compute

the Spearman correlation of the topic defect density values

among different versions. By ranking the density values

and computing correlation on the ranks, Spearman rank

correlation is able to account for skewed distributions.

Results and Discussion: Table V shows the correlation

among different versions of a system. The correlation values

are consistently medium to high between different versions,

which indicates that a defect-prone topic is still likely to be

defect-prone in the later versions. We also see evidence of

this in Table IV, as several of the top defect-prone topics

are listed for each of the versions of a software system.

Therefore, it would be better to allocate more testing

resources to previously-identified defect-prone topics, as

they are likely to remain defect-prone in later releases.

RQ 3: Can our proposed topic metrics help explain why

some entities are more defect-prone than others?

In this research question, we examine how much more

deviance in post-release defects our topic metrics can ex-

plain, with respect to traditional baseline metrics. This type

of analysis allows us verify our empirical theory that topic

metrics provide additional explanatory power.

Table IV
TOP WORDS AND DEFECT DENSITIES OF THE MOST/LEAST

DEFECT-PRONE TOPICS IN OUR SUTS.

Most Defect Prone Least Defect Prone

Top words Density Top words Density

Mylyn 1.0

421 mylar, eclips, eclips mylar, 0.334 405 src, dest, base, <0.001
mylar intern, mylar task imag, fragment, imag pattern

164 task, list, task list, 0.182 178 lower color, part, put light <0.001
task ui, ui, plugin green lower, jface, medium

400 test, suit, test suit, 0.180 175 monitor, gzip, configur, <0.001
add test, add, suit add key, bugzilla attribut, iter

Mylyn 2.0

143 task, eclips, eclips mylyn, 0.502 405 src, dest, base, <0.001
mylyn, ui, task ui imag, fragment, imag pattern

457 eclips, mylyn, eclips mylyn, 0.244 178 lower color, part, put light, <0.001
intern, mylyn intern, core green lower, jface, medium

164 task, list, task list 0.207 175 monitor, gzip, configur, <0.001
task ui, ui, plugin key, bugzilla attribut, iter

Mylyn 3.0

143 task, eclips, eclips mylyn, 0.181 178 lower color, part, put light, <0.001
mylyn, ui, task ui green lower, jface, medium

457 eclips, mylyn, eclips mylyn, 0.111 310 aa, comparison check, comparison, <0.001
intern, mylyn intern, core check, check aa, aa comparison

168 repositori, task repositori, 0.092 6 select, caller, calle, <0.001
task core, repositori editor, part, foo

Most Defect Prone Least Defect Prone
Top words Density Top words Density

Eclipse 2.0

174 express, method, declar, 1.663 116 0xff, 0xff 0xff, src, <0.001
ast, node, astnod dst, 0xa, 0xf

496 option, local, seccion, 0.691 146 printer, data, printer data, <0.001
folder, ccv core, local option code, error, dispos

492 team, eclips team, eclips, 0.325 316 run, line, offset, <0.001
ccv, intern ccv, team intern style, length, item

Eclipse 2.1

143 form, toolkit, dfm, 1.164 192 arg, vtbl, arg arg, <0.001
nfm, ui, eclips ui guid, iidfrom, system

131 ant, eclips, task, 0.779 325 token, scribe, align, <0.001
eclips ant, ui, intern print, scribe print, space

233 bundl, recourc, resourc bundl, 0.572 116 0xff, 0xff 0xff, src, <0.001
kei, bundl resourc, messag dst, 0xa, 0xf

Eclipse 3.0

462 memori, block,render, 1.247 330 packet, print, id, <0.001
memori block, view, address command, stream, spy

169 transfer,data,code, 0.708 182 array, constant, array dim, <0.001
transfer data, java, object dim, pixbuf, paramet

131 ant, eclips, task, 0.700 270 pt, ph, pt arg, <0.001
eclips ant, ui, intern arg, pg, wm

Most Defect Prone Least Defect Prone
Top words Density Top words Density

Firefox 1.0

462 list, val, isvgvalu, 0.067 359 ghhd, sbz yxkgd, yxkgd, <0.001
modifi, observ, imethodimp sbz, yxkgd ghhd, vghle sbz

381 frame, svgframe, comptr, 0.038 280 sane, plugin, zoom, <0.001
queri, kid, add sane plugin, instanc, error

101 rv, rv rv, comptr, 0.038 361 child, border, spec, <0.001
nsresult, fail, fail rv num, color, col

Firefox 1.5

305 elem, rv, length, 0.088 359 ghhd, sbz yxkgd, yxkgd, <0.001
map, rv rv, comptr sbz, yxkgd ghhd, vghle sbz

413 xform, elem, model, 0.087 280 sane, plugin, zoom, <0.001
wrapper, instanc, xform xpath sane plugin, instanc, error

101 rv, rv rv, comptr, 0.078 335 ck, rv, pr, <0.001
nsresult, fail, fail rv log, modlog, log modlog

Firefox 2.0

168 param, info, pruint, 0.071 359 ghhd, sbz yxkgd, yxkgd, <0.001
xpttype, val, count sbz, yxkgd ghhd, vghle sbz

305 elem, rv, length, 0.061 100 frame, pfd, span, <0.001
map, rv rv, comptr psd, width, line

80 access, state, retval, 0.048 280 sane, plugin, zoom, <0.001
shell, node, comptr sane plugin, instanc, error

Table V
SPEARMAN CORRELATION COEFFICIENTS OF EACH TOPIC’S DEFECT

DENSITY ACROSS SOFTWARE VERSIONS.

Mylyn 1.0 Mylyn 2.0 Mylyn 3.0

Mylyn 1.0 1.000 – –
Mylyn 2.0 0.673 1.000 –
Mylyn 3.0 0.483 0.493 1.000

Eclipse 2.0 Eclipse 2.1 Eclipse 3.0

Eclipse 2.0 1.000 – –
Eclipse 2.1 0.529 1.000 –
Eclipse 3.0 0.438 0.530 1.000

Firefox 1.0 Firefox 1.5 Firefox 2.0

Firefox 1.0 1.000 – –
Firefox 1.5 0.536 1.000 –
Firefox 2.0 0.473 0.564 1.000

Approach: As previously mentioned, software metrics

can be classified as static or historical. Static metrics, such

as lines of code (LOC), are obtained from a single snapshot

of the system [21]. On the other hand, historical metrics

require past information about the system, and include pre-

release defects (PRE) and code churn (i.e, changes to the

code) [22]. As such, in this research question, we build two

sets of models: those based on static metrics, and those based

on historical metrics. For a baseline static metric, we choose

LOC, because LOC is a good general software metric and

has been used for benchmarking [23], [24]. For baseline

historical metrics, we choose PRE and code churn because

they are a good measurement for defects [25], [26], and

have also been used as a baseline model for comparing

metrics [22].

Our goal here is not to predict post-release defects. In-

stead, we want to see how much improvement on explaining

deviance (i.e., model fitness) in defects our topic metrics can

bring to the baseline metrics.

We use logistic regression with post-release defects as

our dependent variable, and report the percent deviance ex-

plained (D2) for each combination of independent variables

(i.e., metric combinations). (To eliminate any skew in the

metric values, we apply a log transformation on the metrics.)

Here, the D2 measure is similar to the adjusted R2 measure

in linear regression, except that D2 quantifies how much

deviance a logistic regression model can explain. A higher

D2 value generally indicates a better model fit, but when

the number of independent variables is large, D2 may not

be a good measure. As the number of independent variables

increases, D2 will always increase regardless of the quality

of the model. Thus, we also use another measure called

the Akaike information criterion (AIC). AIC can be used

to compare the fitness of different models, and it penalizes

more complex models [27] [28]. Models with lower AIC

scores are better.

Recall that by the definition of our TM and DTM metrics

(Equations 4 and 7), each metric will produce many values

for each entity (K values in the case of TM, and |B| values

in the case of DTM). To avoid the problems of overfitting

and multicollinearity, we use Principal Component Analysis

(PCA) to reduce the dimensionality of the metrics [29].

PCA transforms the data into a smaller set of uncorrelated

variables while still capturing the patterns of the original

data [29]. We choose the principal components (PCs) until

either 90% of the variances are explained, or when the

increase in variance explained by adding a new PC is less

than the mean variance explained of all PCs.

We perform stepwise regression on the PCs of TM and

DTM metrics to make our model more robust [30] [31].

Stepwise regression is a variable selection technique, which

adds or removes variables to the model according to some

criteria, which, in this paper, we choose to use the AIC score.

Results: We present the results in Tables VI and VII.

Table VI shows the results for static metrics. We find that

adding NT gives a significant improvement in the deviance

explained. All models, except Firefox 2.0, have statistically

significant (p-value ≤ 0.05) improvement when NT is added

to the model. In all the versions of Mylyn and Firefox, NT

gives at least 18% increase in D2. However, we find that

the performance of NT is not as high in Eclipse.

Both TM and DTM, on the other hand, give significant

improvements in all three subject systems. We find that the

TM metric improves the deviance explained by 61–162%,

compared to the baseline model.

Table VII shows the results for historical metrics. We find

that NDT gives a promising improvement in D2 over the

base model. This implies that topics with high pre-release

defects are more likely to have post-release defects, and

having more defect-prone topics will have negative effects

on the code quality. The improvement of NDT is not as

large for Eclipse 2.1 and 3.0. However, the improvements

achieved by the DTM metric are consistent across all ver-

sions of all systems. We find that, overall, DTM improves

the explanatory power over the baseline model by 22–76%.

Discussion: One possible explanation as to why the

improvement of NDT in Eclipse is not as high as in the

other systems is because topics in Eclipse have higher defect

density (Table III). Since more topics are defect-prone, the

overall explanatory power of NDT decreases. On the other

hand, DTM contains a more general information about all

the defect-prone topics, which better explains defects.

To see the effects of NT and NDT in our logistic re-

gression models, Table VIII shows the average coefficients

of these metrics across the three versions of each subject

system. Both NT and NDT have positive coefficients in all

the subject systems, which implies that as the number of

topics or defect-prone topics increases, an entity will have

Table VIII
AVERAGE VALUE OF THE REGRESSION COEFFICIENTS OF NT AND NDT

METRICS.

Mylyn Firefox Eclipse

NT 1.73 1.26 0.06
NDT 1.71 0.85 0.24

higher chances to be defect-prone. However, the coefficients

of NDT in Firefox and Eclipse, and NT in Eclipse are

smaller than one, which means the effects are minor.

Our findings show that the number of topics in an entity

has a strong relationship with defects, and entities having

more defect-prone topics will more likely to be defect-prone.

V. THREATS TO VALIDITY

A. Parameter and Threshold Choices

The choice of the optimal number of topics in LDA is a

difficult task [12], [32]. Although we use the guidance of a

previous study to inform our choices [17], we still cannot be

sure that our results are optimal. To alleviate this concern,

we investigated two additional values of K, namely K=50

and K=250. We found our overall results to be comparable

to K=500, suggesting that our approach is not particularly

sensitive to the exact number of topics.

We set our δ threshold to 1%, so topics with a membership

value less than 1% will be filtered out. However, further

analysis is required to understand the effect of δ on the

results of our study.

Additionally, we choose PCs until either 90% of variances

are explained or the increase in variance explained by the

next PC is less than the mean of the variance explained by

all PCs. These thresholds may also affect the result, and

different numbers may give slightly different results.

B. Choosing Baseline Metrics

Our goal is to examine the improvement in the explana-

tory power of topics over traditional static and historical

metrics. Since topics are derived from the source code

entities and can also be combined with pre-release defects to

discover defect-prone topics, we examine the improvement

on static and historical metrics separately. It is possible to

combine different topics metrics, such as NT and NDT, in

our defect explanation models. However, we leave the full

investigation of all possible metric combinations to future

work.

VI. RELATED WORK

Recently, many researchers used topic modeling tech-

niques to understand software systems from a different point

of view than from the traditional structural and historical

views. For example, Kuhn et al. used Latent Semantic

Indexing (LSI) to cluster the entities in a software system

Table VI
D2 IMPROVEMENT AND AIC SCORES FOR STATIC SOFTWARE METRICS. NUMBERS IN THE PARENTHESES ARE THE D2 IMPROVEMENT OR AIC SCORE

DECREASEMENT IN PERCENTAGE OF THE BASE MODEL. THE BEST MODEL OF EACH VERSION OF THE SOFTWARE IS MARKED IN BOLD. NT IS

STATISTICALLY SIGNIFICANT IN ALL SYSTEMS EXCEPT FIREFOX 2.0.

Mylyn 1.0 Mylyn 2.0 Mylyn 3.0

Model D2 AIC D2 AIC D2 AIC

Base(LOC) 0.09 1047.36 0.14 1078.35 0.13 1159.74
Base+NT 0.14 (+56%) 990.85 (-5%) 0.19 (+36%) 1020.46 (-5%) 0.20 (+54%) 1071.71 (-8%)
Base+TM 0.21 (+133%) 957.83 (-9%) 0.27 (+93%) 956.73 (-11%) 0.34 (+162%) 949.17 (-18%)

Firefox 1.0 Firefox 1.5 Firefox 2.0

Model D2 AIC D2 AIC D2 AIC

Base(LOC) 0.12 2374.85 0.15 3474.84 0.14 2224.76
Base+NT 0.16 (+33%) 2256.41 (-5%) 0.21 (+40%) 3241.09 (-7%) 0.17 (+18%) 2152.19 (-3%)
Base+TM 0.20 (+67%) 2168.37 (-9%) 0.28 (+87%) 2969.09 (-15%) 0.24 (+71%) 1973.27 (-11%)

Eclipse 2.0 Eclipse 2.1 Eclipse 3.0

Model D2 AIC D2 AIC D2 AIC

Base(LOC) 0.18 4584.26 0.11 4804.87 0.14 7591.93
Base+NT 0.18 (+0%) 4575.72 (-0%) 0.11 (+0%) 4793.48 (-0%) 0.14 (+0%) 7589.50 (-0%)
Base+TM 0.29 (+61%) 4003.58 (-13%) 0.19 (+73%) 4401.56 (-8%) 0.24 (+71%) 6800.06 (-10%)

Table VII
D2 IMPROVEMENT AND AIC SCORES FOR HISTORICAL SOFTWARE METRICS. NUMBERS IN THE PARENTHESES ARE THE D2 IMPROVEMENT OR AIC

SCORE DECREASEMENT IN PERCENTAGE OF THE BASE MODEL. THE BEST MODEL OF EACH VERSION OF THE SOFTWARE IS MARKED IN BOLD. NDT IS

STATISTICALLY SIGNIFICANT IN ALL SYSTEMS EXCEPT MYLYN 3.0, ECLIPSE 2.1, AND ECLIPSE 3.0.

Mylyn 1.0 Mylyn 2.0 Mylyn 3.0

Model D2 AIC D2 AIC D2 AIC

Base(PRE+Churn) 0.21 917.38 0.22 987.04 0.28 957.31
Base+NDT 0.24 (+14%) 885.72 (-3%) 0.23 (+4%) 971.01 (-2%) 0.29 (+4%) 955.98 (-0%)
Base+DTM 0.30 (+43%) 824.24 (-10%) 0.34 (+55%) 882.19 (-11%) 0.36 (+29%) 909.83 (-5%)

Firefox 1.0 Firefox 1.5 Firefox 2.0

Model D2 AIC D2 AIC D2 AIC

Base(PRE+Churn) 0.14 2299.70 0.20 3255.54 0.23 2008.67
Base+NDT 0.18 (+29%) 2204.47 (-4%) 0.25 (+25%) 3081.35 (-5%) 0.25 (+9%) 1951.41 (-3%)
Base+DTM 0.20 (+43%) 2152.08 (-6%) 0.27 (+35%) 3005.55 (-8%) 0.28 (+22%) 1892.53 (-6%)

Eclipse 2.0 Eclipse 2.1 Eclipse 3.0

Model D2 AIC D2 AIC D2 AIC

Base(PRE+Churn) 0.17 4605.37 0.15 4586.50 0.17 7310.04
Base+NDT 0.20 (+18%) 4477.51 (-3%) 0.15 (+0%) 4586.19 (-0%) 0.17 (+0%) 7309.30 (-0%)
Base+DTM 0.30 (+76%) 3930.40 (-15%) 0.19 (+27%) 4366.09 (-5%) 0.24 (+41%) 6729.03 (-8%)

according to the similarity of word usage [11]. Maskeri et

al. were the first to apply LDA to source code to uncover its

conceptual concerns [6]. Linstead et al. and Thomas et al.

used topics to study the evolution of concerns in the source

code [7], [10], [33].

Other uses of topic models in software engineering tasks

include concept location [17], [34]–[37], traceability link re-

covering [16], and building source code search engines [38].

A few recent studies have tried to establish a link between

topics and defects. For example, Liu et al. propose a new

metric, called Maximal Weighted Entropy (MWE) [4], to

measure the level of cohesion in a software system. MWE,

for each topic, captures the topic occupancy and distribution

of each entity, i.e., how many different topics an entity

contains. While this metric focuses on the cohesiveness of

topics in an entity, our proposed metrics focus on the defect-

prone topics in an entity.

Nguyen et al. use LDA to predict defects [5]. The authors

first apply LDA to the subject systems using K=5 topics,

and for each source code entity they multiply the topic

memberships by the entity’s LOC. As a result, the authors

obtain five topic variables for each entity, and use these

variables to build a prediction model. In this way, the authors

provide initial evidence, that it is possible to explain defects

using topic metrics. In this paper, we are interested in

explaining defects while also controlling for the standard

defect explainers, i.e., LOC, churn, and pre-release defects.

In addition, we consider a larger number of topics in order

to capture more accurate and detailed conceptual concerns.

We use PCA to extract the most effective topics and avoid

the possible problem of multicollinearity and minimize the

effects of overfitting.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have endeavored to understand the

relationship between the conceptual concerns in source

code entities, i.e., their technical content, with their defect-

proneness. To do so, we approximated the concerns in each

entity with statistical topics, and proposed new metrics on

these topics. In particular, we considered the defect history

of each topic, which we hypothesized would help our metrics

to better explain the defect-proneness of the entities.

To evaluate our new metrics, we performed a detailed case

study on three large, real-world systems: Mylyn, Mozilla

Firefox, and Eclipse. The highlights of our analysis include:

• Some topics are much more defect-prone than others.

• A topic’s defect-proneness holds over time.

• The more topics an entity has, the higher the chances

it has defects.

• The more defect-prone topics an entity has, even higher

are the chances that it has defects.

• Our proposed topic metrics provide better explanatory

power for defect-proneness over existing static (i.e.,

LOC) and historical (i.e., churn) metrics, suggesting

they provide additional information about the quality

of the code. Further study should consider using such

metrics alongside traditional metrics for building defect

prediction models.

In future work, we plan to combine our proposed topic

metrics with existing topic metrics [4], [5], [10] to under-

stand their accuracy in predicting future defects. Addition-

ally, we plan to consider using other information sources,

such as defect reports or mailing lists, to help explain

defects.

REFERENCES

[1] S. A. Slaughter, D. E. Harter, and M. S. Krishnan, “Evaluating
the cost of software quality,” Communications of the ACM,
vol. 41, pp. 67–73, August 1998.

[2] S. H. Kan, Metrics and Models in Software Quality Engineer-
ing, 2nd ed. Addison-Wesley Longman Publishing Co., Inc.,
2002.

[3] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic review of fault prediction performance in software
engineering,” IEEE Transactions on Software Engineering,
vol. PP, no. 99, 2011.

[4] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimothy, and
N. Chrisochoides, “Modeling class cohesion as mixtures
of latent topics,” in Proceedings of the 25th International
Conference on Software Maintenance, 2009, pp. 233 –242.

[5] T. T. Nguyen, T. N. Nguyen, and T. M. Phuong, “Topic-based
defect prediction,” in Proceedings of the 33rd International
Conference on Software Engineering, 2011, pp. 932–935.

[6] G. Maskeri, S. Sarkar, and K. Heafield, “Mining business
topics in source code using latent Dirichlet allocation,” in
Proceedings of the 1st India Software Engineering Confer-
ence, 2008, pp. 113–120.

[7] E. Linstead, C. Lopes, and P. Baldi, “An application of
latent Dirichlet allocation to analyzing software evolution,” in
Proceedings of Seventh International Conference on Machine
Learning and Applications, 2008, pp. 813–818.

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet
allocation,” Journal of Machine Learning Research, vol. 3,
pp. 993–1022, Mar. 2003.

[9] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya,
“A theory of aspects as latent topics,” in Proceedings of
the 23rd ACM SIGPLAN Conference on Object-oriented
Programming Systems Languages and Applications, 2008, pp.
543–562.

[10] S. Thomas, B. Adams, A. Hassan, and D. Blostein, “Vali-
dating the use of topic models for software evolution,” in
Proceedings of the 10th International Working Conference on
Source Code Analysis and Manipulation, 2010, pp. 55–64.

[11] A. Kuhn, S. Ducasse, and T. Gı́rba, “Semantic clustering:
Identifying topics in source code,” Information and Software
Technology, vol. 49, pp. 230–243, March 2007.

[12] H. Wallach, D. Mimno, and A. McCallum, “Rethinking LDA:
Why priors matter,” Proceedings of NIPS-09, Vancouver, BC,
2009.

[13] T. Hofmann, “Probabilistic Latent Semantic Indexing,” in
Proceedings of the 22nd International Conference on Re-
search and Development in Information Retrieval, 1999, pp.
50–57.

[14] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein,
“Modeling the evolution of topics in source code histories,”
in Proceedings of the 8th Working Conference on Mining
Software Repositories, 2011, pp. 173–182.

[15] M. Gethers and D. Poshyvanyk, “Using relational topic
models to capture coupling among classes in object-oriented
software systems,” in Proceedings of the 26th International
Conference on Software Maintenance, 2010, pp. 1–10.

[16] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software
traceability with topic modeling,” in Proceedings of the 32nd
International Conference on Software Engineering, 2010, pp.
95–104.

[17] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug lo-
calization using latent dirichlet allocation,” Information and
Software Technology, vol. 52, pp. 972–990, September 2010.

[18] A. K. McCallum, “Mallet: A machine learning for language
toolkit,” 2002. [Online]. Available: http://mallet.cs.umass.edu

[19] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and
J. C. Lai, “Class-based n-gram models of natural language,”
Computational Linguistics, vol. 18, pp. 467–479, Dec. 1992.

[20] J. Stapleton, Models for probability and statistical inference:
theory and applications, 2008.

[21] S. G. Crawford, A. A. McIntosh, and D. Pregibon, “An
analysis of static metrics and faults in c software,” Journal of
Systems and Software, vol. 5, pp. 37–48, 1985.

[22] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu,
“Don’t touch my code!: Examining the effects of ownership
on software quality,” in Proceedings of the 19th Symposium
on the Foundations of Software Engineering and the 13rd
European Software Engineering Conference, 2011, pp. 4–14.

[23] M. DAmbros, M. Lanza, and R. Robbes, “An extensive
comparison of bug prediction approaches,” in Proceeding of
the 7th Conference on Mining Software Repositories, 2010,
pp. 31–41.

[24] J. Rosenberg, “Some misconceptions about lines of code,” in
Proceedings of the 4th International Symposium on Software
Metrics, 1997, pp. 137–142.

[25] N. Nagappan and T. Ball, “Use of relative code churn
measures to predict system defect density,” in Proceedings
of 27th International Conference on Software Engineering,
2005, pp. 284–292.

[26] S. Biyani and P. Santhanam, “Exploring defect data from
development and customer usage on software modules over
multiple releases,” in Proceedings of the The 9th International
Symposium on Software Reliability Engineering, 1998, pp.
316–320.

[27] A. Raftery, “Bayesian model selection in social research (with
discussion),” Sociological Methodology, vol. 25, pp. 111–163,
1995.

[28] A. D. R. Burnham Kenneth P., “Multimodel inference: Un-
derstanding AIC and BIC in model selection,” Sociological
Methods Research, vol. 33, pp. 467–479, Nov. 2004.

[29] I. Jolliffe, Principal component analysis. Springer-Verlag,
2002.

[30] C. Haan, Statistical methods in hydrology. Iowa State
University Press, 1977.

[31] E. Cureton and R. D’Agostino, Factor Analysis: An Applied
Approach. Lawrence Erlbaum Associates, 1993.

[32] S. Grant and J. Cordy, “Estimating the optimal number of
latent concepts in source code analysis,” in Proceedings of
the 10th IEEE Working Conference on Source Code Analysis
and Manipulation, 2010, pp. 65–74.

[33] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein,
“Modeling the evolution of topics in source code histories,”
in Proceedings of the 8th Working Conference on Mining
Software Repositories, 2011, pp. 173–182.

[34] B. Cleary, C. Exton, J. Buckley, and M. English, “An empir-
ical analysis of information retrieval based concept location
techniques in software comprehension,” Empirical Software
Engineering, vol. 14, no. 1, pp. 93–130, 2008.

[35] D. Poshyvanyk, Y. Gueheneuc, A. Marcus, G. Antoniol,
and V. Rajlich, “Feature location using probabilistic ranking
of methods based on execution scenarios and information
retrieval,” IEEE Transactions on Software Engineering, pp.
420–432, 2007.

[36] M. Revelle, M. Gethers, and D. Poshyvanyk, “Using structural
and textual information to capture feature coupling in object-
oriented software,” Empirical Software Engineering, vol. 16,
no. 6, 2011.

[37] S. Rao and A. Kak, “Retrieval from software libraries for bug
localization: A comparative study of generic and composite
text models,” in Proceeding of the 8th Working Conference
on Mining Software Repositories, 2011, pp. 43–52.

[38] K. Tian, M. Revelle, and D. Poshyvanyk, “Using latent
Dirichlet allocation for automatic categorization of software,”
in Proceedings of the 6th International Working Conference
on Mining Software Repositories, 2009, pp. 163–166.

