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Abstract

The design space for representing temporal data in XML has thus far received limited em-
pirical attention. As a result, designers do not fully understand the design space and trade-offs
between various representational approaches. This thesis presents an initial characterization
of that design space and provides a qualitative and quantitative analysis of the extreme ends
of the spectrum, as well as an expressive language for describing temporal data. We extend an
existing language, τXSchema, to implement three classes of representations and show that the
edit-based scheme provides the best performance in terms of creation time and representation
size, although the item-based and sliced-based schemes can be validated more quickly. We
also provide an analysis of where temporal constraint functionality should be implemented
and show that, with a few exceptions, temporal constraint functionality must be implemented
within the tools and cannot be implemented in the representational schema. These results
provide insight into the overall design space for temporal representations that will be useful
to researchers, tool implementers, and users of τXSchema.





THESIS STATEMENT

By evaluating disparate representations through language design, tool enhancement, and
empirical analysis, we will provide an initial characterization of the design space of XML
representations of time-varying documents and their schemas.
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1 Introduction

XML is becoming an increasingly popular language for documents and data. XML can be ap-
proached from two quite separate orientations: a document-centered orientation (e.g., HTML) and
a data-centered orientation (e.g., relational and object-oriented databases). Time-varying data nat-
urally arises in both document-centered and data-centered orientations. Consider the following
wide range of scenarios. In a university, students take various courses in different semesters. At a
company, job positions and salaries change. At a warehouse, inventories evolve as deliveries are
made and goods are shipped. In a hospital, drug treatment regimes are adjusted. And finally at a
bank, account balances are in flux. In each scenario, querying the current state is important, e.g.,
how much is in my account right now, but it also often useful to know how the data has changed
over time, e.g., when has my account been below $200.

A temporal document records the evolution of a document over time, i.e., all of the versions
of the document. Capturing a document’s evolution is vital to supporting time travel queries that
delve into a past version, and incremental queries that involve the changes between two versions.
A key issue is how to represent this time-based evolution: what is the temporal representation?
Understanding this issue is fundamental to all temporal systems and is the focus of this research.
We are concerned with the time and space tradeoffs between various representation approaches,
the language used to create the representation, and the placement of functionality when enforcing
temporal constraints.

XML Schema is a language for describing XML documents, typically expressed in terms of
constraints on the structure and content of documents beyond the basic syntax constraints imposed
by XML itself [43]. Thus an XML schema provides a view of the document type at a relatively
high level of abstraction.

τXSchema extends XML Schema with the ability to define temporal element types [19]. A
temporal element type denotes that an element can vary over time, describes how to associate tem-
poral elements across snapshots, and provides some temporal constraints that broadly characterize
how a temporal element can change over time.

1.1 Previous Work on τXSchema

The group working on the TAU Project at the Computer Science Department at the University of
Arizona had previously developed a theoretical framework for data and schema versioning in XML
documents. The basic architecture of the system, along with base schemas for logical annotations,
physical annotations, and temporal schemas, all existed at the start of this thesis research. Initial
implementations of τXMLLINT, SQUASH and UNSQUASH tools to handle data versioning had
been developed. The tools supported data versioning and partially supported temporal validation.

1.2 Research Goals

In this research, we will use and extend τXSchema in order to determine how to represent time-
varying data within XML in the most time and space efficient ways and how to validate temporal
documents in the most time efficient way. Various approaches have already been taken by many
researchers for the relational and object-oriented models [24, 27, 34]; much less work has been
done with time-varying XML documents. More work is needed to fully understand the tradeoffs
and options in the temporal representation, and what advantages exist for each tradeoff.

This research provides three main contributions. First, we extend the language and organiza-
tion of τXSchema to allow a rich capability of describing temporal data. Second, we provide a
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qualitative analysis of the options for functionality placement in temporal systems. Finally, we
characterize the design space for the different classes of representation types and provide a perfor-
mance evaluation of each.

This research also makes two practical contributions: we add schema versioning to the rep-
resentation and implementation of the tools, and we provide project support by standardizing the
code organization, providing software engineering patterns to the Java classes, providing configu-
ration management, and creating a wiki for developer and user collaboration.

1.3 Organization of the Thesis

The thesis is organized as follows. In Section 2 we provide background information on XML,
XML Schema, τXSchema, and we summarize previous work. Section 3 describes the design goals
and decisions we used when redesigning the τXSchema language and document organization.
Section 4 extends this design to include schema versioning. In Section 5 we provide a qualitative
analysis of the functionality placement of temporal constraints. Section 6 introduces and describes
the design space of temporal representations. In Section 7 we provide an overview of the tools and
the changes required for this research. In Section 8 we provide an empirical evaluation each of the
representation classes. Section 9 concludes.
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2 Background

In this section we briefly review concepts related to XML and their schemas and provide details
on τXSchema. We then outline and summarize previous work in this area.

2.1 XML

The extensible markup language (XML) has recently emerged as a new standard for information
representation and exchange on the Internet [43]. It has gained popularity for representing many
classes of data, including structured documents, heterogeneous and semi-structured records, data
from scientific experiments and simulations, and digitized images, among others. Since XML data
is self-describing, XML is considered one of the most promising means to define semi-structured
data, which is expected to be ubiquitous in large volumes from diverse data sources and applica-
tions on the web. XML allows users to make up any new tags for descriptive markup for their
own applications. Such user-defined tags on data elements can identify the semantics of data. The
relationships between elements can be defined by nested structures and references.

2.2 XML Schema

In the relational data model, a schema defines the structure of each relation in a database. Each
relation has a very simple structure: a relation is a list of attributes, with each attribute having a
specified data type. The schema also includes integrity constraints, such as the specification of
primary and foreign keys. In a similar manner, an XML Schema document defines the valid struc-
ture for an XML document. But an XML document can have a far more complex structure than
a relation. A document is a (deeply) nested collection of elements, with each element potentially
having (text) content and attributes.

XML Schema, published as a W3C Recommendation in May 2001 [40], is one of the several
XML schema languages. It was the first separate schema language for XML to achieve recom-
mendation status by the W3C. An XML schema is a description of a type of XML document,
typically expressed in terms of constraints on the structure and content of documents of that type,
beyond the basic syntax constraints imposed by XML itself. Thus an XML schema provides a
view of the document type at a relatively high level of abstraction. The XML Schema language is
also referred to as XML Schema Definition (XSD).

The process of checking to see if an XML document conforms to a schema is called validation,
which is separate from XML’s core concept of syntactic well-formedness [40]. A well formed doc-
ument obeys the basic rules of XML established for the structural design of a document. Moreover
a valid document also respects the rules dictated by its corresponding XML Schema. All XML
documents must be well-formed, but it is not required that a document be valid unless the XML
parser is “validating,” in which case the document is also checked for the conformance with its
associated schema.

Several open-source tools exist that allow for the verification and validation of XML docu-
ments against XML Schemas. One of note is XMLLINT, which is part of the Libxml2 [38]
toolkit developed by MIT for the Gnome project. XMLLINT is a command line tool that imple-
ments a set of XML-related W3C standards and provides a wide range of capabilities, including
validating XML documents against XML Schemas, transforming XML documents into other for-
mats, compressing documents, and debugging.
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2.3 Temporal Databases

Most applications of database technology are temporal in nature [18]. Some examples include
financial applications such as banking and accounting; record-keeping applications such as per-
sonnel, and inventory management; scheduling applications such as airline, train, and hotel reser-
vations; and scientific applications such as weather monitoring and forecasting. Applications such
as these rely on temporal databases, which record time-referenced data. This is referred to as data
versioning.

A temporal database is a database with built-in support for time aspects, e.g. a temporal data
model and a temporal version of a structured query language. In a regular database, there is no
concept of time. The database has a current state, and that’s all can be asked about. In a temporal
database, the database includes information about when things happened.

2.4 Schema Versioning

Software systems and especially databases undergo frequent changes following an initial imple-
mentation. Lientz has shown that 50% or more of programmer effort arises as a result of system
modifications after the implementation [21]. Sjoberg has also shown that the system modifica-
tions that cause changes to the structure of the data are relatively frequent [32, 33]. As a result,
modifying the database schema is a common but often a troublesome occurrence in database ad-
ministration.

Schema versioning deals with the need to retain current data and software system functionality
in the face of changing structure of the data [31]. It is often not practical to simultaneously replace
all the deployments of the old schemas with the new ones. So applications will need to cope
with different versions coexisting in the system. Hence, versioning mechanisms in XML Schema
should support creation of new versions, and the schema processors should be able to handle the
instances defined by different versions. Thus schema versioning should offer a solution to the
problem by enabling intelligent handling of any temporal mismatch between data and the data
structures.

Schema versioning has been previously researched in the context of temporal databases [30].
But an XML schema is a grammar specification, unlike a (relational) database schema, so new
techniques are required to handle schema versioning.

Since XML Schema changes are very common in the industry, there has been some effort to
address this issue. Some white papers [8, 12] discuss the need for schema versioning and some
common techniques used in the industry to handle it. According to Gabriel, some of the important
reasons for changes in the XML schema are as follows [12].
• Extending the scope of a schema
• Changing constraints
• Bug-fixing
• Enabling collaborative development

The previous literature also discusses some of the common techniques and the best practices cur-
rently used to reduce the effects of schema changes on the system maintenance and recommend
that schema versioning should be a part of an integrated system evolution plan.

2.5 τXSchema

Researchers have proposed a language called τXSchema (Temporal XML Schema) [19] to enable
the construction and validation of temporal documents. τXSchema extends XML Schema with
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the ability to define temporal element types. A temporal element type denotes that an element
can vary over time, describes how to associate temporal elements across snapshots (individual
versions of a document), and provides some temporal constraints that broadly characterize how a
temporal element can change over time. An important goal in the development of τXSchema was
to maximally reuse existing XML standards and technology. In τXSchema, any element type can
be turned into a temporal element type by including a single, simple logical annotation (stating
whether an element or attribute varies over valid time or transaction time, whether its lifetime is
described as a continuous state or a single event, whether the item itself may appear at certain
times (and not at others), and whether its content changes) in the type definition and the structure
of the temporal document is controlled by one or more physical annotations (characteristics that
specify the timestamp options for the representation, such as where the timestamps are placed and
their kind (e.g., valid time or transaction time) and the kind of representation). So a τXSchema
document is just a conventional XML Schema document with a few logical and physical annota-
tions.

τXSchema provides tools to construct and validate temporal documents. A temporal document
is validated by combining a conventional validating parser with a temporal constraint checker. To
validate a temporal document, a temporal schema is first converted to a representational schema,
which is a conventional XML Schema document that describes how the temporal information is
represented. The representational schema must be carefully constructed to ensure the snapshot
validation subsumption of a temporal document. In other words, it is important to guarantee
that each snapshot of the temporal document conforms to the original, snapshot schema (without
temporal annotations). A conventional validating parser is then used to validate the temporal
document against the representational schema.

τXSchema focuses on both instance versioning (representing a time-varying XML instance
document) and schema versioning (representing a time-varying schema document [10, 9]). The
schema can describe which aspects of an instance document change over time; this schema can
itself be a time-varying document. The temporal schema contains this time-varying schema. All
three components, (1) the conventional schema, (2) the logical annotations, and (3) the physical
annotations, can change over time.

τXSchema is supported with a set of closely related tools:
• SQUASH. This tool takes as input a sequence of XML documents, a temporal annotation,

and a physical annotation and generates a temporal XML document consistent with the
physical annotation.
• UNSQUASH. This tools performs the exact opposite operation of SQUASH: given a tem-

poral XML document and temporal schema, it generates a sequence of non-temporal XML
documents, each valid over a particular period of time.
• SCHEMAMAPPER. Once the annotations are found to be consistent, this tool generates

the representational schema from the original snapshot schema(s) and the temporal and
physical annotations. The representational schema is needed to serve as the schema for a
time-varying document.
• τXMLLINT. This tool is used to validate a temporal document against its temporal schema.

The validation process includes validating each slice against its schema and validating all
slices against given temporal constraints.

In τXSchema we talk about two distinct concepts when dealing with temporal documents.
The first is the language employed by the user to the describe the temporal data. Here we mean
the syntax that the user has at his disposal when telling the tools what data he has and what he
wants to happen with the data. The second concept is the representation of the data, which is the
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result of the tools performing some transformation on the temporal data behind the scenes. Here
we are talking about the internal format of an output file.

2.6 Previous Work

Methods to represent temporal data and documents on the web have been actively researched.
This research has covered a wide range of issues that include architectures for collecting document
versions [11], strategies for storing versions [5], studies on the frequency of data change [5], and
temporal query languages [14]. The logical representation of deltas between the versions and the
aspects of physical storage policy for storing those versions have been proposed so as to maximize
the space utilization [23]. Grandi has created a bibliography of previous work in this area [16].

There has been a lot of interest in representing time-varying documents. Marian et al. [23]
discuss versioning to track the history of downloaded documents. Chien, Tsotras and Zaniolo [5]
have researched techniques for compactly storing multiple versions of an evolving XML docu-
ment. Chawathe et al. [4] described a model for representing changes in semi-structured data and
a language for querying over these changes. For example, the diff based approach [2, 6] focuses
on an efficient way to store time-varying data and can be used to help detect transaction time
changes in the document at the physical level. Buneman et al. [3] provide another means to store
a single copy of an element that occurs in many snapshots. Grandi and Mandreoli [17] propose
a <valid> tag to define a validity context that is used to timestamp part of a document. Finally,
Chawathe et al. [4] and Dyreson et al. [10] discuss timestamps on edges in a semi-structured data
model.

Some version control tools (which are designed for text files) have also been developed for
data and schema varying XML documents (e.g., [22]). But, since the tree-structured data has very
different semantics as compared to text, these tools are not very effective. Such an approach also
lacks the support for any mechanisms for their validation.

Our focus in this research is to characterize the design space of temporal representations: what
are the possible ways to represent a temporal document, and what are the benefits of each? If we
could categorize each existing representational approach, then we could more easily evaluate the
entire design space. We also are interested in how each design choice affects the versioning of
schemas and specifically how each approach allows temporal constraints to be implemented. Re-
lated to these tasks is the desire to have a language for easily describing temporal data, independent
of the underlying representation on which we concentrate first.
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3 Design Goals and Decisions

In this section we focus on the language used to describe temporal systems: temporal documents,
temporal schemas, and annotations. Our goal is to extend the existing τXSchema language to
provide the user an enhanced capability for describing temporal data and systems independent of
the underlying physical representation. We first introduce and define terminology. We then outline
our goals for the design of the language and provide a few short examples. From these goals we
establish a set of decisions and conclude with a comprehensive example.

3.1 Terminology

This section defines terms relevant to τXSchema.

Conventional Document1 A standard XML document that has no temporal aspects.

Temporal Document2 A standard XML document that represents a sequence of conventional
documents (i.e., slices). It may be user-created or the result of the SQUASH tool and has the
root element <temporalRoot>.

Conventional Schema3 A standard XML Schema document that describes the structure of the
conventional document(s). The root element is <schema>.

Temporal Schema4 A standard XML document that ties together the conventional schemas and
the annotations. In our temporal system, the temporal schema is the logical equivalent to the
XML Schema of the conventional world; it describes the rules and format of the temporal
documents. The root element is <temporalSchema>.

Annotation Document A standard XML document that specifies a variety of characteristics (e.g.,
logical, physical) of a conventional document. For example, logical characteristics specify
whether an element or attribute varies over valid time or transaction time, whether its life-
time is described as a continuous state or a single event, whether the item itself may appear
at certain times (and not at others), and whether its content changes; physical characteris-
tics specify the timestamp options for the representation, such as where the timestamps are
placed and their kind (e.g., valid time or transaction time) and the kind of representation.

Slice A version of a temporal document at a given point in time. For example, if a temporal
document is comprised of two conventional documents d1 and d2, which occur at time t1
and t2, respectively, then the slice at time t2 is d2.

1We also considered the terms “non-temporal document” (dismissed since this term focuses only on the absence
of one aspect—temporal—but it could lack other aspects), “slice document” (dismissed since the term “slice” could
refer to any type of document), and “base document” (dismissed since the term “base” could be confused with other
contexts).

2We also considered “time-varying document,” but dismissed it since the term “temporal” is more consistent with
the rest of the terminology.

3We also considered the terms “non-temporal schema” (dismissed for the same reason as non-temporal document)
and “base schema” (dismissed since a schema could really be composed of several base schemas).

4We also considered “temporal bundle” but dismissed since this term doesn’t capture as cleanly the idea that this
document acts as the schema for a temporal document.
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3.2 Design Goals

This section defines a set of high-level goals for the structure of τXSchema.

(a) Upward compatibility with established XML designs, techniques, and tools is the most
important goal that drives the rest of the design. Conventional documents and conven-
tional schemas should work within τXSchema. As an example, Figure 1 shows a conven-
tional document and conventional schema being validated by XMLLINT [38]. τXMLLINT

should be able to produce the same output as the conventional tool given the same input.

Figure 1: An XML document, which references an XML Schema, being validated by XMLLINT.
The solid lines going into XMLLINT indicate that the documents are explicitly input into the tool.

(b) No changes should be required for conventional documents. That is, conventional docu-
ments and schemas should not be aware of the fact that they are being used in τXSchema;
instead, they should have standard syntax and be valid with conventional tools. Although
this goal is just an expansion of goal (a), it is worth mentioning specifically for emphasis.

(c) Convenience and intuition should be stressed. It is important to make migrating from a con-
ventional system to τXSchema as easy as possible. Whenever possible, we should adopt
existing XML formats, naming schemes, and methodologies; see Listings 1 and 2 for exam-
ples.

Listing 1: Conventional XML Schema syntax for one schema to include another.
<include schemaLocation="otherSchema.xsd">

Listing 2: τXSchema syntax to include one temporal schema into another.
<include schemaLocation="otherTemporalSchema.xml">

(d) Adding temporal documents and schemas should be easy. Specifying that one or more
documents vary over time should require little effort from the user. Further, the impact to
the entire design and organization should be small.

(e) Substitutability of the various artifacts of the system is another primary goal. If there is more
than one way to describe a temporal artifact, then each way should be permitted anywhere
any other way is permitted. For example, both Listings 3 and 4 below contain the same
information; the former lists a sequence of conventional documents and their lifetimes while
the latter is the squashed version of these same documents.

Listing 3: A way to represent two conventional documents.
<temporalRoot>
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<sliceSequence>
<slice location="version1.xml" begin="2008-01-02">
<slice location="version2.xml" begin="2008-03-17">

</sliceSequence>
</temporalRoot>

Listing 4: Another way to represent two conventional documents.
<temporalRoot begin="2008-01-02">

<Company_RepItem isItem="y" originalElement="Company">
<Company_Version>

<Company name="International Business Machines" />
...

</Company_Version>
<Company_Version>

<Company name="IBM" />
...

</Company_Version>
</Company_RepItem>

</temporalRoot>

Thus, either method should be allowed to appear in place of the other.

(f) Temporal data can occur at any level of the system. This includes the temporal schema and
annotations document. For example, temporal schemas should be allowed to reference other
temporal schemas, which in turn reference other temporal (or conventional) schemas. The
schemas for these schemas should be allowed to be temporal or conventional. Eventually a
conventional document or schema is reached, and the process completes; however, no limits
or constraints should be placed on the amount or location of temporal data. As another
example, Listing 5 shows a temporal schema that references an annotation document that
itself is temporal.

Listing 5: A temporal schema references an annotations document that is itself temporal.
<temporalSchema>

...
<annotationSet>

<!-- Note: annotations.xml is a temporal document (it has several slices) -->
<include schemaLocation="annotations.xml" />

</annotationSet>
...

</temporalSchema>

(g) Namespaces should be preserved in the validation. If more than one namespace is used
throughout the conventional schemas and in the conventional documents, then the validation
should use this information in the validation process.

(h) Simple cases should be simple for the user to create. For example, if only one conventional
schema is present, then the temporal schema is only required to list the URI for this schema,
and no further markup is needed for the tools to work correctly. Listing 6 shows such a
temporal schema.

Listing 6: The temporal schema should be as simple as possible.
<temporalSchema>

<conventionalSchema>
<include schemaLocation="Company.xsd" />

</conventionalSchema>
</temporalSchema>
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3.3 Design Decisions

This section outlines the design decisions that resulted from the design goals. We first describe
general decisions that apply to all of τXSchema, and then discuss in turn the decisions that apply
specifically to temporal schemas, temporal documents, and annotations documents. The XML
Schema schemas that define the syntax of these documents are provided in Appendix A.

3.3.1 General Decisions

(1) τXMLLINT will use XMLLINT (a conventional parser) as its internal engine for validating
conventional documents. This decision fulfills goal (a) in that we can use a conventional
parser on conventional documents, thus achieving full upward compatibility. It also fulfills
(in fact, requires) goal (b) in that in order for the conventional parser to work correctly, no
changes can be introduced into the conventional documents.

(2) The characterization of a temporal document will be achieved by using a <sliceSequence>

element; each individual conventional document’s URI and its associated lifetime will be
directly listed in this element via a <slice> element and its location, begin, and
optional end attributes. See Listing 3 for a simple example. This decision fulfills goal (f)
because the <sliceSequence> element can occur anywhere; thus allowing temporal data
to occur anywhere. It also fulfills goal (d) because this method allows a simple way to add
new versions of documents to the system.

(3) The schema of a conventional document must be a conventional schema. This satisfies
goal (a) by promoting consistency with existing XML designs and practices and goal (b) by
not requiring any changes to the conventional documents or schemas.

(4) In all cases, the default logical annotation is “anything can change” and the default physical
annotation is “timestamp is located at root.” This decision satisfies goal (h) by supplying
a useful default annotation set if the user doesn’t supply one. See Listing 6 above for an
example of a schema that does not specify any annotations.

(5) When given a temporal document and temporal schema, τXMLLINT will by default only
validate the current version of the document; the user must supply additional parameters/ar-
guments to invoke validation over time.

3.3.2 Temporal Schema Decisions

(6) A temporal schema will have the root element <temporalSchema> which belongs to the
τXSchema namespace. The root element will have two subelements, only the first of which
is required.

• <conventionalSchema>. In this element, the user will specify the conventional
schema(s) that belongs to the system.

• <annotationSet>. In this element, the user will specify the annotation(s) that be-
longs to the system, if any.

Within each of the two elements there will be four separate ways to specify schemas and
annotations.
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(a) Listing the URI of each conventional document with a <sliceSequence> element
(see Listing 3)

(b) Including a (conventional or temporal) document with a <include> element (see
Listing 1 for an example and decision (9) for more information)

(c) Placing the text of a document directly in the element (see Listing 4)
(d) Omitting the element altogether. In this case, default behavior will be assumed (see,

e.g., decision (4)). Default behavior would only apply to annotations documents,
as a default conventional schema (by perhaps automatically detecting and creating
a schema based on the first conventional document) would be dangerous and might
provide unintended semantics.

Providing these different mechanisms allows for substitutability (satisfying goal (f)), con-
venience (satisfying goal (a)), and simplicity (satisfying goal (d)).

(7) An <include> element will be used to include a document into the temporal schema; it
has the same semantics of placing the entire actual text of the document into the schema.
<include> can reference any kind of document, including a conventional schema, a tem-
poral schema, and annotation documents. This element has the effect of removing the root
of the included document; see Listings 7 and 8 for an example.

Listing 7: A schema using <include>.
<temporalSchema>
...
<annotationSet>
<include schemaLocation="anno.xml"/>
</annotationSet>
...
</temporalSchema>

Listing 8: anno.xml
<annotationSet>
...
<logical>
...
</logical>
...

</annotationSet>

This decision satisfies goal (e) by allowing both the <include> element and the actual text
of the document to have the exact same semantics and goal (c) by keeping consistent syntax
as XML Schema <include> elements.

(8) Both conventional and temporal schemas can <include> any number of conventional
and temporal schemas. See Listing 5 for an example. This decision satisfies goal (f) by
permitting temporal data to occur at any level in the system.

(9) There can be one temporal schema for each independent conventional schema present in
the system. In this way, each conventional schema can vary over time independently, as
well as have their own logical and physical annotations. See Figure 2 for an example, and
Section 3.4 for more information.

3.3.3 Temporal Document Decisions

(10) A temporal document is defined as a document that has the root element <temporalRoot>
and references a temporal schema. τXSchema tools will look for both of these conditions
to determine if a document is temporal.

(11) A temporal document will have an <temporalSchemaSet> element with subelements
<temporalSchema> that will specify the URI of each temporal schemas. See Listing 9 for
an example.
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Figure 2: Each conventional schema has a separate corresponding temporal schema.

(12) The root element may have a <sliceSequence> element to list a sequence of conventional
documents (i.e., slices). We choose the term “sequence” here since the ordering of the slices
is important; they must be listed from earliest to latest. See Listing 9.

Listing 9: exampleTemporalDocument.xml
1 <temporalRoot>
2 <temporalSchemaSet>
3 <temporalSchema location="temporalSchema1.xml"/>
4 <temporalSchema location="temporalSchema2.xml"/>
5 </temporalSchemaSet>
6 <sliceSequence>
7 <slice location="version1.xml" begin="2008-01-03" />
8 <slice location="version2.xml" begin="2008-06-27" />
9 <slice location="version3.xml" begin="2008-08-11" />

10 </sliceSequence>
11 </temporalRoot>

This decision satisfies goal (h) by providing an easy way to SQUASH the documents, goal (d)
by providing a simple mechanism for adding slices, and goal (e) by allowing either the
<sliceSequence> element or the SQUASH representation to appear in the temporal doc-
ument.

3.3.4 Annotation Document Decisions

(13) The root element of an annotation document will be <annotationSet>. We choose the
term “Set” here since the ordering of the annotations within the document is unimportant.
The root element can then have a number of subelements; one for each aspect possible. Cur-
rently we concentrate on the logical and physical aspects, and thus have defined <logical>

and <physical> subelements. The <logical> subelement will have a set of <item>

subelements (one for each logical constraint). The <physical> subelement will have a set
of <stamp> subelements (one for each desired timestamp).

3.4 Company Example

This section walks through in detail an example that illustrates the usage of τXSchema. Explana-
tions of a user’s actions are given in sequence and the corresponding XML text is provided via a
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listing. In an effort to make the example as clear as possible, a few conventions are followed. Note
that each convention is used only for clarity and is not a requirement in τXSchema.

• Only transaction time is considered.

• The example does not use default namespaces for τXSchema files (e.g. temporal schemas)
in order to emphasize which namespace is being used. However, conventional documents
make use of default namespaces for brevity.

• As file contents are changed over time, a version number embedded in the name will also
change so that the reader can more easily keep track of the changes. The version number
for each file begins at 0 and is constructed as follows.

– Company.S.xsd for conventional schemas, where S = {A, B, C, ...} indicates
the version of the schema, e.g., Company.A.xsd.

– data.S.D.xml for conventional documents, where S indicates the version of the
schema being used and D indicates the version number of the conventional document,
e.g., data.A.0.xml.

– temporalDocument.S.D.xml for temporal documents, where S indicates the
version of the temporal schema being used and D indicates the version number of the
latest conventional document, e.g., temporalDocument.0.3.xml.

– temporalSchema.D.xml for temporal schemas, where D indicates the version
number of the temporal schema, e.g., temporalSchema.0.xml.

– annotations.A.xml for annotation documents, where A indicates the version of
the temporal annotation document, e.g., annotations.0.xml.

– Person.S.E.xsd for the Person subschemas, where S indicates the first version
of the conventional schema that references this subschema and E indicates the version
number of the subschema itself, e.g., Person.A.0.xml.

– Product.S.F.xsd for the Product subschemas, where S indicates the first version
of the conventional schema that references this subschema and F indicates the version
number of the subschema itself, e.g., Product.A.0.xml.

In this example, each time the user modifies the conventional schema, a new file is created.
He must then modify the conventional document to reference this new, modified schema. In
practice, this is awkward and would rarely happen. In a more realistic situation, the user would
reuse the same filename by just modifying the file in place, and editors would be responsible for
automatically retaining previous versions. Also, in practice the conventional document would
change much more frequently than the conventional schema.

Figure 3 depicts the overall scenario.

3.4.1 Initial Configuration

Consider the following scenario which begins on 2008-01-01. The user has a conventional schema
which defines a <Person> element, which itself has a <Name> element, an <SSN> element,
and an ID attribute (see Listing 10).
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Figure 3: An overview of the end-state of the Company example.

Listing 10: Company.A.xsd
1 <?xml version="1.0"?>
2 <xsd:schema
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 targetNamespace="http://www.company.org"
5 xmlns="http://www.company.org"
6 elementFormDefault="qualified">
7

8 <xsd:element name="Company">
9 <xsd:complexType>

10 <xsd:sequence>
11 <xsd:element ref="Person"/>
12 </xsd:sequence>
13 </xsd:complexType>
14 </xsd:element>
15

16 <xsd:element name="Person">
17 <xsd:complexType>
18 <xsd:sequence>
19 <xsd:element name="Name" type="xsd:string"/>
20 <xsd:element name="SSN" type="xsd:string"/>
21 </xsd:sequence>
22 <xsd:attribute name="ID" type="xsd:string"/>
23 </xsd:complexType>
24 </xsd:element>
25

26 </xsd:schema>

He also has a conventional document conforming to the schema (see Listing 11).

Listing 11: data.A.0.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <Company xmlns="http://www.company.org">
3

4 <Person ID="1">
5 <Name>Steve</Name>
6 <SSN>111-22-3333</SSN>
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7 </Person>
8

9 </Company>

Together, these documents form a conventional system which can be validated with conven-
tional validation tools (e.g., XMLLINT). Of course, τXMLLINT will also validate this conven-
tional system.

In the following sections, we will add new versions of the conventional document, add new
versions of the conventional schema, break up the conventional schema into multiple subschemas,
and specify temporal annotations.

3.4.2 Adding Temporal Data

On 2008-03-17, the user corrects the <SSN> element in the conventional document to produce a
new version (see Listing 12). The user can now use τXSchema to create temporal documents and
use the τXSchema tools to validate these documents.

Listing 12: data.A.1.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <Company xmlns="http://www.company.org">
3

4 <Person ID="1">
5 <Name>Steve</Name>
6 <SSN>123-45-6789</SSN>
7 </Person>
8

9 </Company>

The user creates a temporal document that lists both slices of the conventional document with
their associated timestamps (see Listing 13).

Listing 13: temporalDocument.0.1.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <td:temporalRoot xmlns:td="http://www.cs.arizona.edu/tau/tauXSchema/TD">
3 <td:temporalSchemaSet>
4 <td:temporalSchema location="./Company.A.xsd"/>
5 </td:temporalSchemaSet>
6

7 <td:sliceSequence>
8 <td:slice location="data.A.0.xml" begin="2008-01-01" />
9 <td:slice location="data.A.1.xml" begin="2008-03-17" />

10 </td:sliceSequence>
11

12 </td:temporalRoot>

The user uses the conventional schema as the temporal schema. That is, the user does not explicitly
create a temporal schema. Note that since no logical or physical annotations have been specified,
the defaults will take effect.
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4 Schema Versioning Example

We now extend our design in Section 3 to include schema versioning. Here we must focus on the
intricacies of changing namespaces from slice to slice, versioning of subschemas that are included
or imported into the main schema, and versioning multiple main schemas. We briefly cover each
in turn.

4.1 Company Example Extended

We now extend our example presented in Figure 3 in Section 3.4 to include schema versioning.
We use the same conventions and naming schemes as before. Figure 4 depicts the scenario. Here,
in addition to the Company Data document varying over time, the Company Schema, Person
Schema, Product Schema, and Company Annotation documents will also vary over time. Note
that those documents are depicted here as multiple slices.

Figure 4: An overview of the end-state of the Company example.

4.2 Changing Schemas

On 2008-05-22, the user decides to make a change to the conventional schema. He changes the
<Name> element to <FirstName>, resulting in a new version of the schema (Listing 14, line 19).

Listing 14: Company.B.xsd
1 <?xml version="1.0"?>
2 <xsd:schema
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 targetNamespace="http://www.company.org"
5 xmlns="http://www.company.org"
6 elementFormDefault="qualified">
7

8 <xsd:element name="Company">
9 <xsd:complexType>
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10 <xsd:sequence>
11 <xsd:element ref="Person"/>
12 </xsd:sequence>
13 </xsd:complexType>
14 </xsd:element>
15

16 <xsd:element name="Person">
17 <xsd:complexType>
18 <xsd:sequence>
19 <xsd:element name="FirstName" type="xsd:string"/>
20 <xsd:element name="SSN" type="xsd:string"/>
21 </xsd:sequence>
22 <xsd:attribute name="ID" type="xsd:string"/>
23 </xsd:complexType>
24 </xsd:element>
25

26 </xsd:schema>

The user must therefore update the conventional document to conform to the new schema (see
Listing 15, line 5).

Listing 15: data.B.1.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <Company xmlns="http://www.company.org">
3

4 <Person ID="1">
5 <FirstName>Steve</FirstName>
6 <SSN>123-45-6789</SSN>
7 </Person>
8

9 </Company>

The user now creates an explicit temporal schema to represent the changes to the conventional
schema. He chooses to use method (a) as described in design decision (6) above (see Listing 16).
Note that since the user has yet to specify any annotations, the defaults are still in effect.

Listing 16: temporalSchema.0.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <ts:temporalSchema xmlns:ts="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">
3

4 <ts:conventionalSchema>
5 <ts:sliceSequence>
6 <ts:slice location="Company.A.xsd" begin="2008-01-01" />
7 <ts:slice location="Company.B.xsd" begin="2008-05-22" />
8 </ts:sliceSequence>
9 </ts:conventionalSchema>

10

11 </ts:temporalSchema>

The user must also update the temporal document to include the new slice of the conventional
document (Listing 17, line 11).

Listing 17: temporalDocument.1.1.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <td:temporalRoot xmlns:td="http://www.cs.arizona.edu/tau/tauXSchema/TD">
3 <td:temporalSchemaSet>
4 <td:temporalSchema location="./temporalSchema.0.xml"/>
5 </td:temporalSchemaSet>
6

7 <td:sliceSequence>
8 <td:slice location="data.A.0.xml" begin="2008-01-01" />
9 <td:slice location="data.A.1.xml" begin="2008-03-17" />
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10 <td:slice location="data.B.1.xml" begin="2008-05-22" />
11 </td:sliceSequence>
12

13 </td:temporalRoot>

4.2.1 Introducing Subschemas

On 2008-07-11, the user decides to split the schema into several smaller subschemas while also
adding a new element. The main schema (see Listing 18) no longer defines any elements itself,
but instead uses the XML Schema <import> (line 9) and <include> (line 10) elements to
reference two subschemas (see Listings 19 and 20).

Listing 18: Company.C.xsd
1 <?xml version="1.0"?>
2 <xsd:schema
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 targetNamespace="http://www.company.org"
5 xmlns="http://www.company.org"
6 elementFormDefault="qualified"
7 xmlns:per="http://www.person.org" >
8

9 <xsd:import namespace="http://www.person.org" schemaLocation="./Person.C.0.xsd" />
10

11 <xsd:include schemaLocation="./Product.C.0.xsd" />
12

13 <xsd:element name="Company">
14 <xsd:complexType>
15 <xsd:sequence>
16 <xsd:element name="Person" type="per:PersonType" maxOccurs="unbounded"/>
17 <xsd:element name="Product" type="ProductType" maxOccurs="unbounded"/>
18 </xsd:sequence>
19 </xsd:complexType>
20 </xsd:element>
21

22 </xsd:schema>

Listing 19: Person.C.0.xsd
1 <?xml version="1.0"?>
2 <xsd:schema
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 targetNamespace="http://www.person.org"
5 xmlns="http://www.person.org"
6 elementFormDefault="qualified">
7

8 <xsd:complexType name="PersonType">
9 <xsd:sequence>

10 <xsd:element name="FirstName" type="xsd:string"/>
11 <xsd:element name="SSN" type="xsd:string"/>
12 </xsd:sequence>
13 <xsd:attribute name="ID" type="xsd:string"/>
14 </xsd:complexType>
15

16 </xsd:schema>

Listing 20: Product.C.0.xsd
1 <?xml version="1.0"?>
2 <xsd:schema
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 targetNamespace="http://www.company.org"
5 xmlns="http://www.company.org"
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6 elementFormDefault="qualified">
7

8 <xsd:complexType name="ProductType">
9 <xsd:sequence>

10 <xsd:element name="Type" type="xsd:string" minOccurs="1" maxOccurs="1"/>
11 </xsd:sequence>
12 </xsd:complexType>
13

14 </xsd:schema>

The user updates the instance document to conform to the new schema paradigm and adds a
<Product> element (see Listing 21, lines 10–12).

Listing 21: data.C.2.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <Company xmlns="http://www.company.org" xmlns:per="http://www.person.org">
3

4 <Person ID="1">
5 <per:FirstName>Steve</per:FirstName>
6 <per:SSN>111-22-3333</per:SSN>
7 </Person>
8

9 <Product>
10 <Type>Widget</Type>
11 </Product>
12

13 </Company>

Note that in this example, the Company schema is taking the so-called “heterogeneous” and “ho-
mogeneous” namespace approaches for the Person and Product subschemas, respectively [7].
That is, the Person subschema’s namespace is exposed in the Company schema, while the Product
subschema defines the same target namespace as the Company schema.

The user then changes the temporal schema (Listing 22, line 8) and the temporal document
(Listing 23, lines 4 and 11) to reflect these modifications. Note that the temporal schema only
references the Company schema, because that schema directly imports Person and includes
Product.

Listing 22: temporalSchema.1.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <ts:temporalSchema xmlns:ts="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">
3

4 <ts:conventionalSchema>
5 <ts:sliceSequence>
6 <ts:slice location="Company.A.xsd" begin="2008-01-01" />
7 <ts:slice location="Company.B.xsd" begin="2008-05-22" />
8 <ts:slice location="Company.C.xsd" begin="2008-07-11" />
9 </ts:sliceSequence>

10 </ts:conventionalSchema>
11

12 </ts:temporalSchema>

Listing 23: temporalDocument.1.2.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <td:temporalRoot xmlns:td="http://www.cs.arizona.edu/tau/tauXSchema/TD">
3 <td:temporalSchemaSet>
4 <td:temporalSchema location="./temporalSchema.1.xml"/>
5 </td:temporalSchemaSet>
6

7 <td:sliceSequence>
8 <td:slice location="data.A.0.xml" begin="2008-01-01" />
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9 <td:slice location="data.A.1.xml" begin="2008-03-17" />
10 <td:slice location="data.B.1.xml" begin="2008-05-22" />
11 <td:slice location="data.C.2.xml" begin="2008-07-11" />
12 </td:sliceSequence>
13

14 </td:temporalRoot>

4.2.2 Adding Logical Annotations

On 2008-08-04, the user decides to construct an annotation document. Here, the user creates a
logical annotation (via the <item> element) that specifies that only the <FirstName> element
can change (see Listing 24).

Listing 24: annotations.0.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <as:annotationSet xmlns:as="http://www.cs.arizona.edu/tau/tauXSchema/AS">
3

4 <as:logical>
5 <as:item target="/Company/Person/FirstName">
6 <as:transactionTime existence="constant"/>
7 <as:itemIdentifier name="personID" timeDimension="transactionTime">
8 <as:field path="./text"/>
9 </as:itemIdentifier>

10 </as:item>
11 </as:logical>
12

13 </as:annotationSet>

The user must then update the temporal schema to include the temporal annotation document
(see Listing 25, lines 12–16) and the temporal document to point to the new version of the temporal
schema (see Listing 26, line 4). τXMLLINT will now check this constraint between conventional
document slices over time.

Listing 25: temporalSchema.2.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <ts:temporalSchema xmlns:ts="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">
3

4 <ts:conventionalSchema>
5 <ts:sliceSequence>
6 <ts:slice location="Company.A.xsd" begin="2008-01-01" />
7 <ts:slice location="Company.B.xsd" begin="2008-05-22" />
8 <ts:slice location="Company.C.xsd" begin="2008-07-11" />
9 </ts:sliceSequence>

10 </ts:conventionalSchema>
11

12 <ts:annotationSet>
13 <ts:sliceSequence>
14 <ts:slice location="annotations.0.xml" begin="2008-08-04" />
15 </ts:sliceSequence>
16 </ts:annotationSet>
17

18 </ts:temporalSchema>

Listing 26: temporalDocument.2.3.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <td:temporalRoot xmlns:td="http://www.cs.arizona.edu/tau/tauXSchema/TD">
3 <td:temporalSchemaSet>
4 <td:temporalSchema location="./temporalSchema.2.xml"/>
5 </td:temporalSchemaSet>
6
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7 <td:sliceSequence>
8 <td:slice location="data.A.0.xml" begin="2008-01-01" />
9 <td:slice location="data.A.1.xml" begin="2008-03-17" />

10 <td:slice location="data.B.1.xml" begin="2008-05-22" />
11 <td:slice location="data.C.2.xml" begin="2008-07-11" />
12 </td:sliceSequence>
13

14 </td:temporalRoot>

4.2.3 Temporal Subschemas

On 2008-09-10, the user changes the Person subschema (see Listing 27, line 11) to include a
<LastName> element.

Listing 27: Person.D.1.xsd
1 <?xml version="1.0"?>
2 <xsd:schema
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 targetNamespace="http://www.person.org"
5 xmlns="http://www.person.org"
6 elementFormDefault="qualified">
7

8 <xsd:complexType name="PersonType">
9 <xsd:sequence>

10 <xsd:element name="FirstName" type="xsd:string"/>
11 <xsd:element name="LastName" type="xsd:string"/>
12 <xsd:element name="SSN" type="xsd:string"/>
13 </xsd:sequence>
14 <xsd:attribute name="ID" type="xsd:string"/>
15 </xsd:complexType>
16

17 </xsd:schema>

The user must update the Company schema (Listing 28, line 9) to reference the new version of
the subschema.

Listing 28: Company.D.xsd
1 <?xml version="1.0"?>
2 <xsd:schema
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 targetNamespace="http://www.company.org"
5 xmlns="http://www.company.org"
6 elementFormDefault="qualified"
7 xmlns:per="http://www.person.org" >
8

9 <xsd:import namespace="http://www.person.org" schemaLocation="./Person.D.1.xsd" />
10

11 <xsd:include schemaLocation="./Product.C.0.xsd" />
12

13 <xsd:element name="Company">
14 <xsd:complexType>
15 <xsd:sequence>
16 <xsd:element name="Person" type="per:PersonType" maxOccurs="unbounded"/>
17 <xsd:element name="Product" type="ProductType" maxOccurs="unbounded"/>
18 </xsd:sequence>
19 </xsd:complexType>
20 </xsd:element>
21

22 </xsd:schema>

The user must also update the conventional document (Listing 29, line 7) to include a <LastName> el-
ement.

22



Listing 29: data.D.3.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <Company xmlns="http://www.company.org" xmlns:per="http://www.person.org">
3

4 <Person ID="1">
5 <per:FirstName>Steve</per:FirstName>
6 <per:LastName>Thomas</per:LastName>
7 <per:SSN>111-22-3333</per:SSN>
8 </Person>
9

10 <Product>
11 <Type>Widget</Type>
12 </Product>
13

14 </Company>

The user then changes the temporal schema (Listing 30, line 9) and temporal document (Listing 31,
lines 4 and 12) to reflect these modifications.

Listing 30: temporalSchema.3.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <ts:temporalSchema xmlns:ts="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">
3

4 <ts:conventionalSchema>
5 <ts:sliceSequence>
6 <ts:slice location="Company.A.xsd" begin="2008-01-01" />
7 <ts:slice location="Company.B.xsd" begin="2008-05-22" />
8 <ts:slice location="Company.C.xsd" begin="2008-07-11" />
9 <ts:slice location="Company.D.xsd" begin="2008-09-10" />

10 </ts:sliceSequence>
11 </ts:conventionalSchema>
12

13 <ts:annotationSet>
14 <ts:sliceSequence>
15 <ts:slice location="annotations.0.xml" begin="2008-08-04" />
16 </ts:sliceSequence>
17 </ts:annotationSet>
18

19

20 </ts:temporalSchema>

Listing 31: temporalDocument.3.3.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <td:temporalRoot xmlns:td="http://www.cs.arizona.edu/tau/tauXSchema/TD">
3 <td:temporalSchemaSet>
4 <td:temporalSchema location="./temporalSchema.3.xml"/>
5 </td:temporalSchemaSet>
6

7 <td:sliceSequence>
8 <td:slice location="data.A.0.xml" begin="2008-01-01" />
9 <td:slice location="data.A.1.xml" begin="2008-03-17" />

10 <td:slice location="data.B.1.xml" begin="2008-05-22" />
11 <td:slice location="data.C.2.xml" begin="2008-07-11" />
12 <td:slice location="data.D.3.xml" begin="2008-09-10" />
13 </td:sliceSequence>
14

15 </td:temporalRoot>

4.2.4 Namespace Changes

One month later (2008-11-13), the user changes the target namespace of the main schema to
"stevescompany.org" (see Listing 32, lines 4 and 5). Since the Product subschema uses
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the homogeneous namespace paradigm, it also must be updated to the new namespace (see List-
ing 33, lines 4 and 5). Of course, the user must also update the conventional document (see
Listing 34, line 2).

Listing 32: Company.E.xsd
1 <?xml version="1.0"?>
2 <xsd:schema
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 targetNamespace="http://www.stevescompany.org"
5 xmlns="http://www.stevescompany.org"
6 elementFormDefault="qualified"
7 xmlns:per="http://www.person.org" >
8

9 <xsd:import namespace="http://www.person.org" schemaLocation="./Person.D.1.xsd" />
10

11 <xsd:include schemaLocation="./Product.E.1.xsd" />
12

13 <xsd:element name="Company">
14 <xsd:complexType>
15 <xsd:sequence>
16 <xsd:element name="Person" type="per:PersonType" maxOccurs="unbounded"/>
17 <xsd:element name="Product" type="ProductType" maxOccurs="unbounded"/>
18 </xsd:sequence>
19 </xsd:complexType>
20 </xsd:element>
21

22 </xsd:schema>

Listing 33: Product.E.1.xsd
1 <?xml version="1.0"?>
2 <xsd:schema
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 targetNamespace="http://www.stevescompany.org"
5 xmlns="http://www.stevescompany.org"
6 elementFormDefault="qualified">
7

8 <xsd:complexType name="ProductType">
9 <xsd:sequence>

10 <xsd:element name="Type" type="xsd:string" minOccurs="1" maxOccurs="1"/>
11 </xsd:sequence>
12 </xsd:complexType>
13

14 </xsd:schema>

Listing 34: data.E.3.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <Company xmlns="http://www.stevescompany.org" xmlns:per="http://www.person.org">
3

4 <Person ID="1">
5 <per:FirstName>Steve</per:FirstName>
6 <per:LastName>Thomas</per:LastName>
7 <per:SSN>111-22-3333</per:SSN>
8 </Person>
9

10 <Product>
11 <Type>Widget</Type>
12 </Product>
13

14 </Company>

The user then changes the temporal schema (see Listing 35, line 10) and temporal document (see
Listing 36, lines 4 and 13) to reflect his modifications.
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Listing 35: temporalSchema.4.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <ts:temporalSchema xmlns:ts="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">
3

4 <ts:conventionalSchema>
5 <ts:sliceSequence>
6 <ts:slice location="Company.A.xsd" begin="2008-01-01" />
7 <ts:slice location="Company.B.xsd" begin="2008-05-22" />
8 <ts:slice location="Company.C.xsd" begin="2008-07-11" />
9 <ts:slice location="Company.D.xsd" begin="2008-09-10" />

10 <ts:slice location="Company.E.xsd" begin="2008-11-13" />
11 </ts:sliceSequence>
12 </ts:conventionalSchema>
13

14 <ts:annotationSet>
15 <ts:sliceSequence>
16 <ts:slice location="annotations.0.xml" begin="2008-08-04" />
17 </ts:sliceSequence>
18 </ts:annotationSet>
19

20 </ts:temporalSchema>

Listing 36: temporalDocument.4.3.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <td:temporalRoot xmlns:td="http://www.cs.arizona.edu/tau/tauXSchema/TD">
3 <td:temporalSchemaSet>
4 <td:temporalSchema location="./temporalSchema.4.xml"/>
5 </td:temporalSchemaSet>
6

7 <td:sliceSequence>
8 <td:slice location="data.A.0.xml" begin="2008-01-01" />
9 <td:slice location="data.A.1.xml" begin="2008-03-17" />

10 <td:slice location="data.B.1.xml" begin="2008-05-22" />
11 <td:slice location="data.C.2.xml" begin="2008-07-11" />
12 <td:slice location="data.D.3.xml" begin="2008-09-10" />
13 <td:slice location="data.E.3.xml" begin="2008-11-13" />
14 </td:sliceSequence>
15

16 </td:temporalRoot>

4.2.5 Multiple Conventional Schemas

The user now (2008-11-27) wants to create a level of independence between each of the con-
ventional schemas: when a subschema changes, he does not want to have to change the main
schema. To do this, he creates a temporal schema for each of the conventional schemas and in
the main conventional schema he references the temporal schema (as opposed to the conventional
subschema).

Listings 37 and 38 show the new temporal schemas for the Product and Person subschemas,
respectively. Listing 39, lines 9 and 12, shows the main conventional schema referencing the new
temporal schemas.

Listing 37: ProductTemporalSchema.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <ts:temporalSchema xmlns:ts="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">
3

4 <ts:conventionalSchema>
5 <ts:sliceSequence>
6 <ts:slice filename="Product.C.0.xsd" begin="2008-07-11" />
7 <ts:slice filename="Product.E.1.xsd" begin="2008-11-13" />
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8 </ts:sliceSequence>
9 </ts:conventionalSchema>

10

11 </ts:temporalSchema>

Listing 38: PersonTemporalSchema.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <ts:temporalSchema xmlns:ts="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">
3

4 <ts:conventionalSchema>
5 <ts:sliceSequence>
6 <ts:slice filename="Person.C.0.xsd" begin="2008-07-11" />
7 <ts:slice filename="Person.D.1.xsd" begin="2008-09-10" />
8 </ts:sliceSequence>
9 </ts:conventionalSchema>

10

11 </ts:temporalSchema>

Listing 39: Company.F.xsd
1 <?xml version="1.0"?>
2 <xsd:schema
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 targetNamespace="http://www.stevescompany.org"
5 xmlns="http://www.stevescompany.org"
6 elementFormDefault="qualified"
7 xmlns:per="http://www.person.org" >
8

9 <xsd:import namespace="http://www.person.org"
10 schemaLocation="./PersonTemporalSchema.xml" />
11

12 <xsd:include schemaLocation="./ProductTemporalSchema.xml" />
13

14 <xsd:element name="Company">
15 <xsd:complexType>
16 <xsd:sequence>
17 <xsd:element name="Person" type="per:PersonType" maxOccurs="unbounded"/>
18 <xsd:element name="Product" type="ProductType" maxOccurs="unbounded"/>
19 </xsd:sequence>
20 </xsd:complexType>
21 </xsd:element>
22

23 </xsd:schema>
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5 Functionality Placement: Schema vs. Tools

To this point we have focused on how the user describes his temporal documents and their schemas.
We now turn to examine where schema constraint functionality is placed and the issues that arise
when validating temporal constraints. In this section we focus on the latter.

Before facing these issues, it is convenient to discuss the approach that the τXSchema tools
take to validate temporal contraints. Figure 5 shows the overall architecture of the tools as they
manage XML documents and their schemas. A sequence of non-temporal documents is input
into SQUASH to create a temporal representation; this document can then be validated using
τXMLLINT and SCHEMAMAPPER. UNSQUASH can be used to reconstruct the original non-
temporal documents from the temporal representation, while RESQUASH can be used to create a
new representation (e.g., different timestamp locations) from a given representation.

Figure 6 provides the validation procedure used by τXMLLINT. The first step is to pass the
temporal schema into τXMLLINT, which ensures that the logical and physical annotations are
consistent with the snapshot schema and with each other. Once the annotations are found to be
consistent, SCHEMAMAPPER is invoked to generate a representational schema from the original
snapshot schema and the temporal and physical annotations. The representational schema is then
used as the schema for the temporal document and input into a conventional validator (in this
case, XMLLINT). The next step is to pass the temporal document and the temporal schema to
Temporal Constraint Validator. This step is to enforce temporal constraints that are not possible
to be enforced by the representational schema alone.

A key design decision during the validation of temporal constraints is the placement of func-
tionality: should a constraint be implemented in the representational schema or within the temporal
constraint validator? Implementing (or expressing, or enforcing) constraints in the representational
schema may provide faster validation since a conventional validator can be invoked directly, but
may result in increased size and complexity of the representational schema. Conversely, imple-
menting constraints in the temporal validator may yield small and compact schemas, but requires
more time to perform the validation since the tools must perform checks across all slices sequen-
tially and individually in the worst case.

In the following sections we explore two issues related to the placement of functionality. First,
we determine which temporal constraints are possible to be expressed in a representational schema
using the item-based representation class5 and which can only be implemented in the temporal
constraint validator. Second, for those constraints that can be implemented in both the schema
and the temporal constraint validator, we provide a brief analysis of the tradeoffs between the two
placements.

5.1 Constraints

In this section we discuss both sequenced (enforced at each point in time) and non-sequenced
(enforced on the temporal document as a whole) constraints and determine for each whether it is
possible to express that constraint in the representational schema. For both sequenced and non-
sequenced constraints, we focus on the following classes of constraints.

Identity constraints These constraints restrict uniqueness of elements and attributes in a given
document. Identity constraints are defined in the schema document using a combination of
<selector> and <field> sub-elements within an <key> or <unique> element.

5Section 6 introduces and describes the four kinds of representation classes and Section 5.2 outlines how the other
three classes affect this analysis.
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Identity Referential Cardinality Datatype
Sequenced × × X X

Non-sequenced × × × ×

Table 1: The classes of constraints that can be implemented in a representational schema in the
general case.

Referential Integrity constraints These constraints, defined using the <keyref> element, are
similar to the corresponding constraints in the relational model. Each referential integrity
constraint refers to a valid key or unique constraint and ensures that the corresponding key
value exists in the document. For example, a <keyref> can be defined to ensure that
only valid product numbers (i.e., those that exist for a <product> element) are entered for
an order.

Cardinality constraints The cardinality of elements in XML documents is restricted by the use
of minOccurs and maxOccurs in the XML Schema document. The cardinality of at-
tributes is restricted using optional, required, or prohibited.

Datatype restrictions Datatype definitions can restrict the structure and content of elements, and
the content of attributes. For example, a datatype definition can restrict the content of an
element <age> to be between 0 and 100.

Table 1 provides a sneak-peak summary of which of the eight classes of constraints we claim can
be implemented in the representational schema in the general case. We now provide an argument
for each cell of this table in turn.

5.1.1 Sequenced Constraints

In this section we examine whether each class of sequenced constraints can be enforced by a rep-
resentational schema. Given a conventional XML Schema constraint, we define the corresponding
logical semantics in XML Schema in terms of a sequenced constraint. For example, a conven-
tional (cardinality) constraint, “There should be between 0 and four 4 URLs for each supplier,”
has the following sequenced constraint: “There should be between 0 and 4 website URLs for each
supplier at every point in time.”

For each sequenced constraint below we use the following approach. If we claim that the
constraint can be enforced by a representational schema, we outline a method that can be used
by the τXSchema tools to transform the sequenced constraint syntax into standard XML Schema
syntax. If, on the other hand, we claim that the constraint cannot be enforced by a representational
schema, we provide a counter example that illustrates the specific shortcoming of XML Schema
that forbids the constraint to be enforced.

Identity Constraints We claim that identity constraints of elements and attributes cannot be
enforced in a representational schema in the general case. To see this, consider the following
example that begins with Listings 40 and 41. In this example, we require <zip> elements to have
unique code attributes via an identity constraint named zipUnique.
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Listing 40: XML Schema <unique>.
25 ...
26 <xs:unique name="zipUnique">
27 <xs:selector xpath="zip"/>
28 <xs:field xpath="@code"/>
29 </xs:unique>
30 ...

Listing 41: Unique codes (slice 1).
163 ...
164 <zip code="85721"> Tucson, AZ </zip>
165 <zip code="85001"> Phoenix, AZ </zip>
166 ...

Now suppose the user were to change the code for Tucson to be the same as Phoenix (violat-
ing the conventional schema’s identity constraint), and then back again (see Listings 42 and 43).

Listing 42: Slice 2 (invalid).
163 ...
164 <zip code="85001"> Tucson, AZ </zip>
165 <zip code="85001"> Phoenix, AZ </zip>
166 ...

Listing 43: Slice 3 (valid).
163 ...
164 <zip code="85721"> Tucson, AZ </zip>
165 <zip code="85001"> Phoenix, AZ </zip>
166 ...

Assuming that the physical annotations place the timestamps at the <zip> element level, the
above actions would create an item-based representation similar to the one shown in Listing 44.

Listing 44: Squashed version of the three slices.
89 ...
90 <zip_RepItem>
91 <zip_Version begin="1" end="1">
92 <zip code="85721"> Tucson, AZ </zip>
93 </zip_Version>
94 <zip_Version begin="2" end="2">
95 <zip code="85001"> Tucson, AZ </zip>
96 </zip_Version>
97 <zip_Version begin="3">
98 <zip code="85721"> Tucson, AZ </zip>
99 </zip_Version>

100 </zip_RepItem>
101

102 <zip_RepItem>
103 <zip_Version begin="1">
104 <zip code="85001"> Phoenix, AZ </zip>
105 </zip_Version>
106 </zip_RepItem>
107 ...

With this representation, there is no way to create an identity constraint in XML Schema that
can detect that both code values at time 2 are the same. If the constraint were constructed to
restrict all ./zip RepItem/zip Version/zip/@code values6 to be unique, this would fail
since at times 1 and 3, Tucson has a code value of 85701, and this is legal in our temporal
constraint. If the constraint were constructed to require all ./zip Version/zip/@code within
each ./zip RepItem to be identical, this would also fail since the user is allowed to change the
zip code from slice to slice.

One could imagine extending the constraint shown in Listing 40 to include key specification
fields begin and end for the valid times associated with each version of the zip element, as
shown in Listing 45 on lines 29 and 30, with the corresponding attributes in the element specifica-
tion.

6This is XPath code [39].

30



Listing 45: XML Schema <unique> with additional fields.
25 ...
26 <xs:unique name="zipUniqueAttempt">
27 <xs:selector xpath="zip"/>
28 <xs:field xpath="@code"/>
29 <xs:field xpath="@begin"/>
30 <xs:field xpath="@end"/>
31 </xs:unique>
32 ...

As long as the begin and end attributes are maintained in proper order (which can be
checked by τXMLLINT), the keys will uniquely identify each key within each snapshot. List-
ing 46 below shows an example where the addition of such attributes will achieve the desired
functionality. Here, the conventional validator would detect that the zip elements on lines 95 and
104 are in violation of the unique constraint, which is indeed correct.

Listing 46: Squashed document with multiple changes
89 ...
90 <zip_RepItem>
91 <zip_Version begin="1" end="1">
92 <zip code="85721" begin="1" end="1"> Tucson, AZ </zip>
93 </zip_Version>
94 <zip_Version begin="2" end="2">
95 <zip code="85001" begin="2" end="2"> Tucson, AZ </zip>
96 </zip_Version>
97 </zip_RepItem>
98

99 <zip_RepItem>
100 <zip_Version begin="1" end="1">
101 <zip code="85001" begin="1" end="1"> Phoenix, AZ </zip>
102 </zip_Version>
103 <zip_Version begin="2" end="2">
104 <zip code="85001" begin="2" end="2"> Phoenix, AZ </zip>
105 </zip_Version>
106 </zip_RepItem>
107 ...

However, this approach will not succeed in the general case because it only enforces uniqueness
at the interval end points and not anywhere within the interval. For example, consider the excerpt
from a squashed document shown in Listing 47. We see that the elements on lines 95 and 101
conflict our desired constraint, but since the begin attributes are distinct, XML does not detect
an error.

Listing 47: Squashed document with multiple changes
89 ...
90 <zip_RepItem>
91 <zip_Version begin="1" end="1">
92 <zip code="85721" begin="1" end="1"> Tucson, AZ </zip>
93 </zip_Version>
94 <zip_Version begin="2" end="2">
95 <zip code="85001" begin="2" end="2"> Tucson, AZ </zip>
96 </zip_Version>
97 </zip_RepItem>
98

99 <zip_RepItem>
100 <zip_Version begin="1" end="2">
101 <zip code="85001" begin="1" end="2"> Phoenix, AZ </zip>
102 </zip_Version>
103 </zip_RepItem>
104 ...
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We are thus forced to conclude that XML Schema lacks the sufficient capability to discriminate
time boundaries in a way that would allow sequenced identity constraints to be enforced.

Referential Integrity Constraints We claim that referential integrity constraints cannot be im-
plemented in a representational schema. The argument is similar to that for identity constraints:
there is no way to create a constraint in XML Schema that can both satisfy referential integrity
and time issues. Consider the example shown in Listings 48 and 49.

Listing 48: A referential constraint.
31 ...
32 <!-- Defines a key named "pNumKey" -->
33 <key name="pNumKey">
34 <selector xpath="states/state"/>
35 <field xpath="@id"/>
36 </key>
37

38 <!-- Says that the "state" attribute -->
39 <!-- in <zip><city></zip> elements -->
40 <!-- must match a pNumKey. -->
41 <keyref name="stateMatcher"
42 refer="r:pNumKey">
43 <selector xpath="regions/zip/city"/>
44 <field xpath="@state"/>
45 </keyref>
46 ...

Listing 49: Squashed document.
65 ...
66 <regions_RepItem>
67 <regions_Version begin="1" end="1">
68 <regions>
69 <zip code="85701">
70 <city state="1"/>
71 </zip>
72 </regions>
73 </regions_Version>
74 <regions_Version begin="2" end="3">
75 <regions>
76 <zip code="85701">
77 <city state="6"/>
78 </zip>
79 </regions>
80 </regions_Version>
81 </regions_RepItem>
82

83 <states_RepItem>
84 <states_Version begin="1" end="2">
85 <states>
86 <state id="1">Arizona</state>
87 <state id="2">California</state>
88 </states>
89 </states_Version>
90 <states_Version begin="3" end="3">
91 <states>
92 <state id="6">Arizona</state>
93 <state id="2">California</state>
94 </states>
95 </states_Version>
96 </states_RepItem>
97 ...

Here, we have a constraint that says “A city element’s state attribute must match an existing state
element’s id attribute at every point in time.” The squashed document shows that this constraint
is satisfied at times 1 and 3, but violated at time 2 since Arizona will point to a non-existent state
id. To construct an XML Schema that could describe this situation, one would need to be able
to somehow discriminate between different <regions Version> elements according to their
begin and end attributes, but there is no such way to accomplish this without the help from a
procedural language like XQuery [42]. We are again forced to conclude the XML schema lacks
sufficient mechanisms to enforce a referential constraint.

Cardinality Constraints We claim that the cardinality of both elements and attributes can be
enforced in the representational schema. Consider an element e which has created a logical item i.
If the lowest timestamp is located at a ancestor or descendent of e, then no change to the definition
of e from the original schema is necessary, only a direct copy into the representational schema. If
a timestamp is located at i, then the cardinality constraint information must be moved from e up to
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i in the representational schema. Since there must be one item for each original element, ensuring
that we have a particular number of items is the same as ensuring that we have a particular number
of original elements.

Listings 50 and 51 below show an example constraint: “The element <supplier> can oc-
cur exactly 1 or 2 times.” We first assume that the physical timestamps–specified in the temporal
schema– are placed at a predecessor or successor element of the <supplier> element. In this
case the specification of the <supplier> element requires no modification in the representa-
tional schema.

Listing 50: Snapshot schema 1.
...

<xs:element name="supplier"
minOccurs="1" maxOccurs="2">

...
</xs:element>

...

Listing 51: Representational schema 1.
...
<xs:element name="supplier"

minOccurs="1" maxOccurs="2">
...

</xs:element>
...

Listings 52 and 53 show the same example as above, except now the physical timestamps
are located at the level of the <supplier> element. In this case, the transformation pushes the
constraints up to the <supplier RepItem> element.

Listing 52: Snapshot schema 2.
...

<xs:element name="supplier"
minOccurs="1" maxOccurs="2">

...
</xs:element>

...

Listing 53: Representational schema 2.
...
<xs:element name="supplier_RepItem"

minOccurs="1" maxOccurs="2">
...
<xs:element name="supplier_Version">

...
<xs:element name="supplier">
...
</xs:element>

</xs:element>
</xs:element>

...

Datatype Constraints We claim that datatype definitions of both elements and attributes can be
enforced in the representational schema. This can be achieved by copying the datatype definition
for each element in the original schema into the representational schema. Since datatype restric-
tions are not affected by the location of timestamps, the transformation is trivial in all cases. See
Listings 54 and 55 for an example of the datatype constraint: “The element <age> must have a
value between 0 and 100, inclusive, at all times.” No changes to the constraint must be made in
the transformation.
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Listing 54: Datatype snapshot schema.
45 ...
46 <xs:element name="age">
47 <xs:simpleType>
48 <xs:restriction base="xs:integer">
49 <xs:minInclusive value="0"/>
50 <xs:maxInclusive value="100"/>
51 </xs:restriction>
52 </xs:simpleType>
53 </xs:element>
54 ...

Listing 55: Datatype rep. schema.
65 ...
66 <xs:element name="age">
67 <xs:simpleType>
68 <xs:restriction base="xs:integer">
69 <xs:minInclusive value="0"/>
70 <xs:maxInclusive value="100"/>
71 </xs:restriction>
72 </xs:simpleType>
73 </xs:element>
74 ...

5.1.2 Non-sequenced Constraints

Non-sequenced constraints are constraints applied to a temporal element as a whole (including
the lifetime of the data entity) rather than individual time slices. Non-sequenced constraints are
not defined on snapshot XML Schema equivilants. An example of a non-sequenced (cardinality)
constraint is: “There should be no more than 10 URLs for each supplier in any year.”

We claim that in general it is not possible to enforce non-sequenced constraints within a repre-
sentational schema. Since non-sequenced constraints can reference arbitrary sections of time that
don’t necessarily correspond to slice lifetimes or schema change (schema wall) boundaries, it is
impossible to use XML Schema to isolate and thus validate these sections. For example, consider
the simple non-sequenced cardinality constraint: “There should be two or three unique suppliers
in any given year.” If the document were changed at intervals that were less than one year in
duration, we could have a representation that looked similar to Listing 56.

Listing 56: Squashed version. One day equals one unit of time.
33 ...
34 <suppliers_RepItem>
35 <suppliers_Version begin="1" end="1">
36 <supplier id="1">IBM</supplier>
37 <supplier id="2">HP</supplier>
38 </suppliers_Version>
39 <suppliers_Version begin="2" end="100">
40 <supplier id="1">IBM</supplier>
41 <supplier id="3">Sun</supplier>
42 </suppliers_Version>
43 <suppliers_Version begin="100" end="600">
44 <supplier id="3">Sun</supplier>
45 <supplier id="4">Apple</supplier>
46 </suppliers_Version>
47 </suppliers_RepItem>
48 ...

It is easy to see that there are in fact four suppliers between the times 1 and 365, violating our
example contraint. However, there is no way to construct an XML Schema to successfully validate
this, since we would need some way to accumulate the number of unique <supplier>s across
<supplier Version> and then check this number against the constraint; but there is no such
way to perform this accumulation in XML Schema.

However, we do note that there exist specific circumstances in which non-sequenced con-
straints may be validated. Again consider the non-sequenced cardinality constraint: “There should
be 2 or 3 unique suppliers in any given year.” Also suppose that the timestamps were placed at
some element above the <supplier> element and that slices were created exactly once per year.
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The result will be a representation that closely mimics the individual slices. We see that it is
possible to create a reprsentational schema to enforce this constraint (Listings 57 and 58).

Listing 57: Item-based temporal representa-
tion #1.

66 ...
67 <company_RepItem>
68 <company_Version begin="1" end="2">
69 <company>
70 <suppliers>
71 <supplier id="123"/>
72 <supplier id="456"/>
73 </suppliers>
74 </company>
75 </company_Version>
76 ...
77 ...

Listing 58: Non-sequenced representational
schema #1.

80 ...
81 <xs:element name="company_RepItem"
82 ...
83 <xs:element name="company_Version">
84 ...
85 <xs:element name="supplier">
86 minOccurs="2" maxOccurs="3">
87 ...
88 </xs:element>
89 </xs:element>
90 </xs:element>
91 ...

In this case, we are guaranteed to have one <suppliers> element per year. Thus, validating
each element in each company version will validate the constraint.

As another example, consider the non-sequenced cardinality constraint: “There should be
between 2 and 4 players on the team in any given year.” If the slices happen to have a one-to-one
correspondence with the boundaries for a year, and the timestamp happens to be at or above the
<team> element, then we could have the following representational schema.

Listing 59: Item-based temporal representa-
tion #2.

12 ...
13 <team_RepItem>
14 <team_Version begin="1" end="1">
15 <team>
16 <player>Steve</player>
17 <player>Bob</player>
18 <player>Mark</player>
19 <player>Paul</player>
20 </team>
21 </team_Version>
22 <team_Version begin="2" end="2">
23 <team>
24 <player>Steve</player>
25 </team>
26 </team_Version>
27 </team_RepItem>
28 ...

Listing 60: Non-sequenced representational
schema #2.

45 ...
46 <xs:element name="player"
47 minOccurs="2" maxOccurs="4">
48 ...
49 </xs:element>
50 ...

In general, we see that such special cases can be constructed when both of the following conditions
are met.
• Placing the physical timestamp at or above the highest element that is involved in the con-

straint.
• Versioning the conventional document so that the lifetime of each slice matches the time

unit specified by the constraint (e.g., if the constraint involves one year, then there would
be exactly one slice per year).

Clearly, these situations are of limited practical use since they are constricting and unlikely to occur
naturally. Nevertheless, one might argue that the tools could simply adopt the following strategy.
“If a special case occurs, place the functionality in the representational schema; otherwise, place
the functionality in the tools.” We argue that this process would add complexity that is not justified
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by the marginal performance gains, especially when there are multiple constraints defined and only
some would meet the special-case criteria.

5.2 Functionality of Other Representation Classes

In the above sections we considered whether constraints could be expressed in an XML schema
using the item-based representation class. (Section 6 introduces and describes the four kinds of
representation classes.) We now provide a brief commentary on the ability of each of the remaining
three representation classes to express constraints. Briefly, the remaining three representation
classes provide the same or worse level of capability as the item-based class.

The slice-based class allows the same set of constraints to be expressed as the item-based
class. This is because the slice-based class is a special case of the item-based class; it possesses
no unique characteristics and thus the same limitations apply. The reference-based class also
allows the same set to be expressed. This can be seen by viewing the reference-based class as
an optimized, but similar version of the item-based class. The reference-based class has the same
structure as the item-based class (e.g., items, versions, physical timestamps); the only difference is
that the reference-based class avoids data duplication by providing multiple references to subtrees
that occur more than once. This process does not gain the reference-based class any benefits
that can be used to enforce constraints. The edit-based class is not able to express any temporal
constraints within the representational schema since it reduces changes to the XML tree to simple
text content that cannot reliably be parsed and examined.

5.3 Placement of Functionality

For those constraints that are possible to implement within either the representational schema or
the tools (i.e., sequenced cardinality and datatype constraints), the question remains: where should
the functionality be placed? To address this question, we provide a discussion below.

Consider the model of validation used by τXMLLINT shown in Figure 6. First, the tempo-
ral document is validated against the representational schema using a conventional validator (i.e.,
XMLLINT). Then the Temporal Constraint Validator is invoked to explicitly and exhaustively
check all temporal constraints. This module uses DOM to parse and traverse each slice and man-
ually checks each constraint present in the logical annotation set. From the description of these
steps we draw two simple observations. First, the conventional validator is always invoked on the
temporal document, no matter which constraints are being implemented in the representational
schema. Second, temporal constraints which are “hard” to implement are done so using DOM.
Thus, since the conventional validator is empirically much faster than DOM, and is being invoked
anyway, we argue that all constraints, when possible, should be implemented within the represen-
tational schema. This will provide much better performance in terms of time required, and as we
have shown in the previous sections, will not greatly increase the complexity of the representa-
tional schema. Furthermore, SCHEMAMAPPER will not require extensive modifications in order
to create a schema that can enforce these constraints, since the transformation is trivial in most
cases and relatively simple in the rest.

For these reasons, we conclude that the functionality of sequenced cardinality and datatype
constraints be placed within the representational schema and not within the temporal constraint val-
idator.
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6 Representation Classes

In this section we present the design space for temporal representations in XML. We first introduce
and describe some aspects relating to schema versioning. We then characterize the general design
space. Then we elaborate on the edit-based, item-based, and slice-based approaches.

6.1 Schema Versioning Considerations

In the following sections our focus is on the different approaches to representig temporal data.
However, central to each approach is the method of handling schema versioning. This section
briefly summarizes some concepts that are present in each method.

A key idea that first appeared in a paper on temporal aggregation [35] is that of schema-
constant periods (SCP). It is possible, even with versioned schemas having themselves versioned
schemas, to identify contiguous periods of time when there are no schema changes, anywhere.
These are termed as schema-constant periods. These periods are non-overlapping and continuous;
between the periods are schema change walls. Now, during these periods the data may be (and
probably is) versioned, but at least we have a fixed base schema and fixed temporal annotations,
each of which has a fixed schema. And since the physical annotations are fixed, the representation
is also fixed, so it is possible to read and interpret the temporal document during that schema-
constant period, and even to validate that portion of the document. So a general temporal docu-
ment can be viewed as a sequence of data-varying documents, each over a single schema-constant
period. Since we can validate each schema-constant period, given the approaches outlined by
Joshi [19], all we have to do is validate across schema changes.

For each of the representation classes below, we will show how schema change walls are
handled. However, for simplicity, most examples will contain a single schema constant period
without loss of generality.

6.2 Design Space

Researchers have proposed and evaluated many different temporal representations on an individual
basis [3, 5, 15, 19, 22, 29]. We have found that all extant representations can be categorized into
one of four categories depending on the decisions made to the following two considerations. The
first consideration is whether the resulting representation will keep the entire content of a slice
explicitly or use some sort of compression which requires slices to be reconstructed but eliminates
data duplication. We call this decision Direct or Indirect. The second consideration is whether the
resulting representation will explicitly capture the changes to the XML tree or will only capture
changes to the file itself without any knowledge of XML. We call this decision Itemed or Flat. As
these considerations are orthogonal, they induce four possible classes of representations, as shown
in Table 2. The Flat classes do not consider XML structure and instead treat the file as a flat text
file; the Itemed classes use XML structure within the representation. The Direct classes maintain
full versions of each slice in the representation which may result in data duplication; the Indirect
classes use some sort of compression which requires slices to be reconstructed but alleviates all
data duplication. We now name and briefly describe each class in turn.

The slice-based representation class maintains the full text content of each slice throughout
the entire history of a document and does not use knowledge of XML structure. Each new slice is
simply appended to the representation with the appropriate timestamp. In this way, a full history
of slices is maintained in a single representation. Two advantages of the slice-based scheme are
its simplicity and its ease of implementation: no processing or logic is needed to add a new
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Flat Itemed
Direct Slice-based Item-based

Indirect Edit-based Reference-based

Table 2: The design space of temporal representations and the resulting classes.

slice. Another advantage is the ease of reconstructing an arbitrary slice: one must simply find the
requested timestamp and select the corresponding slice. The major disadvantage of this scheme is
the size of the resulting representation: it will grow linearly with the size and number of slices and
will thus require both a larger amount of disk space and a large amount of memory for processing.
We elaborate on this in Section 6.3.

The edit-based representation class maintains the full text content of only the most recent slice,
storing reverse edit scripts for each additional slice. It does not use knowledge of XML structure;
instead it uses the well-known diff tool to compute the text differences between two slices. This
scheme can often result in an extremely compact representation but requires extra processing to
reconstruct and validate past slices. More detail is given in Section 6.4.

The item-based representation class creates and maintains an item for each time-varying XML
element. It keeps each slice intact and uses knowledge of XML structure. An item is a collection
of versions that in concert represent the same real-world entity. It is a logical entity that evolves
over time through various slices. This scheme is compact and allows for fast validation. More
detail is given in Section 6.5.

The reference-based representation class is similar to the item-based representation in that it
uses the concept of items. However, the reference-based scheme depends on key identifiers (via
XML Schema <key> elements) in each element node. Here, every item is present as a child of
a top level element, and then each slice representation makes references to one or more of these
items. Thus, this scheme factors out common data items to avoid duplication, but as a result the
slices do not remain fully intact. This scheme provides similar size performance to the item-based
scheme on average and performs similarly in validation time.

Listings 61–66 show two slices of an XML document and the resulting representation in each
of the four classes of representations. In each case, SQUASH is used to transform the two slices
into the single representation, and UNSQUASH can be used to recreate the original two slices from
each of the four representations. Table 2 summarizes the design space.

Listing 61: Slice on 2008-01-01.
1 <a>
2 <b>foo</b>
3 <c>bar</c>
4 </a>

Listing 62: Slice on 2008-03-17.
1 <a>
2 <b>foo</b>
3 <c>bar2</c>
4 </a>

38



Listing 63: Slice-based representation.
1 <tv_root>
2 <timestamp begin="2008-01-01">
3 <a>
4 <b>foo</b>
5 <c>bar</c>
6 </a>
7 </timestamp>
8 <timestamp begin="2008-03-17">
9 <a>

10 <b>foo</b>
11 <c>bar2</c>
12 </a>
13 </timestamp>
14 </tv_root>

Listing 64: Edit-based representation.
1 <tv_root>
2 <timestamp begin="2008-03-17">
3 <a>
4 <b>foo</b>
5 <c>bar2</c>
6 </a>
7 </timestamp>
8

9 <timestamp begin="2008-01-11" >
10 <change lines="3">
11 &lt;c&gt;bar&lt;/c&gt;
12 </change>
13 </timestamp>
14 </tv_root>

Listing 65: Item-based representation.
1 <tv_root>
2 <a>
3 <b>foo</b>
4 <c_Item>
5 <c_Version begin="2008-01-01">
6 <c>bar</c>
7 </c_Version>
8

9 <c_Version begin="2008-03-17">
10 <c>bar2</c>
11 </c_Version>
12 </c_Item>
13 </a>
14 </tv_root>

Listing 66: Reference-based representation.
1 <tv_root>
2 <a>
3 <b>foo</b>
4 <c_Item itemRef="1"/>
5 </a>
6 <c_Item itemID="1"/>
7 <c_Version begin="2008-01-01">
8 <c>bar</c>
9 </c_Version>

10 <c_Version begin="2008-03-17">
11 <c>bar2</c>
12 </c_Version>
13 </c_Item>
14 </tv_root>

6.3 Slice-Based Representation

As mentioned previously, the slice-based representation class maintains the full text content of
each slice throughout the entire history of a document and does not use knowledge of XML struc-
ture. Each new slice is simply appended to the representation with the appropriate timestamp. In
this way, a full history of slices is maintained in a single representation, albeit with obvious data
duplication.

Since any data change will result in a new copy of the entire XML tree, and any schema
change will result in a new wall, we can expect the size of the representation to grow linearly with
the number of slices. In some real-world scenarios where each slice is on the order of kilobytes
and the number of slices is measured in the thousands, this size growth can become problematic
for both disks (for storage) and memory (for parsing and processing). However, this approach is
extremely simple and so it is often a researcher’s initial idea.

This approach can be thought of as a special case of the item-based scheme with the physical
timestamp placed at the root. With this strategy, the slice-based scheme can be trivially imple-
mented into the τXSchema tools.

6.4 Edit-Based Representation

The edit-based scheme (also called diff-based or delta-based) is proposed and described in several
research papers [3, 5, 23]. Briefly, this representation maintains the most recent version of the doc-
ument and then only the edits necessary to transform each slice into the previous (see Listing 64).
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The edit-based scheme has the potential of minimizing the representation size in some cases,
and on average, will result in significantly smaller representation than the slice-based approach.
Another advantage of the edit-based scheme is the relative simplicity of the construction of the
representation.

However, the edit-based approach suffers from high processing overhead to reconstruct early
versions, since the edit script has to be applied for every slice in between. It is also difficult to
make time-traveling queries [14] since either the entire version history must first be reconstructed,
or a complex analysis of the edit scripts must be performed. Also, it is important to note that the
edit scripts are saved as text only and not XML trees; as a result, it is difficult or impossible to
validate temporal constraints directly on the edit scripts.

We have implemented this representation in the τXSchema tools with the following approach.
First, we take the most recent slice in its entirety and place it as a subelement of a <timestamp>

element. Then, for each successive slice, we run diff -e to compute the difference. diff

is a standard command line tool that computes the difference between two files. The -e option
formats the output into an ed script. We encode the output of diff -e as follows.

Listing 67: diff output.
1 6c
2 <quantity>2</quantity>
3 .

Listing 68: Edit-based encoding.
1 <change line="6">
2 &lt;quantity&gt;2&lt;/quantity&gt;
3 </change>

We create a <change>, <add>, or <delete> element depending on the operation specified
by diff (line 1 of Listing 67), along with the lines attribute. The text content of the new
element is set to be the output of diff with special characters (e.g., angle brackets) encoded to
retain valid XML syntax (i.e., “<” is replaced with“&lt;”). To recreate an arbitrary slice, we
iteratively apply the patch tool on the diff output.

One important but easily overlooked detail with this approach is the issue of white space. Since
white space is an important and necessary characteristic of diff output, it should be captured
and maintained in the resulting representation. However, the default behavior of DOM and other
parsers is to ignore whitespace in elements that don’t explicitly set the xml:space attribute to
preserved [43], which could cause problems during the patching stage. For example, consider
the simple document shown in Listing 69. After being parsed by DOM and then written to disk,
the resulting file could look something similar to the document shown in Listing 70.

Listing 69: Original document.
1 <a>
2 <b>foo</b>
3 </a>

Listing 70: Parsed and output by DOM.
1 <a><b>foo</b>
2 </a>

Since the edit-based representation outputs the latest slice in its entirety and then uses this as
the starting point for the reverse edit scripts, it is crucial that newlines be preserved. To achieve
this, we introduce a filter that is applied to the conventional documents before they are parsed by
DOM; the filter encodes each newline in the original document with a <tXnl> element (meaning
“τXSchema new line”). See Listing 71 and 72 for an example filter output.

Listing 71: Original document.
1 <a>
2 <b>foo</b>
3 </a>

Listing 72: After filter and DOM mangling.
1 <a> <tXnl/><b>foo</b><tXnl/>
2 </a>
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We then apply the reverse filter after writing the latest slice to disk (that is, the filter removes
all newlines and then replaces all <tXnl> with newlines) to ensure that the newly written file
matches the newline structure of the original, and thus the reverse edit scripts will work correctly.

To implement temporal validation of this representation, we use the following approach. For
each schema-constant period, we UNSQUASH the temporal document into individual slices and
then SQUASH them into a slice-based representation. We can then use the tools to validate the new
slice-based representation. This allows us to use the same (unmodified) tools to validate all three
representation classes, which promotes software reuse and reduces complexity. We argue that this
approach is necessary in order to validate some temporal constraints, since it is impossible to do
so using the edit scripts alone. However, there is some performance degradation due to the extra
steps involved. This tradeoff is quantified in Section 8.

Note that the above approach must treat each schema-constant period separately, as opposed
to the entire representation, due to the nature of the edit-based scheme. Section 6.4.2 below elab-
orates on this idea.

Through this implementation strategy, we are able to fully capture, reproduce, and validate the
changes between slices with the help of commonly available tools and create a practically useful
edit-based representation.

6.4.1 Capturing Namespaces

Since the edit-based approach does not represent data changes in an XML format (rather, these
changes are captured in encoded text within an XML element), the issue of capturing namespaces
does not arise. The output of diff does not indicate what kind of change occurred on a line (e.g.,
namespace change versus element change), only what lines changed and the new values of those
lines. Thus, when namespace changes occur, we cannot detect them explicitly and so we handle
them in the same manner as any other schema change.

6.4.2 Schema Versioning

Changes to the schema are handled with the following approach. For each schema change, we
represent a wall by inserting a new <schemaVersionX> element. Each <schemaVersionX>

is populated with a set of one or more <tv:timestamp> sub-elements: the first such sub-element
contains the entire version of the most recent slice in the current schema-constant period, and each
additional sub-element contains the edit script produced by diff. Listing 73 shows an example
edit-based representation with schema versioning.

Listing 73: Edit-based representation with schema versioning.
1 <sv_root>
2 <schemaItem>
3 <schemaVersion0>
4 <tv:timestamp begin="2008-03-17">
5 <rep0:person>
6 ...
7 </rep0:person>
8 </tv:timestamp>
9 <tv:timestamp begin="2008-01-11" >

10 <change line="3">...</change>
11 </tv:timestamp>
12 <tv:timestamp begin="2008-01-07" >
13 <change line="8">...</change>
14 </tv:timestamp>
15 ...
16 </schemaVersion0>

41



17 <schemaVersion1>
18 <tv:timestamp begin="2008-04-23">
19 <rep0:person>
20 ...
21 </rep0:person>
22 </tv:timestamp>
23 <tv:timestamp begin="2008-04-10" >
24 <change line="3">...</change>
25 </tv:timestamp>
26 ...
27 </schemaVersion1>
28 </sv_root>

The design of this representation is such that each SCP is exactly similar in syntax and format
to the schema-constant case. The representational schema must then be constructed so that for
each SCP the contents of the base schema are inserted as a sub-element of a timestamp element.
Timestamp elements are also permitted to have change, add, or delete sub-elements to encode the
edit scripts.

6.5 Item-Based Representation

The item-based scheme [19] creates and maintains an item for each time-varying element and
was the original representation type implemented in τXSchema. An item is a collection of XML
elements that in concert represent the same real-world entity. It is a logical entity that evolves
over time through various slices. An item can occur at any level in the XML tree hierarchy, and is
specified by the user via a physical annotation. Every occurrence of the actual temporal element
from the snapshot document is replaced by its corresponding item. The item-based representation
has the following features.
• Only elements are time-varying and can have versions. The immediate content (text and

attributes), is considered to be an integral part of an element and therefore does not have a
separate time-varying lifetime.
• A version of an element is created when any change the immediate content or attributes

of an element change. This includes text content, sub elements, comments, and process-
ing instructions. The change must be observable through DOM: only changes observable
through DOM create a new version. This is implies that whitespace and attribute ordering
does not create a new version. In contrast, since the edit-based representation uses diff

to observe changes, whitespace and attribute ordering would create a new edit script in the
representation.
• If an element is glued but remains unchanged, then the lifetime of the current version of

the element is extended; no new version is created. This implies that versions are coa-
lesced [19].
• The timestamp that represents the version’s lifetime is a N -dimensional temporal element.

It may include now, until changed, and/or indeterminate times.
We now extend the item-based representation to explicitly capture schema versioning and

namespaces with elements. These tasks are accomplished with the use of additional elements and
namespaces in the resulting representation. Briefly, each element e in the original document with
namespace ns will take on the following form in the representation,

<ns:e> ⇒ <repX Y ns:e>

where X and Y are unique integers for each schema-constant period and namespace change,
respectively. The following sections describe this production in more detail and provide examples.
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6.5.1 Capturing Namespaces

A conventional document may have more than one namespace, with each namespace associated
with a different schema. Further, these namespaces may change from slice to slice without a
schema changing (i.e., the namespace mapping in the conventional document changes, but the
conventional schema does not change). To capture and reproduce such situations, each namespace
in each slice must be mapped by the tools to a unique namespace in the representation. Consider
the two slices shown in Listings 74 and 75.

Listing 74: Slice on 2008-01-01.
1 <a>
2 <ns1:b>foo</ns1:b>
3 <ns2:c>bar</ns2:c>
4 </a>

Listing 75: Slice on 2008-03-17.
1 <a>
2 <ns1:b>foo1</ns1:b>
3 <ns2:c>blah</ns2:c>
4 </a>

In this simple example, three different namespaces are used and remain constant between slices
(specifically, the default namespace, ns1 and ns2). The resulting representation (Listing 76) has
one corresponding namespace for each of the original namespaces. Here, the rep namespace
corresponds to the default namespace used by <a> in the slices.

Listing 76: Item-based representation of Listings 74 and 75.
1 <tv_root>
2 <rep:a>
3 <!-- rep_ns1 is a newly created namespace -->
4 <rep_ns1:b_RepItem>
5 <rep_ns1:b_Version begin="2008-01-01">
6 <ns1:b>foo</ns1:b>
7 </rep_ns1:b_Version>
8 <rep_ns1:b_Version begin="2008-03-17">
9 <ns1:b>foo1</ns1:b>

10 </rep_ns1:b_Version>
11 </rep_ns1:b_RepItem>
12

13 <!-- rep_ns2 is a newly created namespace -->
14 <rep_ns2:c_RepItem>
15 <rep_ns2:c_Version begin="2008-01-01">
16 <ns2:c>bar</ns2:c>
17 </rep_ns2:c_Version>
18 <rep_ns2:c_Version begin="2008-03-17">
19 <ns2:c>blah</ns2:c>
20 </rep_ns2:c_Version>
21 </rep_ns2:c_RepItem>
22 </rep:a>
23 </tv_root>

Since no naming conflicts are present in this scenario, the unique integer Y is not necessary and is
therefore omitted. Similarly, the unique integer X for the SCP is omitted. To illustrate a scenario
where a naming conflict occurs, consider the following two slices.

Listing 77: Slice on 2008-01-01.
1 <a>
2 <ns1:b>foo</ns1:b>
3 <rep_ns1:c>bar</rep_ns1:c>
4 </a>

Listing 78: Slice on 2008-03-17.
1 <a>
2 <ns1:b>foo1</ns1:b>
3 <rep_ns1:c>bar</rep_ns1:c>
4 </a>

Since <ns1:b> is time-varying, we need to create an item and thus a new namespace for
the item. We can not use rep ns1 in the resulting representation because that namespace al-
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ready exists in the original slice and would cause confusion. Instead, we create a new namespace
rep 0 ns1, as shown in Listing 79.

Listing 79: Item-based representation of Listings 77 and 78.
1 <tv_root>
2 <rep:a>
3 <rep_0_ns1:b_RepItem>
4 <rep_0_ns1:b_Version begin="2008-01-01">
5 <rep_0_ns1:b>foo</rep_0_ns1:b>
6 </rep_0_ns1:b_Version>
7 <rep_0_ns1:b_Version begin="2008-03-17">
8 <rep_0_ns1:b>foo1</rep_0_ns1:b>
9 </rep_0_ns1:b_Version>

10 </rep_0_ns1:b_RepItem>
11

12 <rep_rep_ns1:c>bar</rep_rep_ns1:c>
13 </rep:a>
14 </tv_root>

In this scenario, the value 0 happens to be the first unique integer that relieves the naming conflict.
If there already exists a namespace rep 0 ns1 in the original document, then the representation
would try rep 1 ns1. If rep 1 ns1 already exists, this process would iterate until no conflicts
remain.

6.5.2 Schema Versioning

To achieve schema versioning in the item-based representation class, we introduce one level of
abstraction. For each schema-constant period, we create a new representational schema in the
normal way and define a unique namespace for this schema of the form <repX Y > as described
above. Then, in the main representational schema, we import the representational schema for each
SCP and define a new element <schemaItem>. Sub-elements of this element correspond to each
SCP and thus each <repX Y > namespace. Listings 80 and 81 below show an simple example of
schema versioning and Listing 82 shows the representational schema.

Listing 80: Version 1 of a simple schema.
23 ...
24 <element name="athlete">
25 <complexType mixed="true">
26 <sequence>
27 <element name="athName"
28 type="string"/>
29 </sequence>
30 <attribute name="athID"/>
31 <attribute name="age" />
32 </complexType>
33 </element>
34 ...

Listing 81: Version 2 of a simple schema.
23 ...
24 <element name="athlete">
25 <complexType mixed="true">
26 <sequence>
27 <element name="athName"
28 type="string"/>
29 </sequence>
30 <attribute name="athNumber"/>
31 <attribute name="age" />
32 </complexType>
33 </element>
34 ...

Note that the files rep0.xsd and rep1.xsd correspond to the representational schemas created
for the two SCPs. Each defines the namespace and elements corresponding to its SCP.

The temporal document then has one <schemaVersionX> element for each SCP and the
representation proceeds in the normal way. Listing 83 shows the temporal document created in
the scenario.
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Listing 82: Representational schema.
1 <?xml version="1.0"?>
2 <xsd:schema targetNamespace="http://www.cs.arizona.edu/tau/tauXSchema/RepSchema"
3 xmlns="http://www.cs.arizona.edu/tau/tauXSchema/RepSchema"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
6 xmlns:tv="http://www.cs.arizona.edu/tau/tauXSchema/TVchema"
7 xmlns:rep0="http://www.cs.arizona.edu/tau/tauXSchema/RepSchema0"
8 xmlns:rep1="http://www.cs.arizona.edu/tau/tauXSchema/RepSchema1"
9 elementFormDefault="qualified">

10

11 <xsd:import namespace="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema"
12 schemaLocation="TVSchema.xsd">
13

14 <xsd:import namespace="http://www.cs.arizona.edu/tau/tauXSchema/RepSchema0"
15 schemaLocation="rep0.xsd">
16

17 <xsd:import namespace="http://www.cs.arizona.edu/tau/tauXSchema/RepSchema1"
18 schemaLocation="rep1.xsd">
19

20 <xsd:element name="tv_root">
21 <xsd:complexType>
22 <xsd:sequence>
23 <xsd:element name="schemaItem">
24 <xsd:complexType>
25 <xsd:sequence>
26 <xsd:element maxOccurs="1" minOccurs="1" name="schemaVersion0">
27 <xsd:complexType>
28 <xsd:sequence>
29 <xsd:element maxOccurs="1" minOccurs="1"
30 ref="tv:timestamp_TransExtent" />
31 <xsd:element maxOccurs="1" minOccurs="1"
32 ref="rep0:tv_root" />
33 </xsd:sequence>
34 </xsd:complexType>
35 </xsd:element>
36 <xsd:element maxOccurs="1" minOccurs="1" name="schemaVersion1">
37 <xsd:complexType>
38 <xsd:sequence>
39 <xsd:element maxOccurs="1" minOccurs="1"
40 ref="tv:timestamp_TransExtent" />
41 <xsd:element maxOccurs="1" minOccurs="1"
42 ref="rep1:tv_root" />
43 </xsd:sequence>
44 </xsd:complexType>
45 </xsd:element>
46 </xsd:sequence>
47 </xsd:complexType>
48 </xsd:element>
49 </xsd:sequence>
50 </xsd:complexType>
51 </xsd:element>
52 </xsd:schema>

45



Listing 83: Temporal document.
1 <?xml version="1.0" encoding="UTF-8" ?>
2 <tv_root
3 xmlns="http://www.cs.arizona.edu/tau/tauXSchema/RepSchema"
4 xmlns:rep0="http://www.cs.arizona.edu/tau/tauXSchema/RepSchema0"
5 xmlns:rep1="http://www.cs.arizona.edu/tau/tauXSchema/RepSchema1"
6 xmlns:tv="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema"
7 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
8 xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/RepSchema
9 RepresentationalSchema.xsd">

10 <schemaItem>
11 <schemaVersion0>
12 <tv:timestamp_TransExtent begin="2002-01-01" end="2005-01-01" />
13 <rep0:tv_root>
14 <rep0:athlete_RepItem originalElement="athlete">
15 ...
16

17 ...
18 </rep0:athlete_RepItem>
19 </rep0:tv_root>
20 </schemaVersion0>
21

22 <schemaVersion1>
23 <tv:timestamp_TransExtent begin="2005-01-01" end="9999-12-31" />
24 <rep1:tv_root>
25 <rep1:athlete_RepItem originalElement="athlete">
26 ...
27

28 ...
29 </rep1:athlete_RepItem>
30 </rep1:tv_root>
31 </schemaVersion1>
32 </schemaItem>
33 </tv_root>
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7 Implementation

In this section we present the modifications and enhancements to the tools that are required to
support different representation types. We also discuss the methodology used by τXMLLINT and
its relationship to the representation used. We first provide a brief overview of the tools and their
implementation and conclude with a list of general enhancements made to the project.

7.1 Overview

The tools are open-source and beta versions are available [36] and the full implementation and
architecture is described by Joshi [19]. Figure 7 shows the overall architecture of the tools as a
UML class diagram [26]. The architecture consists of three packages: tau.xml for the interface
of each tool; tau.time for classes that handle time; and tau.util for utility classes common
to all tools and classes.

The tools have been implemented in Java using the DOM API [41]. The DOM API was chosen
over SAX API due to its ability to create an object-oriented hierarchical representation of the XML
document in main memory which can be navigated and manipulated at run-time. This capability
has proven to be extremely useful in all of the tools.

Figure 5 shows the overall architecture of the tools as they manage XML documents and their
schemas. A sequence of non-temporal documents is input into SQUASH to create a temporal
representation; this document can then be validated using τXMLLINT and SCHEMAMAPPER.
UNSQUASH can be used to reconstruct the original non-temporal documents from the temporal
representation, while RESQUASH can be used to create a new representation (e.g., different times-
tamp locations) from a given representation.

7.2 τXMLLINT

Figure 6 provides the validation procedure used by τXMLLINT. The first step is to pass the
temporal schema into τXMLLINT, which ensures that the logical and physical annotations are
consistent with the snapshot schema and with each other. Once the annotations are found to be
consistent, SCHEMAMAPPER is invoked to generate a representational schema from the original
snapshot schema and the temporal and physical annotations. The representational schema is then
used as the schema for the temporal document and input into a conventional validator (in this
case, XMLLINT). The next step is to pass the temporal document and the temporal schema to
Temporal Constraint Validator. This step is to enforce temporal constraints that are not possible
to be enforced by the representational schema alone.

The algorithm for τXMLLINT is given in Figure 8. τXMLLINT is able to check for the
following types of temporal constraints.

Content Constant Content of an element cannot vary over time.

Cardinality Constant Cardinality of an element cannot vary over time.

Existence Constant The element cannot disappear and reappear again.

Content Varying Applicability The contents of an item cannot change beyond the period speci-
fied by the contentVaryingApplicability element in the temporal annotation.

Valid Time Frequency The element cannot change more than specified number of times speci-
fied by the frequency element.
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Figure 7: The overall class diagram for the tools of τXSchema.

Maximal Existence Period The element can exist only within the period specified by the
maximalExistence element.

τXMLLINT enforces each temporal constraint using a simple brute-force approach. For ex-
ample, for an item that has a content-constant constraint, the Temporal Constraint Validator loops
through each version of the item and determines whether the nodes are DOM-equivalent.

7.3 Tool Modifications and Extensions

In order to implement different classes of representations (as described in Section 6), the tools were
reorganized to abstract the details of the representation so that these details may vary freely without
affecting the rest of the code. This was achieved by introducing abstract factory methods [13] in
each of the tools (SQUASH, UNSQUASH, SCHEMAMAPPER, τXMLLINT) in place of the original
methods; each abstract factory method would then call the appropriate concrete method based
on the type of representation specified by the user. Figures 9 and 10 show the placement of the
abstract factory method.

The changes to allow the edit-based representation to be used within the tools are described in
detail in Section 6.4, and the changes to the item-based representation are described in Section 6.5.
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Figure 8: Algorithm: τXMLLINT

//Inputs
// snapshotSchema - Parsed snapshot schema document
// logicalAnnotation - Parsed logical annotation document
// physicalAnnotation - Parsed physical annotation document
// temporalDocument - Parsed temporal document
function doTemporalValidation (snapshotSchema, temporalAnnotation, physicalAnnotation,

temporalDocument):
initialize a hash-table with item-identifier as key and item as hash value
if Consistent(snapshotSchema, temporalAnnotation, physicalAnnotation)

repSchema← doSchemaMapping(snapshotSchema, physicalAnnotation)
if conventionalValidator(temporalDocument, repSchema)

for each element e in the temporalDocument do
if isTimeVarying(e, temporalAnnotation)

evaluate the item-identifier
if item-identifier in hash-table

if the element is DOM-equivalent to some version in the item
coalesce the metadata with the version

else
create a new version

else
create a new item in hash-table, with one version

for each item in hash-table do
for each sequenced and non-sequenced constraint in temporalAnnotation do

if the constraint is not satisfied
display errors

else
display errors generated by the conventional validator

else
display errors
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7.3.1 Schema Versioning

To implement schema versioning, the representational schema had to be generalized so that each
schema-constant period corresponds to a new namespace. Each namespace begins with the root
element of the slice and describes all changes within the SCP in the same way as described in
previous sections.

In particular, the tools are constructed in a such a way that schema versioning is handled
by a different Java class than schema-constant cases. This allows flexibility in the way that
schema-versioning is implemented and provides an abstraction to the developer. Both the schema-
versioning and schema-constant classes implement the same interface so that the other parts of
the tools do not need to be aware of the fact that schemas are changing. The schema-versioning
classes make use of the functionality within schema-constant classes for each SCP; this again
reduces code duplication and promotes software reuse.

Figure 11 shows the method for validating a temporal document with a time-varying schema.
(This method was also presented in Section 5 as Figure 6.) To validate such a document, τXMLLINT

applies the conventional validator to the document, using the representational schema produced
by SCHEMAMAPPER. It then determines the times when the schema changes, thus determining
schema-constant periods. For each such period, the time-varying data checker is invoked to check
the temporal integrity constraints over the time-varying data, with the single base schema, tem-
poral annotation, and physical annotation. Then the temporal constraint checker glues across the
schema change walls and performs the temporal checks across these walls.

The framework for cross-wall validation is described in detail by Joshi [19] and our imple-
mentation closely follows his design. Briefly, the tools must consider the following issues that
arise with schema versioning.

Accommodating evolving keys. When a schema-change wall is encountered, items across the
wall need to be associated. This process is called cross-wall gluing or bridging. This becomes
especially tricky if either the snapshot key (specified in the base schema) upon which an item is
defined, or if the item identifier itself (specified in the logical annotation) changes. The solution
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Figure 11: Validating a document with Time-Varying Data and a Time-Varying Schema.

is to use an <itemIdentifierCorrespondence> element to determine the type of mapping
desired, specifying how old item identifiers are to be mapped to new item identifiers. This element
has four attributes: oldRef, a string naming an item that appears in the old schema, newRef,
a string naming an item that appears in the new schema, mappingType, an XML Schema enu-
meration, and optionally a mappingLocation, which is a URI. We have defined four mutually
exclusive mapping types.

• useNew: The new identifier must also be present in the old element.

• useOld: The old identifier must also be present in the new element.

• useBoth: An attribute’s name is changed, but its value isn’t.

• replace: Use an externally-defined mapping.

This could be best described with an example. Say that in 2002 the item identifier is the athID
attribute of the <athlete> element. In January 2005, this attribute is renamed athNumber;
we specify a mapping type of useBoth. In March 2005, the item identifier is changed to the
athName element, with a mapping type of useNew. (This attribute has been around since 2002,
but it wasn’t used as a key until January 2005.) Assume that, in June 2005 we add a new attribute,
athKey, and specify that as the item identifier, with a mapping type of useOld. Finally, in
July 2005, just before the beginning of the games, we replace the <athlete> element with a
<player> element, with a playerID attribute as the item identifier and a mapping type of
replace.

The gluing of elements into items is then done the following way. Before 2005, the athID is
used for gluing. When the schema change occurs sometime in January 2005, we glue across the
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schema change by matching the athID value of the element before the schema change with the
athNumber value after the change: these (integer) values must match for the two elements to be
glued. In March 2005, we glue across the schema change by matching up old elements and new
elements that have the same (string) value for their athName element, the new item identifier.
The only difference is that before the schema change, that element was present but wasn’t being
used as a key. In a consistent fashion, in June we also glue using the athName element, which
was the old item identifier.

July is the most complex. We need to glue an <athlete> element with an item identifier
of athKey with a <player> element with an item identifier of playerID. For this, we use
the MappingLocation attribute in the bundle to access a mapping table that provides a list of
pairs, each with an athKey and a playerID value.

Accommodating gaps. When gaps appear in the lifetime of an item, the process of finding the
correspondence between the items from corresponding SCPs becomes more difficult. To handle
the case of gaps, it has been decided to create a new item when the element reappears; that is, the
first item is not virtually extended across a schema change wall, since it is difficult or impossible
to know a priori if an item that reappears is the same item or a different item. Thus, when gaps
appear, the tools create a new item and both the original item and new item are treated like every
other item in the evaluation.

Semantics for mixed data and schema changes. When a data change co-exists with a schema
change within a single transaction, τXSchema places no restrictions on the types of changes al-
lowed; this is the most general and flexible design. However, given two schemas, it becomes very
difficult to find the differences between them and validate the versions. Thus, versions of an item
across schema change walls are not validated if a schema change is detected for it. This decision
leads to no additional work needed from the tools.

Non-sequenced constraints. Here we consider temporal constraints such as “An item can only
be changed 3 times per year.” Note that it has been decided to consider non-sequenced constraints
only within a SCP since the user might introduce unintended complexity when specifying new
constraints in the middle of the year: should the constraint be checked only from that point forward
or from the beginning of the document’s lifetime? This means that the tools must verify each
constraint within each SCP separately, which is relatively simple. For example, for the above
temporal constraint, the tools must simply check the number of versions of an item and make sure
that it is less than or equal to the specified amount. Note that only the theoretical design exists for
some non-sequenced constraints; full implementation is left for future work.

We note that the complete set of features and functionality described above is not yet im-
plemented by the tools. As we describe in Section 9.2, more work is needed to complete the
implementation.

7.3.2 Project Support

We also enhanced the overall organization and environment of the tools, documentation, examples
and test cases, and build scripts to more closely match standard industry practices. These enhance-
ments were performed in the Eclipse Platform version 3.3.2 to allow full integration of CVS, the
use of the tools’ Ant build files, and a robust debugging and testing environment.
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• A standard command-line interface was given to each of the tools. This interface takes
the form tool name [options] inputfile ... where [options] include op-
tions common to all tools (e.g., level of debug output) as well as options specific to each
tool (e.g., output file names).
• A robust and powerful logging capability was added using Apache’s LOG4J [1]. This

allows the user to specify dynamically the level of debug output provided by the tools.
Specific debug output was then added at various places in the system (e.g., τXMLLINT

now says why a temporal document would fail validation, as opposed to just silently fail-
ing). The amount and type of debug output is specified at invocation via a command line
option. For example, specifying -debug 0 results in no debug output being displayed,
while -debug 4 provides exhaustive debug output, such as what methods are being called,
values of specific variables, and which slice is currently being parsed.
• The project directory structure and organization were improved. They are now more con-

sistent with other popular open-source projects.
• Version control for the project was implemented with CVS [28]. CVS allows multiple

developers to easily work on the source code at the same time and logically merge their
changes into a central repository.
• A project wiki page (http://cgi.cs.arizona.edu/apps/tauXSchema) was cre-

ated for bug tracking and user/developer collaboration [37]. The wiki was created using
PMWIKI 2.1.27. A dynamic list of bugs and issues was also created to aid the software
development effort.
• Enhanced maintainability was enabled by extracting common functionality of the tools into

a single Common class. This class performs activities such as XML tree traversal, checking
DOM node types, file I/O, and date formatting. In general, if a piece of code or logic
(however trivial) was needed in more than one place, we abstracted it into the Common
class.

Together, these changes add a level of usability to the overall system.
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8 Evaluation of Representation Classes

This section presents a detailed empirical analysis of each representation class in a variety of
scenarios. The goal is to determine how each class performs with respect to four metrics: size of
representation, time to construct the representation, time to validate the representation, and time
to reconstruct an arbitrary slice. We first describe the motivation for this evaluation and present
the methodology used in our experiments. We then analyze the results of the experiments and we
conclude with general observations and recommendations.

8.1 Motivation

When choosing a representation for a temporal XML document, we consider several characteris-
tics in the decision making process. Consider the following examples.
• A user wants to transmit a document across the country on the internet. Here, the size of

the representation is the most important feature.
• A user makes frequent updates to a file, resulting in frequent creations of the representation.

Here, the time taken to create the representation will be the most important feature.
• A user wants to frequently select different versions of a document, an operation called tem-

poral slicing. Here, the time taken to extract the original documents is the most important
feature.
• A user makes frequent updates to a file and must always validate the document to ensure

correctness. Here, both the time taken to create and validate the representation are the most
important features.

It is not clear whether any single representation class can best meet the needs of every user in
every scenario. Our aim is to quantify the features of each class so that informed decisions can be
made by the user, taking into account their particular needs.

8.2 Methodology

Given the above motivation, we will address the following questions about each representation
class. Is the size of the representation linear in the number and size of slices, or does it provide
some level of compression? Does the overhead of the representation result in a large amount of
time required to squash and unsquash? Can we validate the representation quickly enough to allow
practical use?

To answer these questions, we first extended the τXSchema tools to support each represen-
tation type7 and then ran a set of experiments to test and evaluate each representation. In these
experiments, we were interested in how the representation would respond to several independent
variables: the amount of change from slice to slice, the types of changes within each slice, the
number of slices in the system, and the size of each individual slice. To quantify the changes,
we measured several dependent variables: the size of the resulting representation, the time taken
to create the representation from the original documents, the time taken to extract the original
documents from the representation, and the time taken to validate the representation against the
original schema(s) and temporal constraints. Tables 3 and 4 summarize the experiment.

We have created tools8 to help build temporal cases dynamically based on the four experiment
parameters and to automate the run process and output the results. The experiments were executed

7Due to time and tool constraints, we could not evaluate the reference-based representation. However, it is believed
that this representation would perform similarly to the item-based representation under typical circumstances.
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Independent Variables
Name Expressed as Values

Slice Size Number of elements 10, 20, 40, 80, ..., 2000
Number of Slices Number of files 10, 20, 40, 80, ..., 2000
Amount of Change Percentage of changed elements 0, 2, 4, 8, 16, 32, 64
Type of Change Percent value change vs. new element (0, 100), (25, 75), (50, 50), (75, 25), (0, 100)

Table 3: The independent variables considered in the experiments.

Dependent Variables
Name Measured by

Representation size Kilobytes on disk of the representation
Time taken to squash files Seconds of execution
Time taken to unsquash files Seconds of execution
Time taken to validate files Seconds of execution

Table 4: The dependent variables measured in the experiments.

on a machine running Ubuntu 8.10 with a 2.83 GHz Intel Core2 quad-core processor and 8 GB
main memory. The testing scripts were created in Perl and the data was analyzed in Matlab.

Note that all of the following experiments were run with the temporal constraint functionality
placed at the tool level as opposed to the representational schema level as described in Section 5.
Also note that schema-versioning is not considered in the following examples due to the com-
plexity it adds to the creation of large, random scenarios. However, we believe that these results
will provide a good initial understanding of the behavior of each representation class since each
schema change results in a new wall, with the representation structure remaining the same within
each wall. Thus, a schema change will have the same effect across all representation types.

We note here that the execution times presented in the following sections contain both I/O and
execution times—the entire execution time of the process. Since caching was not disabled during
the experiments, it is possible that some experiments unfairly report smaller execution times; this
might happen if an experiment involved reading a file that was already in the O/S cache.

8.3 Initial Sensitivity to Parameters

Initial experiments were run to test the sensitivity of each representation type to the variables
that controlled the amount and type of change in each slice. In particular, we performed runs
with the amount of change set to 1%, 2%, 4%, ..., 64% and with the type of change set to (0%
new version, 100% new item), (25%, 75%), (50%, 50%), (75%, 25%), and (100%, 0%). We
also varied the size of each slice (values of 10 and 100) and number of slices (values of 10 and
200). For each combination of parameters, we ran 30 repetitions for each representation class and
took the minimum result (since we are interested in the performance of the tools in isolation, but
the experiments were conducted on a time-shared machine with background processes running).
Interestingly, the results showed that all representation classes were relatively insensitive to the
change-related parameters. This is likely because for each representation class, the amount of
computation overhead for each additional change per file is small when compared to the execution

8See Appendix B for details.
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of the entire tool (e.g., file I/O for each slice, DOM parsing of each file, etc). Appendix C provides
the detailed results of these executions.

As a consequence of these results, for each of our experiments described in the following
sections, we held the amount of change constant at 32% and the type of change constant at (75%,
25%), which represent intermediate values for each.

8.4 SQUASH Results

We first consider the amount of time required for each representation class to squash a temporal
document. Figure 12 displays the results with all classes on the same plot (with a band stretching
across the document size parameter for each class) while Figure 13(a)–13(c) shows each represen-
tation class individuallly. We immediately see that the item-based scheme is particularly sensitive
to the parameters and even modest increases result in a large increase in time. We now briefly
investigate why this happens.

Figures 14(a) and 14(b) show the execution traces of the SQUASH algorithm for the item-
based and edit-based representation classes, respectively. Note that in each case, only the steps
that required a significant portion of the execution time are shown. Table 5 summarizes the ac-
tual exectution time for each step in both classes for three simple scenarios. We immediately see
that for the item-based representation, the bulk of the execution time is being spent on task 1.2.2
(physical to temporal conversion), specifically in the push down operation. The push down oper-
ation recursively calls itself to “push down” the items from the root node down to the <part>

elements; this algorithm involves merging similar versions of an item into a single version. In
these executions, the push down operation is called a total of 342, 642, and 1282 times for the
three input sets, respectively. The edit-based scheme does not have the concept of items, and thus
avoids the penalty of the push down operation. Further, the diff -e call that the edit-based
scheme employs between each slice is relatively inexpensive: on the order of 0.001 seconds to
compare two files with 20 elements each, 0.03 seconds to compare files with 1000 elements each,
and 0.2 seconds to compare files with 10,000 elements each, and 1.65 seconds to compare files
with 100,000 elements each.

Step # Item-based Edit-based Slice-based
(10, 10) (10, 20) (20, 20) (10, 10) (10, 20) (20, 20) (10, 10) (10, 20) (20, 20)

1 2.15 3.99 9.59 0.85 0.99 1.09 0.91 1.13 1.70
1.1 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01
1.2 1.63 3.47 9.04 0.33 0.46 0.56 0.39 0.59 1.15
1.2.1 0.06 0.10 0.14 0.28 0.43 0.51 0.07 0.10 1.14
1.2.2 1.43 3.21 8.46 - - - 0.19 0.24 0.14
1.2.2.1 0.57 1.06 2.38 - - - 0.01 0.02 0.04
1.2.2.2 0.80 2.08 5.67 - - - 0.03 0.05 0.05
1.2.2.3 0.04 0.05 0.09 - - - 0.14 0.17 0.19
1.2.3 0.10 0.11 0.39 - - - 0.08 0.18 0.61

Table 5: The execution times (in seconds) in SQUASH for each task, broken up by representation
type and shown for three different input sets. In these runs, the amount of change was set to .32
and the type of change was set to (75%, 25%).

In order to further investigate the time required for the slice-based and edit-based schemes
under heavier conditions we increased the magnitude of the parameters and the results are shown
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(a) Full view. The item-based class requires orders of
magnitude more time to squash than the slice-based and
edit-based classes.

(b) Zoom view of the slice-based and edit-based classes.

Figure 12: Time required to squash a temporal document. The three band colors correspond to the
different representation types. Each band stretches across {5, 10, 20, 50} elements per slice.
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Figure 13: Time required to squash a temporal document. Here, the lines correspond to different
document sizes, shown in number of elements.

in Figures 13(d)–13(f). We see again that the edit-based scheme has better performance when
compared to the slice-based scheme under the same parameters. Figure 13(f) shows the parameter
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1 Squash

1.1 Parse Input
1.2 Squash_Item

1.2.1 Loop Through Slices
1.2.2 Physical to Temporal

1.2.2.3 Coalesce
1.2.2.2 Push Down
1.2.2.1 Mark Items

1.2.3 Temporal to Physical

(a) Item-based

1 Squash

1.1 Parse Input

1.2.1 Loop Through Slices

1.2 Squash_Edit

(b) Edit-based

Figure 14: The main methods (in terms of time) entered during the execution of SQUASH.
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Figure 15: Size of the resulting temporal document. Note the different scales on the y-axis.

set that first starts to stress the performance of the edit-based scheme (i.e., the parameters that first
cause the execution time to show larger than linear growth); these parameters are roughly 10x the
parameters that stressed the slice-based scheme.

Figures 15(a)–15(c) show the size on disk of the resulting temporal document. As expected,
the slice-based scheme grows linearly with the number of slices and the size of the representation;
this is because this scheme keeps the entire unmodified slice in the representation. However, the
edit- and item-based schemes are able to provide a large amount of compression and keep the file
size relatively low.

8.5 τXMLLINT Results

Here we considered the validation time required for a single temporal cardinality constraint. Fig-
ures 16(a)–16(c) show the amount of time required to validate scenarios with modest number of
slices and size for each slice. We see that while the slice-based and item-based schemes can han-
dle these parameter ranges with relative ease, the edit-based scheme takes orders of magnitude
more time. This is due to the nature of the current implementation of the edit-based scheme: the
temporal document is first unsquashed into a series of slices; then these slices are squashed into
an item-based representation with the timestamp at the root; finally, the item-based representation
is validated in the normal way. Although this implementation benefits from the reuse of several
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Figure 16: Time required to validate the temporal document. Note the different scales on the time
axis; the edit-based scheme takes orders of magnitude longer.
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Figure 17: Time required to validate the temporal document. Note the different scales on the
x-axis. The slice-based scheme can handle roughly four times the number of slices within the
same time period.

existing software modules and is logically correct, it suffers from both high overhead and the bad
performance of the item-based squashing module. These factors add up to significant values, with
the majority of the time coming again from the push down operation of the item-based scheme
(70% of the total execution time).

Figure 17 shows the slice-based and item-based schemes under heavier conditions to illustrate
the magnitude of the parameters that first cause a noticable increase in execution time. We see
that the slice-based scheme can handle roughly four times the number of slices as the item-based
scheme within the same time period. This is because the slice-based scheme requires no pre-
processing before validation can begin, while the item-based scheme must undergo a number of
operations to be in the correct form for validation.

8.6 UNSQUASH Results

Figure 18 shows the amount of time required to extract all slices from the temporal document.
We see that, like the SQUASH results, the edit-based scheme has the best performance, while the
item-based scheme requires significantly more time than the other two schemes. An execution
analysis similar to that for SQUASH was performed and the same conclusions were reached. In
particular, during the unsquash operation, the item-based scheme must perform the opposite of
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Figure 18: The amount of time required to extract all slices from a temporal document. Note the
different x and y axes.

Representation SQUASH Time SQUASH Size UNSQUASH Time τXMLLINT Time
Rank Ratio Rank Ratio Rank Ratio Rank Ratio

Slice-based 2 1.1 3 3.9 2 2.6 1 -
Edit-based 1 - 1 - 1 - 3 41.1
Item-based 3 15.7 2 1.5 3 13.0 2 1.6

Table 6: The overall results of the analysis. The Rank columns indicate the performance of this
representation when compared to the other two (e.g., a rank of 2 means it was the second best).
The Ratio column indicates how much worse this representation performed compared to the top
ranking representation, measured as the average ratio between the two representations.

merging items and pushing down timestamps: it must push up timestamps and unmerge items.
These operations result in a huge number of recursive calls and loops for every item. In contrast,
the edit-based scheme only needs to run the patch command for each edit script. The slice-based
scheme must simply loop though the temporal document and extract each slice with a copy-and-
paste-like method; no preprocessing is needed. Even still, it does not perform as well as the
edit-based scheme.

8.7 Representation Conclusions and Recommendations

The above results show that, as anticipated, no representation scheme provides the best perfor-
mance under all conditions. In particular, while the edit-based scheme shows the fastest time to
squash and unsquash as well as the smallest representation size, it suffers from tremendous over-
head during validation9. On the other hand, the slice-based scheme can be squashed, unsquashed,
and validated quickly but the resulting representation is very large. Further, the item-based scheme
results in a smaller representation and can be validated quickly, but suffers from a large amount of
time to squash and unsquash. Table 6 summarizes the findings.

Our current recommendation would be to use the edit-based scheme for all activities that do
not require temporal validation (although under this assumption, a conventional validator may still

9It should be noted that although the current implementation of edit-based validation is not very efficient, it would
be difficult to find any implementation that would be. The problem lies in the inability to enforce complex temporal
constraints by examining the edit scripts alone. This implies that the first step during validation would always have to
be reconstructing the original slices. Only then could the validation process—whatever that may be—begin.
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make sense to validate the last instance and the one representation in its entirety), and to use the
slice-based scheme in all cases that do require temporal validation. However, if improvements
can be made to the item-based squashing and unsquashing methodologies (i.e., the “push up” and
“push down” operations) in terms of execution time, then the item-based scheme would become
most attractive in all scenarios. In this case, additional analysis would be required to study the
effects of using an item-based scheme in its original form versus a hybrid between the item-based
and the edit-based. For example, one could imagine storing the representation on disk using the
edit-based method, while converting into the item-based scheme for all in-memory operations (e.g,
adding or extracting slices, enforcing temporal constraints). Further, one might consider using a
mix of representation types for different parts of the timeline. For example, a user could use the
slice-based scheme for the five most recent slices, the item-based scheme for the next 300 slices,
and the edit-based scheme for all other slices. This might allow efficient extraction of recent files,
efficient validation for all files in the recent past, and efficient storage for files not likely to be
queried often. The time and space tradeoffs for these options are left for future work.

62



9 Summary and Future Work

In this work we have explored several aspects relating to the representation of temporal data and
their schemas in XML. Our goal was to evaluate disparate representational approaches to provide
an initial characterization of the design space. We addressed this goal through language design,
qualitative and quantitate analysis, and tool enhancement.

9.1 Summary

First, we have extended the language of τXSchema and enhanced the overall organization. We
have introduced temporal schemas and temporal documents that are flexible, robust, modular, and
easy-to-use. Our design is upward compatible with conventional tools and extremely robust in
that temporal data can occur at any level of the system: anything can change. We are able to
capture both document and schema changes and provide the user a simple way to do so. Our
design provides an expressive capability to describe temporal data in many situations.

Second, we have shown which types of temporal constraints may be enforced by a represen-
tational schema and which may not. In particular, we have shown that only sequenced cardinality
and datatype constraints may be enforced via a representational schema. For these two types of
constraints, we have provided a qualitative analysis of the benefits of each placement that gen-
erally conclude that, when possible, functionality should be placed within the representational
schema and not within the tools. These analyses can be used as guidelines by future developers
and researchers.

Third, we have provided an initial characterization of the design space for temporal repre-
sentations which resulted in the definition of four orthogonal representation classes: slice-based,
edit-based, item-based, and reference-based. We have shown how to implement the slice-, edit-,
and item-based representations in a practically useful way using commonly-available tools where
possible. Our evaluation of these classes shows that no representation performs the best under all
conditions; instead, each is best suited for a subset of scenarios. The edit-based scheme provides
the fastest means of creating and extracting the representation, as well as the most compact repre-
sentation. However, this scheme suffers from a large overhead penalty when validating temporal
constraints. In contrast, both the item-based and slice-based schemes can be validated quickly
but require more time for creation and extraction. In general, we recommend that the item-based
representation be used as long as performance enhancements can first be applied to the algorithms.

A fourth contribution was significant implementation and project organization. We imple-
mented schema versioning into the τXSchema tools, along with additional representation types.
We provided a number of project enhancements, such as a uniform structure and interface, logging
capabilities, version control, wiki page for collaboration, and code reorganization to meet common
software engineering paradigms.

Overall, we have uncovered some of the issues relating to representing temporal data and
proposed methods to address these issues. Our analyses will help future researchers and users un-
derstand the trade-offs involved with each representation class. Users concerned with transmitting
files will opt for the edit-based scheme while users concerned with validation time will choose the
item-based scheme. Temporal system designers might consider a hybrid approach between the
item-based and edit-based.
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9.2 Future Work

Several avenues exist to enhance our understanding of the issues regarding representations that this
thesis presented. The main concerns would be tool implementation, followed by a more rigorous
evaluation technique.

9.2.1 Tool Implementation

In their current implementation, the tools suffer from a few obvious inefficiencies which greatly
impact execution time and memory requirements. As an example, consider the implementation
of the item-based representation class. As noted in Section 8, the tools currently rely on certain
“push-up” and “push-down” routines for squashing a series of slices; the repetitive application
of these routines resulted in much larger execution times when compared to other representation
classes. Other similar improvements can be made to significantly impact the efficiency of the
tools.

The functionality placement analysis could also be extended to more fully understand the
impact of the validation time of specific temporal constraints, allowing the tools to be fine-tuned
for performance. For example, does a sequenced cardinality constraint validate faster than a non-
sequenced referential constraint? What are the characteristics of faster-validating constraints?
How can we use these results to increase the performance of the slower-validating constraints?

Another enhancement involves the completion of τXMLLINT so that the complete set of tem-
poral constraints are functional and the new language enhancements are fully implemented. At
present, only a subset of such constraints are functional. Also, in order to achieve the desired up-
ward compatibility with the conventional version of XMLLINT, additional command-line options
need to be implemented in τXMLLINT so that it closely mimics the behavior of the conventional
tool.

As mentioned previously, the current implementation of τXMLLINT uses a DOM parser to
parse the input XML documents. However, it may be advantageous to instead use a Simple API
for XML (SAX) parser [25]. While DOM parsers provide certain advantages to the programmer—
the most important of which is a full tree representation of the data that allows continuous random
access to the entire tree—SAX parsers can provide more memory-efficient handling of large doc-
uments. The amount of memory required for SAX parsers is typically much smaller than that of
a DOM parser, and SAX parsers also significantly outperform DOM parsers in terms of execution
time.

In order for the τXSchema tools to change from a DOM parser to a SAX parser, we would
unfortunately be required to significantly change the current implementation. Currently, the tools
create a DOM Document object for each file in the temporal system; this Document is then
passed around and used within each of the tools directly. For example, certain elements are di-
rectly extracted from the Document by name or value, depending on the context of the program,
to determine the next execution path. However, since SAX does not provide these same mecha-
nisms of direct access to data, an entirely different approach must be taken to achieve the same
effects. These changes would need to implemented throughout the entire code base, resulting
in a significant effort. More investigation is needed to determine the actual amount of changes
required, and thus the feasibility of such a change.
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9.2.2 Empirical Evaluation

This research presents an initial characterization of the performance of the four representation
classes. In order to achieve a higher level of rigor for our analysis, it is necessary to address
shortcomings in both our measurement methodology and choice of experiments. First, standard
XML benchmark data sets, such as DBLP [20] and other very large data sets, should be considered.
The main difficulty here would be creating and managing a set of versions of these large files so
that the τXSchema tools can be applied.

We could improve our analysis so that disk and memory caching issues are addressed; namely,
in the current results, it was possible for two experiments to be run on the same file and the second
experiment would receive the benefit of the file being cached. Disabling such caching will provide
a more consistent measuring technique and also allow us to accurately discriminate between I/O
time and execution time.

We can extend the type of experiments that we run by including scenarios in which slices ex-
perience a large variation in size (i.e., number of elements in the document) and XML complexity
(i.e., type of tree, depth of tree, number of references) over time.

We can further test the representation classes by considering incremental scenarios in which a
single slice was squashed into an already-squashed representation.

We claim in Section 8.2 that a schema change wall will have the same effect on execution time
and representation size across all four representation classes. Work needs to be done to verify this
claim and fully understand the effect of schema-versioning.

Figure 20(b) in Appendix C shows a small, unexpected “hump” in the squash execution time
for the edit-based class; more work is needed to understand this anomaly.

9.2.3 Other

In the current version of Section 5 (Functionality Placement: Schema vs. Tools), we argue our
points using an intuitive, less formal approach and we include examples and counterexamples as
the main technique for illustrating our arguments. However, we would like to move towards a more
rigorous approach by creating a formal environment to describe XML Schema data modeling,
capabilities, and constraint enforcement functionality. In such an approach we would be able to
propose and formally prove various theorems to better illustrate our arguments.

Work can be done to consider indexing issues for each representation class, and additional
empirical experiments can be performed to quantify the performance of each class.

We can extend our idea of representation classes to also include database-oriented representa-
tions, as opposed to only considering text-based representations.

Further enhancements to τXSchema in general are suggested by Joshi [19].
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A Schemas

A.1 TSSchema: Schema for Temporal Schema

Listing 84: TSSchema: Schema for Temporal Schema
1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema targetNamespace="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema"
3 xmlns:ts="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema"
4 xmlns:xs="http://www.w3.org/2001/XMLSchema"
5 elementFormDefault="qualified"
6 version="December 5, 2008">
7

8 <xs:include schemaLocation="./SliceSequence.xsd"/>
9

10 <xs:element name="temporalSchema">
11 <xs:complexType>
12 <xs:sequence>
13

14 <xs:element name="conventionalSchema" minOccurs="1" maxOccurs="1">
15 <xs:complexType>
16 <xs:choice>
17 <xs:element name="sliceSequence" type="ts:sliceSequenceType"/>
18 <xs:element name="include" type="ts:includeType"/>
19 </xs:choice>
20 </xs:complexType>
21 </xs:element>
22

23 <xs:element name="annotationSet" minOccurs="0" maxOccurs="1">
24 <xs:complexType>
25 <xs:choice>
26 <xs:element name="sliceSequence" type="ts:sliceSequenceType"/>
27 <xs:element name="include" type="ts:includeType"/>
28 </xs:choice>
29 </xs:complexType>
30 </xs:element>
31

32 </xs:sequence>
33 </xs:complexType>
34 </xs:element>
35 </xs:schema>
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A.2 ASchema: Schema for Annotation Schema

Listing 85: ASchema: Schema for Annotation Schema
1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema targetNamespace="http://www.cs.arizona.edu/tau/tauXSchema/ASchema"
3 xmlns:a="http://www.cs.arizona.edu/tau/tauXSchema/ASchema"
4 xmlns:xs="http://www.w3.org/2001/XMLSchema"
5 elementFormDefault="qualified"
6 version="December 5, 2008">
7

8

9 <xs:element name="annotationSet">
10 <xs:complexType>
11 <xs:all>
12

13 <xs:element name="logical" type="a:logicalType" minOccurs="0" maxOccurs="1" />
14 <xs:element name="physical" type="a:physicalType" minOccurs="0" maxOccurs="1"/>
15

16 </xs:all>
17 </xs:complexType>
18 </xs:element>
19

20

21 <xs:complexType name="logicalType">
22 <xs:sequence>
23 <xs:element name="include" minOccurs="0" maxOccurs="unbounded">
24 <xs:complexType>
25 <xs:attribute name="annotationLocation" type="xs:anyURI"/>
26 </xs:complexType>
27 </xs:element>
28 <xs:element name="default" minOccurs="0">
29 <xs:complexType>
30 <xs:sequence>
31 <xs:element name="format" minOccurs="0">
32 <xs:complexType>
33 <xs:attribute name="plugin" type="xs:string" use="optional"/>
34 <xs:attribute name="granularity" type="xs:string" use="optional"/>
35 <xs:attribute name="calendar" type="xs:string" use="optional"/>
36 <xs:attribute name="properties" type="xs:string" use="optional"/>
37 <xs:attribute name="valueSchema" type="xs:anyURI" use="optional"/>
38 </xs:complexType>
39 </xs:element>
40 </xs:sequence>
41 </xs:complexType>
42 </xs:element>
43 <xs:element name="item" minOccurs="0" maxOccurs="unbounded">
44 <xs:complexType>
45 <xs:sequence>
46 <xs:element name="validTime" minOccurs="0">
47 <xs:complexType>
48 <xs:sequence>
49 <xs:element name="contentVaryingApplicability"
50 minOccurs="0" maxOccurs="unbounded">
51 <xs:complexType>
52 <xs:attribute name="begin" type="xs:string" use="optional"/>
53 <xs:attribute name="end" type="xs:string" use="optional"/>
54 </xs:complexType>
55 </xs:element>
56 <xs:element name="maximalExistence" minOccurs="0">
57 <xs:complexType>
58 <xs:attribute name="begin" type="xs:string" use="optional"/>
59 <xs:attribute name="end" type="xs:string" use="optional"/>
60 </xs:complexType>
61 </xs:element>
62 <xs:element name="frequency" type="xs:string" minOccurs="0"/>
63 </xs:sequence>
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64 <xs:attribute name="kind"
65 type="a:kindType" use="optional"/>
66 <xs:attribute name="content"
67 type="a:contentType" use="optional"/>
68 <xs:attribute name="existence"
69 type="a:existenceType" use="optional"/>
70 </xs:complexType>
71 </xs:element>
72 <xs:element name="transactionTime" minOccurs="0">
73 <xs:complexType>
74 <xs:sequence>
75 <xs:element name="frequency" type="xs:string" minOccurs="0"/>
76 </xs:sequence>
77 <xs:attribute name="kind" type="a:kindType" use="optional"/>
78 <xs:attribute name="content" type="a:contentType" use="optional"/>
79 <xs:attribute name="existence" type="a:existenceType" use="optional"/>
80 </xs:complexType>
81 </xs:element>
82 <xs:element name="itemIdentifier" minOccurs="0">
83 <xs:complexType>
84 <xs:sequence>
85 <xs:element name="keyref" minOccurs="0" maxOccurs="unbounded">
86 <xs:complexType>
87 <xs:attribute name="refName"
88 type="xs:string" use="required"/>
89 <xs:attribute name="refType"
90 type="a:keyrefTypeII" use="optional"/>
91 </xs:complexType>
92 </xs:element>
93 <xs:element name="field" minOccurs="0" maxOccurs="unbounded">
94 <xs:complexType>
95 <xs:attribute name="path" type="xs:string" use="required"/>
96 </xs:complexType>
97 </xs:element>
98 </xs:sequence>
99 <xs:attribute name="name"

100 type="xs:string" use="optional"/>
101 <xs:attribute name="timeDimension"
102 type="a:timeDimensionType" use="optional"/>
103 </xs:complexType>
104 </xs:element>
105 <xs:element name="attribute" minOccurs="0" maxOccurs="unbounded">
106 <xs:complexType>
107 <xs:sequence>
108 <xs:element name="validTime" minOccurs="0">
109 <xs:complexType>
110 <xs:sequence>
111 <xs:element name="contentVaryingApplicability"
112 minOccurs="0" maxOccurs="unbounded">
113 <xs:complexType>
114 <xs:attribute name="begin"
115 type="xs:string" use="optional"/>
116 <xs:attribute name="end"
117 type="xs:string" use="optional"/>
118 </xs:complexType>
119 </xs:element>
120 <xs:element name="frequency" type="xs:string" minOccurs="0"/>
121 </xs:sequence>
122 <xs:attribute name="kind"
123 type="a:kindType" use="required"/>
124 <xs:attribute name="content"
125 type="a:contentType" use="optional"/>
126 </xs:complexType>
127 </xs:element>
128 <xs:element name="transactionTime" minOccurs="0">
129 <xs:complexType>
130 <xs:sequence>
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131 <xs:element name="frequency" type="xs:string" minOccurs="0"/>
132 </xs:sequence>
133 </xs:complexType>
134 </xs:element>
135 </xs:sequence>
136 <xs:attribute name="name" type="xs:string" use="optional"/>
137 </xs:complexType>
138 </xs:element>
139 </xs:sequence>
140 <xs:attribute name="target" type="xs:anyURI" use="required"/>
141 </xs:complexType>
142 </xs:element>
143 </xs:sequence>
144 </xs:complexType>
145

146 <!-- Simple Types used by the logical annotations above -->
147 <xs:simpleType name="kindType">
148 <xs:restriction base="xs:string">
149 <xs:enumeration value="state"/>
150 <xs:enumeration value="event"/>
151 </xs:restriction>
152 </xs:simpleType>
153 <xs:simpleType name="keyrefTypeII">
154 <xs:restriction base="xs:string">
155 <xs:enumeration value="snapshot"/>
156 <xs:enumeration value="itemIdentifier"/>
157 </xs:restriction>
158 <!-- II in "keyrefTypeII" stands for ItemIdentifier -->
159 </xs:simpleType>
160 <xs:simpleType name="contentType">
161 <xs:restriction base="xs:string">
162 <xs:enumeration value="constant"/>
163 <xs:enumeration value="varying"/>
164 </xs:restriction>
165 </xs:simpleType>
166 <xs:simpleType name="existenceType">
167 <xs:restriction base="xs:string">
168 <xs:enumeration value="constant"/>
169 <xs:enumeration value="varyingWithGaps"/>
170 <xs:enumeration value="varyingWithoutGaps"/>
171 </xs:restriction>
172 </xs:simpleType>
173 <xs:simpleType name="timeDimensionType">
174 <xs:restriction base="xs:string">
175 <xs:enumeration value="validTime"/>
176 <xs:enumeration value="transactionTime"/>
177 <xs:enumeration value="bitemporal"/>
178 </xs:restriction>
179 </xs:simpleType>
180

181

182 <xs:complexType name="physicalType">
183 <xs:sequence>
184 <xs:element name="include" minOccurs="0" maxOccurs="unbounded">
185 <xs:complexType>
186 <xs:attribute name="annotationLocation" type="xs:anyURI"/>
187 </xs:complexType>
188 </xs:element>
189 <xs:element name="default" minOccurs="0">
190 <xs:complexType>
191 <xs:sequence>
192 <xs:element name="format" minOccurs="0">
193 <xs:complexType>
194 <xs:attribute name="plugin"
195 type="xs:string" use="optional"/>
196 <xs:attribute name="granularity"
197 type="xs:string" use="optional"/>

74



198 <xs:attribute name="calendar"
199 type="xs:string" use="optional"/>
200 <xs:attribute name="properties"
201 type="xs:string" use="optional"/>
202 <xs:attribute name="valueSchema"
203 type="xs:string" use="optional"/>
204 </xs:complexType>
205 </xs:element>
206 </xs:sequence>
207 </xs:complexType>
208 </xs:element>
209 <xs:element name="stamp" minOccurs="0" maxOccurs="unbounded">
210 <xs:complexType>
211 <xs:sequence>
212 <xs:element name="stampKind">
213 <xs:complexType>
214 <xs:sequence>
215 <xs:element name="format" minOccurs="0">
216 <xs:complexType>
217 <xs:attribute name="plugin"
218 type="xs:string" use="optional"/>
219 <xs:attribute name="granularity"
220 type="xs:string" use="optional"/>
221 <xs:attribute name="calendar"
222 type="xs:string" use="optional"/>
223 <xs:attribute name="properties"
224 type="xs:string" use="optional"/>
225 <xs:attribute name="valueSchema"
226 type="xs:string" use="optional"/>
227 </xs:complexType>
228 </xs:element>
229 </xs:sequence>
230 <xs:attribute name="timeDimension"
231 type="a:timeDimensionType" use="optional"/>
232 <xs:attribute name="stampBounds"
233 type="a:stampType" use="optional"/>
234 </xs:complexType>
235 </xs:element>
236 <xs:element name="orderBy" minOccurs="0">
237 <xs:complexType>
238 <xs:sequence>
239 <xs:element name="field" maxOccurs="unbounded">
240 <xs:complexType>
241 <xs:choice>
242 <xs:element name="target" type="xs:string"/>
243 <xs:element name="time">
244 <xs:complexType>
245 <xs:attribute name="dimension" type="a:timeDimensionType"/>
246 </xs:complexType>
247 </xs:element>
248 </xs:choice>
249 </xs:complexType>
250 </xs:element>
251 </xs:sequence>
252 </xs:complexType>
253 </xs:element>
254 </xs:sequence>
255 <xs:attribute name="target"
256 type="xs:string" use="required"/>
257 <xs:attribute name="dataInclusion"
258 type="a:dataInclusionType" use="optional"/>
259 </xs:complexType>
260 </xs:element>
261 </xs:sequence>
262 </xs:complexType>
263

264
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265 <xs:simpleType name="stampType">
266 <xs:restriction base="xs:string">
267 <xs:enumeration value="step"/>
268 <xs:enumeration value="extent"/>
269 </xs:restriction>
270 </xs:simpleType>
271 <xs:simpleType name="dataInclusionType">
272 <xs:restriction base="xs:string">
273 <xs:enumeration value="expandedEntity"/>
274 <xs:enumeration value="referencedEntity"/>
275 <xs:enumeration value="expandedVersion"/>
276 <xs:enumeration value="referencedVersion"/>
277 </xs:restriction>
278 </xs:simpleType>
279

280 </xs:schema>
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A.3 SliceSequenceSchema: Schema for Slice Sequences

Listing 86: SliceSequenceSchema: Schema for Slice Sequences
1 <?xml version="1.0"?>
2 <xs:schema
3 xmlns:xs="http://www.w3.org/2001/XMLSchema"
4 elementFormDefault="qualified">
5

6 <xs:complexType name="sliceSequenceType">
7 <xs:sequence>
8 <xs:element name="slice" minOccurs="1" maxOccurs="unbounded">
9 <xs:complexType>

10 <xs:attribute name="location" type="xs:string" use="required"/>
11 <xs:attribute name="begin" type="xs:date" use="required"/>
12 <xs:attribute name="end" type="xs:date" use="optional"/>
13 </xs:complexType>
14 </xs:element>
15 </xs:sequence>
16 </xs:complexType>
17

18 <xs:complexType name="includeType">
19 <xs:attribute name="schemaLocation" type="xs:string" use="required"/>
20 </xs:complexType>
21 </xs:schema>
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A.4 TDSchema: Schema for Temporal Document

Listing 87: TDSchema: Schema for Temporal Document
1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema targetNamespace="http://www.cs.arizona.edu/tau/tauXSchema/TDSchema"
3 xmlns:td="http://www.cs.arizona.edu/tau/tauXSchema/TDSchema"
4 xmlns:xs="http://www.w3.org/2001/XMLSchema"
5 elementFormDefault="qualified"
6 version="December 5, 2008">
7

8 <xs:include schemaLocation="./SliceSequence.xsd"/>
9

10 <xs:element name="temporalDocument">
11 <xs:complexType>
12 <xs:sequence>
13

14 <xs:element name="temporalSchemaSet" minOccurs="1" maxOccurs="1">
15 <xs:complexType>
16 <xs:sequence>
17 <xs:element name="temporalSchema" minOccurs="1" maxOccurs="unbounded">
18 <xs:complexType>
19 <xs:attribute name="location" type="xs:string"/>
20 </xs:complexType>
21 </xs:element>
22 </xs:sequence>
23 </xs:complexType>
24 </xs:element>
25

26 <xs:element name="sliceSequence" type="td:sliceSequenceType"/>
27

28 </xs:sequence>
29 </xs:complexType>
30 </xs:element>
31 </xs:schema>
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A.5 TVSchema: Schema for Timestamps

Listing 88: TVSchema: Schema for Timestamps
1 <xsd:schema targetNamespace="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema"
2 xmlns:tv="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema"
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 elementFormDefault="qualified"
5 attributeFormDefault="unqualified">
6 <xsd:element name="timestamp_TransStep">
7 <xsd:complexType>
8 <xsd:attribute name="begin" type="xsd:date" />
9 </xsd:complexType>

10 </xsd:element>
11 <xsd:element name="timestamp_TransExtent">
12 <xsd:complexType>
13 <xsd:attribute name="begin" type="xsd:date" />
14 <xsd:attribute name="end" type="xsd:date" />
15 </xsd:complexType>
16 </xsd:element>
17 <xsd:element name="timestamp_ValidStep">
18 <xsd:complexType>
19 <xsd:attribute name="begin" type="xsd:date" />
20 </xsd:complexType>
21 </xsd:element>
22 <xsd:element name="timestamp_ValidExtent">
23 <xsd:complexType>
24 <xsd:attribute name="begin" type="xsd:date" />
25 <xsd:attribute name="end" type="xsd:date" />
26 </xsd:complexType>
27 </xsd:element>
28 </xsd:schema>
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B Evaluation Tools

B.1 Slice Generator

Listing 89: Slice Generator script
1 #!/usr/bin/perl -w
2 ################################################################
3 #
4 # Author: Stephen W. Thomas
5 # Date: Fall 2008
6 # Purpose: To generate a large number of XML slices. The
7 # output of this script is a set of sliceXX.xml
8 # files along with config.xml file used in the
9 # tools.

10 #
11 #################################################################
12

13 if ($#ARGV < 3){
14 print "Usage: $0 amountChange docSize changeKind numSlices\n";
15 exit 1;
16 }
17

18 $amountChange = $ARGV[0];
19 $docSize = $ARGV[1];
20 $changeKind = $ARGV[2];
21 $numSlices = $ARGV[3];
22

23 # Set begin date
24 $lastDate = "2008-01-01";
25

26 my $numParts = $docSize;
27

28 # Probability that any given element is changed
29 my $pNewVersion = $amountChange * $changeKind;
30

31 # Probability that a new item (element) is created
32 my $pNewItem = $amountChange * (1.0-$changeKind);
33

34 #Initialize values
35 $totalPossible = $numParts * (10*$numSlices);
36 my @partQuant;
37 for ($j=0; $j < $totalPossible; ++$j){
38 $partQuant[$j] = $j;
39 }
40

41 # Print header of config document
42 open(CONFIG, ">config.xml");
43 print CONFIG "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n";
44 print CONFIG "<config bundle=\"./test_bundle.xml\"
45 xmlns=\"http://www.cs.arizona.edu/tau/tauXSchema/ConfigSchema\">\n";
46

47 # Print each slice to disk, and add the name of the slice to the config file
48 for ($i = 0; $i <= $numSlices; ++$i){
49 printLargeFile($i);
50 addSnapshotToConfig($i);
51 }
52 print CONFIG "</config>\n";
53

54

55 # Adds an entry into the config file
56 sub addSnapshotToConfig{
57 $outfile = "slice$i.xml";
58 $date1 = $lastDate;
59 $lastDate = incrementDate($date1);
60 print CONFIG
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61 " <snapshot file=\"$outfile\" beginDate=\"$date1\" endDate=\"$lastDate\"/>\n";
62 }
63

64

65 # Increments a simple date format "YYYY-MM-DD" with wrappint
66 sub incrementDate{
67 $firstDate = shift(@_);
68 $incMonth = 0;
69 $incYear = 0;
70

71 @ar = split("-", $firstDate);
72 $firstYear = $ar[0];
73 $firstMonth = $ar[1];
74 $firstDay = $ar[2];
75

76 $newDay = $firstDay + 1;
77 if ($newDay > 28){
78 $newDay = 1;
79 $incMonth = 1;
80 }
81 $newMonth = $firstMonth + $incMonth;
82 if ($newMonth > 12){
83 $newMonth = 1;
84 $incYear = 1;
85 }
86 $newYear = $firstYear + $incYear;
87

88 return sprintf "%4d-%02d-%02d", $newYear,$newMonth,$newDay;
89 }
90

91

92 ########################################################################
93 # In each additional slice, we may add more elements to each section.
94 # We may also change the content of existing elements.
95 ########################################################################
96 sub printLargeFile{
97

98 # Should we increase the number of <part> elements?
99 if (rand() <= $pNewItem){

100 $numParts = $numParts + rand(10);
101 }
102

103 $outfile = "slice$i.xml";
104 open(OUT, ">$outfile");
105 print OUT "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n";
106 print OUT "<root>\n";
107

108 print OUT "<parts>\n";
109

110 # Print out every <part> element that we have.
111 for ($j=0; $j < $numParts; ++$j){
112

113 # Should we create a new "version" of this element?
114 # A new version is created by just changing the value
115 # of the <quantity> subelement.
116 if (rand() <= $pNewVersion){
117 $partQuant[$j]++;
118 }
119

120 print OUT " <part>\n";
121 print OUT " <name>part_$j</name>\n";
122 print OUT " <id>$j</id>\n";
123 print OUT " <quantity>$partQuant[$j]</quantity>\n";
124 print OUT " </part>\n";
125 }
126 print OUT "</parts>\n";
127
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128 print OUT "</root>\n";
129 }
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B.2 Scenario Tester

Listing 90: AllRuns script
1 #!/usr/bin/perl
2 ################################################################
3 #
4 # Author: Stephen W. Thomas
5 # Date: Fall 2008
6 # Purpose: To execute a large set of runs and output results
7 # to stdout.
8 #
9 #################################################################

10

11 use Time::HiRes qw( gettimeofday tv_interval );
12

13 my $N = 30;
14

15 # Define the variables and their values
16 my @amountChanges = (0, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64);
17 my @docSizes = (1000, 4000, 16000, 64000);
18 my @degrees = (0, .25, .5, .75, 1);
19 my @numSlices = (100, 1000, 5000, 10000);
20

21 my ($t1, $t2, $squashTime, $squashSize, $valTime, $unsquashTime);
22

23 # Full factorial design space. Run all cases.
24 foreach my $amountChange (@amountChanges) {
25 foreach my $docSize (@docSizes) {
26 foreach my $degree (@degrees) {
27 foreach my $numSlice (@numSlices) {
28

29 $squashTime = 0;
30 $squashSize = 0;
31 $valTime = 0;
32 $unsquashTime = 0;
33

34 for (my $i=0; $i<$N; ++$i){
35

36 #print "Producing test case $amountChange $docSize $degree $numSlice \n";
37 system("generator.pl $amountChange $docSize $degree $numSlice");
38

39

40 # Run Squash
41 $t1 = [gettimeofday];
42 system("squash config.xml");
43 $squashTime += tv_interval($t1);
44 $squashSize += `ls -l squashed.xml | awk '{ print\$5 }'`;
45

46

47 # Run tXMLLint
48 $t1 = [gettimeofday];
49 system("txmllint config.xml squashed.xml > /dev/null");
50 $valTime += tv_interval($t1);
51

52 # Run UnSquash
53 $t1 = [gettimeofday];
54 system("unsquash config.xml squashed.xml");
55 $unsquashTime += tv_interval($t1);
56

57 system("rm slice*");
58 system("rm squashed.xml");
59

60 }
61

62 # Get averages
63 $squashTime = $squashTime / $N;
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64 $squashSize = $squashSize / $N;
65 $valTime = $valTime / $N;
66 $unsquashTime = $unsquashTime / $N;
67

68 # Output results
69 printf "%12.5f %12.5f %12.5f %12.5f %12.5f %12.5f %12.5f %12.5f\n",
70 $amountChange, $docSize, $degree, $numSlice,
71 $squashTime, $squashSize,
72 $valTime, $unsquashTime;
73 }
74 }
75 }
76 }
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C Initial Sensitivity to Parameters

This appendix provides details on the results of the initial experiments executed. The goal was
to determine whether or not the dependent variables of interest were sensitive to the amount of
change and type of change between each slice. Figure 19 shows the results of SQUASH in these
scenarios. We see that for each representation type, as the percentage of change increases, the time
required to squash the document does not increase significantly. Figure 20 shows the results of a
larger scenario, but the trends exhibited by the results are similar.
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Figure 19: Time required to squash 10 slices, each with about 10 elements. The slice-based
and item-based representation schemes show almost no difference in performance between both
percentage change increases (x-axis) or type of change increased (lines). The edit-based scheme
shows some small variation, but no general trend is evident and the absolute amount of change is
small.
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Figure 20: Time required to squash 100 slices, each with about 200 elements (20 slices with
20 elements in the case of the item-based scheme). Again, the slice-based and item-based rep-
resentation schemes show almost no difference in performance between both percentage change
increases (x-axis) or type of change (lines). The edit-based scheme shows some small variation,
but no general trend is evident and the absolute amount of change is small.

Both UNSQUASH and τXMLLINT show similar trends. In effort to reduce to number of
experiments run, we conclude that the type and frequency of change is not a large factor in repre-
sentation performance, and thus we can fix these parameters for the remainder of the experiments.
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