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ABSTRACT
Software repositories, such as source code, email archives,
and bug databases, contain unstructured and unlabeled text
that is difficult to analyze with traditional techniques. We
propose the use of statistical topic models to automatically
discover structure in these textual repositories. This dis-
covered structure has the potential to be used in software
engineering tasks, such as bug prediction and traceability
link recovery. Our research goal is to address the challenges
of applying topic models to software repositories.
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1. INTRODUCTION
Understanding and maintaining the source code of a soft-

ware project is difficult for both developers and managers.
The complexity of source code tends to increase as it evolves,
leading to bugs and increased maintenance costs.

Recently, the field of software engineering (SE) has at-
tempted to combat this problem by mining the repositories
related to a software project, such as source code changes,
email archives, bug databases, and execution logs [8]. Re-
search shows that interesting and practical results can be
obtained from these repositories, allowing developers and
managers to better understand their projects and ultimately
increase the quality of their products [15].

However, techniques to understand the textual data in
these repositories are still relatively immature and are a
current research challenge because the data is unstructured,
unlabeled, and noisy [8]. The size of this data, coupled with
its lack of structure, makes analysis difficult or impossible.

Topic Models. Statistical topic models, such as latent
Dirichlet allocation (LDA), are statistical models that pro-
vide a means to automatically index, search, cluster, and
structure unstructured and unlabeled documents [3]. Topic
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models accomplish these tasks by discovering a set of top-
ics within the documents, where a topic is a collection of
co-occurring words. For example, a topic might contain the
words {mouse click left right move scroll}, because these
words tend to occur in the same documents. Each docu-
ment is assigned a set of topics that describe it. Using this
discovered structure, documents can be linked through the
topics they contain, and metrics can be calculated for each
topic, such as popularity or scatter [13].

Originally developed in the field of information retrieval,
topic models have been successfully adapted to other do-
mains such as social sciences [11] and computer vision [2].

2. RESEARCH OVERVIEW
We hypothesize that statistical topic models can be used

to automatically discover structure in the textual data found
in software repositories. Further, we think that this dis-
covered structure can directly contribute to the solution of
practical software engineering tasks, such as bug prediction,
software evolution, and traceability link recovery.

In addition to discovering structure, topic models are promis-
ing for several reasons. First, topic models require no train-
ing data, which makes them easy to use in practical settings.
Second, topic models operate directly on the raw, unstruc-
tured text without expensive data acquisition or preparation
costs. And finally, topic models have proven to be fast and
scalable to millions of documents or more [10].

Topic models can be applied to any of several software
repositories of interest, such as the identifier names and com-
ments within the source code, bug reports in a bug database,
email archives, and execution logs.

Research Goals. The overarching goal of our research is
to address the challenges of bringing topic models into the
domain of software engineering. Specifically, this includes:

– Understanding the peculiarities of the data in our domain.
Topic models have been developed and optimized for free-
flowing natural text, such as articles, books, and blogs.
However, the datasets in our domain differ. For example,
source code contains programming language constructs
and identifier names; bug reports contain a mix of nat-
ural text, source code, and stack traces.

– Optimizing techniques for our domain. The preprocessing
of source code for analysis with topic models is an impor-
tant step, but there is no standard within our community.
It is currently not clear whether identifier names, com-
ments, sting literals, or some combination should be con-
sidered. Additionally, should we remove stop words, split
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identifier names into multiple words, apply word stem-
ming, and remove common and rare words?

In addition, choosing the right parameters (e.g., number
of topics) for the topic model is an open problem [6]. The
number of topics has a big impact on the results of topic
models, but there is no consensus in our community as
to which values are best. Some initial work has provided
guidance [6], but more work needs to be performed.

– Making results of topic models easier to interpret. Re-
searchers in our domain have treated topic models as a
“black box”. It is not clear how to interpret the results of
topic models, and thus it is not easy to determine whether
one topic model is better than another. We aim to make
topic models more transparent to our community so that
topic models can be better utilized in practical settings.

– Analyzing successive versions of source code. Several dif-
ferent topic evolution models have been proposed to char-
acterize how a topic evolves over time, but were built for
data different from source code, such as yearly conference
proceedings or blog posts. Our initial results show that
this difference can negatively affect results [12].

– Adapting topic models to solve practical software engineer-
ing problems. We aim to use the above results to apply
topic models to practical SE tasks, such as bug prediction,
software evolution, and traceability link recovery.

Related Work. Most work involving the unstructured text
in software repositories thus far has used non-statistical IR
models, such as the vector space model (VSM) or latent
semantic indexing (LSI). While these models have produced
promising results, LDA has been shown to be superior to
both VSM and LSI in terms of disambiguating synonyms
and polysemes, and creating more coherent topics [7].

Indeed, researchers in SE are beginning to use LDA to
mine software repositories. These studies focus on concept
mining [4], constructing source code search engines [14], or
recovering traceability links between artifacts [1].

However, many opportunities are still unexplored. Sev-
eral repositories remain largely unanalyzed by topic models,
including email archives and bug repositories. The evolution
of topics over time in source code has only received an initial
treatment [9]. An initial study has used topic models to de-
rive a coupling metric that was shown to correlate well with
bugs [5], although many topic metrics remain unexplored.

Progress Thus Far. We have performed two initial quali-
tative studies on using topic models to detect the evolution
of topics in source code [12,13]. Our results indicate that de-
tected changes in topics recovered by LDA correspond well
(92%) to the actual change activities in the source code [13],
and that analyzing only the changes between source code
versions, rather than the entire versions with duplication,
leads to a more accurate model of topic evolution [12].

Evaluation Plan. Evaluating topic models is a difficult
task, due to a lack of ground truth [16]. We will therefore
rely on secondary evaluation techniques based on the spe-
cific SE tasks at hand. For example, we can evaluate the
performance of bug prediction models using recall and pre-
cision measures on oracle datasets; we can measure the per-
formance of software evolution models by manually compar-
ing the detected evolution with existing project documenta-
tion [13]; and we can evaluate the performance of traceability
link recovery using accuracy measures on oracle datasets.
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