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SUMMARY

Software engineering frameworks tame the complexity of large collections of classes by identifying struc-
tural invariants, regularizing interfaces, and increasing sharing across the collection. We wish to appropriate
these benefits for families of closely related benchmarks, say for evaluating query engine implementation
strategies. We introduce the notion of a benchmark framework, an ecosystem of benchmarks that are related
in semantically rich ways and enabled by organizing principles. A benchmark framework is realized by
iteratively changing one individual benchmark into another, say by modifying the data format, adding
schema constraints, or instantiating a different workload. Paramount to our notion of benchmark frame-
works are the ease of describing the differences between individual benchmarks and the utility of methods
to validate the correctness of each benchmark component by exploiting the overarching ecosystem. As a
detailed case study, we introduce �Bench, a benchmark framework consisting of ten individual benchmarks,
spanning XML, XQuery, XML Schema, and PSM, along with temporal extensions to each. The second
case study examines the Mining Unstructured Data benchmark framework, and the third examines the
potential benefits of rendering the TPC family as a benchmark framework. Copyright © 2013 John Wiley &
Sons, Ltd.
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1. INTRODUCTION AND MOTIVATION

Benchmarks enable an apples-to-apples comparison of competing software or hardware systems,
architectures, algorithms, or other technologies, as well as an evaluation of a given technology
under different scenarios. Benchmarks generally consist of data, a schema to describe the data,
and workload operations to perform on the data (benchmarks vary on the emphasis each accords
these three components). A benchmark provides a standard with which to compare and evaluate. For
example, the Standard Performance Evaluation Corporation (SPEC) has created a set of commercial
benchmarks for testing CPU performance, with the main goal of providing compiler vendors with
representative programs [1] (as SPEC elegantly asserts that ‘an ounce of honest data is worth a
pound of marketing hype’ [2]).

Typical uses of a benchmarks include the following [3]:

� Comparing different software and hardware systems.
� Comparing software products on one machine.
� Comparing machines in a compatible family.
� Comparing releases of a product on one machine.
� Comparing implementation strategies of a system.
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It is a challenging task to create datasets, schemas, and workloads that are both simple enough
to be understood by a wide audience as well as realistic enough to be useful. Additionally, because
major technical and marketing decisions often hinge on the results of a benchmark evaluation, it
is critical that the benchmarks be correct. Any method that helps in the creation, maintenance, and
description of benchmarks will thus be beneficial to all stake holders involved.

In the software engineering domain, frameworks are widely used to manage the complexity of
creating and maintaining software functionality [4]. Each framework includes a set of organizing
principles that enable it to be assimilated and used effectively [5].

In this paper, we introduce the notion of a benchmark framework, which emphasizes the orga-
nizational principles of frameworks to achieve many of the advantages that software engineering
frameworks provide. Briefly, a benchmark framework is an ecosystem of benchmarks that are
related in meaningful ways, along with shared tools and techniques to generate and validate new
benchmarks from existing benchmarks. Benchmark framework can help alleviate the difficulties
of creating, maintaining, validating, and describing sets of related benchmarks. Benchmark frame-
works are built iteratively by using tools to alter existing benchmarks to obtain new benchmarks,
followed by a validation phase to ensure that each new benchmark is still correct. This iteration
produces a DAG-like structure of benchmarks, where nodes are benchmarks and edges are the rela-
tionships between benchmarks. The structure of a benchmark framework encourages the designer to
be explicit about the specific relationships between the individual benchmarks, thereby highlighting
the commonalities between and distinctions among the benchmarks.

Not every benchmark needs to be in a framework, and benchmark frameworks may not be ideal
for every situation. For example, if commercial politics dictate exactly which benchmarks must be
used to evaluate a given technology, and how those benchmarks must be structured, then benchmark
frameworks may not be appropriate. However, benchmark frameworks have several advantages
of which practitioners and researchers can take advantage, such as (i) reusing an extant bench-
mark without requiring modification of that benchmark, which helps to reduce development cost,
(ii) sharing of data, schema, workloads, and tools across benchmarks, (iii) regularizing the execution
of the benchmarks, and (iv) clearly communicating the essence of each benchmark. These advan-
tages will encourage practitioners and researchers to create their own benchmarks, on the basis of
existing benchmarks, when they may have otherwise avoided doing so because of time and resource
constraints. In this paper, we explore these potential advantages of benchmark frameworks.

Consider the TPC benchmarks, a popular family of OLTP and OLAP benchmarks [6]. In their
current form, the TPC benchmarks are loosely connected, but understanding these connections is
difficult. For example, documentation suggests that the TPC-R benchmark is related to the TPC-H
benchmark, but exactly how is not defined (Do the two use the exact same data? Same schema?
Same workload? Do the data generators share code?) Further, the TPC-E benchmark seems to be
related, in different ways, to both the TPC-C and TPC-H benchmarks. Again, because the relation-
ship is not explicitly defined, potential users of these benchmarks can only guess. As we show in
Section 7, additional structuring, documentation, and sharing of tools can realize a TPC benchmark
framework that embodies the advantages listed earlier.

To make our proposal concrete, we present �Bench, a benchmark framework for temporal
databases composed of some ten individual benchmarks. �Bench emphasizes the organizational
principles of using statement modifiers [7], commutativity validation, and temporal upward
compatibility [8] for creating temporal benchmarks from nontemporal ones.

The contributions of this paper are as follows:

� We introduce and describe in detail the notion of a benchmark framework, which allows
simple, correct, and adaptable sets of related benchmarks (in any domain) to be created and
documented.
� We show the utility and generality of benchmark frameworks.
� We present �Bench, a benchmark framework that encompasses several XML, relational, and

temporal technologies. �Bench is distributed according to the GNU Lesser GPL [9] and is
available online [10].
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� We briefly present the Mining Unstructured Data (MUD) and TPC benchmark frameworks
from differing domains, to emphasize the generality and utility of our approach.

The remainder of this paper is structured as follows. We describe software engineering frame-
works, our inspiration for benchmark frameworks, in Section 2. We describe benchmarks and
benchmark families, as well as introduce benchmark frameworks, in Section 3. We introduce bench-
mark frameworks in Section 4. We present �Bench, a specific instance of a benchmark framework,
in Section 5. We briefly present two additional benchmark frameworks from other domains in
Sections 6 and 7. With our experience from the case studies, we discuss the advantages and
disadvantages of benchmark frameworks in Section 8. Finally, we conclude and outline future work
in Section 9.

2. SOFTWARE ENGINEERING FRAMEWORKS

As mentioned previously, developers use software engineering frameworks to manage the
complexity of creating and maintaining software functionality [4, 5]. For example, the Java Swing
framework provides Java developers with a standardized API for creating graphical user inter-
faces [11]. This standardization allows developers to easily develop new GUIs and to easily
understand existing GUIs written with Swing. Other frameworks include the following: the C++
Standard Template Library (STL) [12], an assemblage of data structures; OpenMS [13], for devel-
oping mass spectrometry data analysis tools; the Computational Crystallography Toolbox [14], for
helping to advance the automation of macromolecular structure determination; ControlShell [15],
for developing real-time software; and log4j [16], for enabling logging with context to Java programs
through a hierarchy of loggers.

Software engineering frameworks are typically born from the necessity of taming the complexity
that grows naturally over time. Developers begin by writing single classes. Families of related
classes emerge as the application grows, such as those for sorting and searching a custom data
structure. Over time, the family of related classes grows so large and interconnected that they
become unmanageable and unmaintainable without some explicit structure and organization. At
this point, developers create frameworks to tame this complexity: structural invariants are identified,
interfaces are regularized, constraints are identified and enforced, and the coherency of the family
is emphasized.

The creation of frameworks is not mechanical: it involves the manual and creative analysis of
the problem domain and desired solution space. The result, however, is often a significant decrease
in complexity of the classes and a significant increase in their reusability. In addition, holes in
functionality can be easily identified and filled.

Let us examine in some detail the Java Collections framework [17], a large assemblage of
data structures. The Collections framework is composed of a sequence of successively elaborated
Java interfaces to characterize functionality, a sequence of successively elaborated Java abstract
classes that implement these interfaces to provide data structure-independent methods, and a set
of concrete classes that extend these abstract classes to provide specific data structures and thus
trade-offs in performance between the various operations specified originally in the interfaces. The
Collections framework also uses new concepts such as modifiable versus immutable, ordered versus
unordered, getters versus mutators, comparables and compareTo, and static classes (e.g., Arrays).
The framework exploits Java’s inheritance, generics, enhanced for loops, and dynamic binding
language features. Finally, the framework effectively utilizes the Command, Iterator, and Template
patterns [18].

Within this framework, the Iterable Java interface provides a method to obtain an Iterator
across the collection (hence, every collection has an iterator). The Collection Java interface
extends Iterator and introduces a dozen methods (functionality) used across the framework.
The List Java interface extends the Collection Java interface and specifies the functionality
of an ordered collection through ten additional methods, including the set(int <E>) method
that explicitly states a position. The AbstractList class provides initial implementations of
most of the methods of the List interface, often utilizing the Template Pattern. Finally, we get
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to the LinkedList concrete class (which can actually be instantiated); this class provides a spe-
cific data structure and refined implementations by overriding some of the implementations in the
AbstractList class, thereby providing specific performance properties, such as a very fast next
accessor and minimal storage overhead for highly volatile collections.

The framework thereby presents a unified and carefully structured assemblage of some 75 classes
and interfaces supporting several thousand methods, enabling programmers to understand and use
these many classes without having to study the details of every individual Java method. As another
benefit, this carefully orchestrated dance of Java interfaces, abstract classes, and concrete classes
helped to ferret out inconsistencies. For instance, the documentation for the Vector class states
that ‘As of the Java 2 platform v1.2, this class was retrofitted to implement the List interface, making
it a member of the Java Collections Framework’. The Collection and List interfaces make it
easier for programmers to use these APIs, as all the data structures in this framework abide by the
Collection interface and all the ordered data structures abide by the List interface.

In this paper, we apply what has been performed repeatedly in software engineering to the domain
of benchmarks. Our goal is to achieve the structure and organization that software engineering
frameworks provide, except using individual benchmarks and families of related benchmarks instead
of individual classes and families of related classes.

3. BENCHMARKS AND BENCHMARK FAMILIES

We now define more thoroughly the concepts and structures of individual benchmarks and bench-
mark families, on our way to the more internally structured benchmark frameworks in the
following section.

3.1. Benchmarks

A benchmark is a collection of data, workload, and metrics. Individual benchmarks, such as
CloudCMP [19], INEX [20], WSTest [21], X007 [22], XMark [23], and XQBench [24], allow
applications and algorithms to be compared and evaluated in a standard, consistent setting, giving
researchers and practitioners invaluable guidance as to the relative performance of the systems under
consideration [3].

In this paper, we further structure an individual benchmark into ten components, shown in Table I.
All but the last component, tools, are required, although some might be only implied by a particular
benchmark (we recommend though that a benchmark be explicit about every component.) In the
table, a component is ordered after its predecessor(s), so for example, the data model must be spec-
ified before the data definition language (DDL), which must in turn be specified before the schema,
which must be specified before the actual data of the benchmark.

The schema component describes the structure and constraints of the data, such as the relationship
between books and authors (from the aforementioned XBench example). The schema is expressed in
a DDL, also a component, such as XML Schema, SQL DDL, a new schema language, or informally.
The schema component must conform to the benchmark’s specified DDL.

The data component is the actual data in the benchmark, for example, an XML file containing
information for a library catalog of books and authors. The data can be an actual dataset, or a tool
that randomly generates data, or a combination of the two. For example, in XBench, XMark, and
XOO7, the data are randomly generated using ToXgene, xmlgen, or in-house tools, respectively; in
TPC-H (part of the TPC benchmark family, to be discussed in Section 3.2), there is a given single
(static) dataset. The data conform to a data model, which describes the structure and form of the
data. For example, the data in XMark are represented in XML, thus conforming to the hierarchical
data model. Within a benchmark, the data must conform to the data model.

The workload component contains tasks to perform on the data, such as querying for specific
authors, inserting new books, or ensuring that all books are associated with at at least one author.
The workload is expressed in a data manipulation language (DML), also a component, such as
XQuery, SQL DML, or a new query language.
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Table I. The ten components of a benchmark.

Component name Description Example

Data model Describes how the data is stored and organized XML model
Data definition language The language in which the schema is written XML Schema
Schema Describes the structure of and constraints on A book has at most five authors

the data
Data The actual data of the benchmark A catalog with books

and authors
Data manipulation language The language in which the workload is written XQuery
Workload A set of tasks (e.g., queries) to perform on A query that selects books by

the data ‘Ben’
Metrics The metrics to be measured and how to Milliseconds per query

measure them
Context A specification of the execution environment CPU, memory, and OS version
Documentation Metadata (authors, date, and version) and Author: Bob Smith.

execution guide
Tools Executables Makefiles, data generators and

validators, execution scripts,
and so on

The metrics component is a description of the metrics to be measured, including instructions on
how to measure and calculate each one. For example, Document-centric (DC)/Single Document
(SD) XBench contains two metrics: bulk load time and query execution time.

The context component specifies what characteristics of the software and hardware environments
must be reported during the execution of the benchmark. The benchmark creator can be as specific
as desired: the context could require that the exact CPU characteristics (e.g., clock speed and cache
size) must be reported or simply the number of cores.

The documentation component includes metadata and an execution guide. Metadata includes
the benchmark name, authors and affiliations, date published and date updated, version, and other
descriptive information. The execution guide describes how to configure the software environment,
which settings and values are required, order of program execution, and so on.

The metrics, context, and documentation form the provenance of both the benchmark and the
results of applying that benchmark to a particular hardware/software configuration. We antici-
pate that benchmarks will evolve through distinct and identified versions, with a benchmark result
explicitly associated with a version.

Various kinds of benchmarks will emphasize different components. Database benchmarks empha-
size the data and workload and often deemphasize the metrics (e.g., simply transactions per second).
Compiler benchmarks such as SPEC have programs as their workload, with little emphasis on
the data and even less on the DDL and schema. It appears that all the benchmarks mentioned in
this paper contain (or could have contained, if the benchmark was more fully realized) all of the
aforementioned components.

Finally, the tools are (optional) executables for generating and validating the data, translating and
executing the workload, and collecting metrics. Example tools include the following.

Generation. Data generators, such as TOXGENE [25] and �Generator (Section 5.6.1), turn raw
input data into larger and more complex datasets by repeating, combining, and changing the raw
data in various ways, perhaps on the basis of user parameters. Data generators are often template
based, generating data from a user-specified template.

Validation. Validation scripts ensure that component changes are correct, amongst other things
(Section 4.4).

Translation. Data translators are used to easily change data from one format to another, for
example, by shredding an XML document into relations [26]. Schema/workload translators such as
TXL [27] can be used to translate the schema and workload from one form to another, for example,
to translate �XQuery [28] queries into standard XQuery [29] queries [30].
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3.2. Benchmark families

A benchmark family is a set of loosely related benchmarks. A benchmark family is often devel-
oped by a single organization. Benchmark families lack the information necessary to easily identify
benchmark relationships or tools necessary to derive new benchmark components from existing
benchmark components.

An example of a benchmark family is XBench [31], which contains four benchmarks: DC/SD,
DC/Multiple Document (MD), Text-centric (TC)/SD, and TC/MD. The benchmarks are loosely
related in that they share a document generation tool. However, the benchmarks do not share
schemas or workloads, and the specific relationships between benchmark components are not well
defined.

Another benchmark family is TPC, which we described in Section 1. As in XBench, the bench-
marks in TPC are loosely related in that they are developed by the same organization, but the rela-
tionships between benchmark components are not well defined and no data, schema, or workloads
are reused among the currently supported TPC-C, TPC-H, and TPC-E benchmarks.

The SPEC provides a wide rage of evolving benchmarks [1, 32]. For example, the programming
language community employs the SPEC CPU benchmark to study program performance with inten-
sive computation. This benchmark stresses not only the processor of a machine but also its memory
hierarchy and the properties of the compiler. Other SPEC benchmarks include SPECviewperf to
evaluate graphics performance, SPECapc to evaluate performance of specific applications, such
as LightWave 3D and SolidWorks, SPEC MPI to evaluate MPI-parallel, floating point, compute-
intensive across cluster, and SMP hardware performance, SPEC OMP to evaluate OpenMP-parallel
shared-memory parallel processing across shared-memory parallel processing, SPECjvm to evaluate
performance of the Java Runtime Environment, SPECjbb as well as SPECjEnterprise and SPECjms
to evaluate performance of Java business applications, and SPECsfs to evaluate performance of
file servers.

The TREC conference series [33] has produced a set of text retrieval benchmarks, each consisting
of a set of documents (data), a set of topics (questions), and a corresponding set of relevant judg-
ments (right answers), across a range of domains, such as blog, chemical, genomics, legal, and web,
and across question characteristics, such as filtering, interactive, novelty, and query.

4. BENCHMARK FRAMEWORKS

We introduce here a benchmark framework as a refined benchmark family. A benchmark framework
is an ecosystem of benchmarks that are interconnected in semantically rich ways. For example, the
data used in one benchmark might be derived from the data of another (e.g., by increasing the size
of the data), whereas the workloads and schemas of the two benchmarks are identical.

Like software frameworks, the creation of a benchmark framework is not mechanical. Instead,
they are created iteratively: beginning with a root (or foundation) benchmark B , a new benchmark
B 0 is created by changing one or more of the six components of B (components are listed in Table I
and described in Section 3.1). A relationship between B and B 0 is made to describe the changes. In
this way, a DAG of benchmarks emerges, where nodes are benchmarks and each edge is the rela-
tionship between each pair of benchmarks. This graph exactly describes a benchmark framework.
At this point, benchmark frameworks depart in design from software frameworks such as the Java
Collections framework. To build the Collections framework, the designers had to first boil the ocean:
almost the entire framework had to be in place before any of it was useful. In contrast, benchmark
frameworks are useful immediately, as new benchmarks can easily be derived whether there are two
benchmarks or two hundred present in the framework.

Figure 1 shows an example benchmark framework, which we use as a running example in this
section. The framework begins with the DC/SD XBench benchmark, a popular XQuery bench-
mark from the XBench family of benchmarks [31]. The data in the DC/SD XBench benchmark
are a library catalog of books and authors contained in a single XML document. In this simple
benchmark framework, the �XBench benchmark is derived from the DC/SD XBench benchmark
by using a tool to render the data as time varying, whereas the PSM benchmark, which is utilized
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DC/SD XBench 

PSM XBench 

 Model 
 DDL 
 DML 

 Data 
 Schema 
 Workload 

+ Model 
= DDL 
+ DML 

+  Data 
+  Schema 

 Workload 

Figure 1. Example benchmark framework.

in a study to evaluate the performance of the SQL/PSM language constructs, is derived from the
DC/SD XBench benchmark by using a tool to shred the XML data into relational data. The arcs
and annotations in the DAG succinctly denote these relationships; we describe these annotations in
detail in Section 4.2.

We now describe the general principles of benchmark frameworks (Section 4.1), define
the possible relationships between benchmark components and how to visualize relationships
(Section 4.2), define relationship semantics (Section 4.3), and present the methodology for creating
a benchmark framework (Section 4.4).

4.1. General principles

Our proposal of benchmark frameworks, detailed in the following sections, is based on several
general principles. We define a benchmark framework to be a collection of benchmarks that satisfy
all five principles.

First, a benchmark framework must explicitly state one or more organizing insights that bring
together constituent benchmarks into a coherent whole. For example, the Java Collection Framework
discussed in Section 2 utilizes several such insights: successively elaborated and related Java inter-
faces, abstract classes, and concrete classes, utilizing several powerful design patterns throughout
and effectively exploiting particular Java constructs. As we describe three benchmark frameworks
as case studies later in this paper, we first state the organizing insight(s) for each.

The second organizing principle is that of automation, of producing a component of a child
benchmark by executing mapping or conversion programs on a component of a parent benchmark.
Whereas some of the components of a benchmark must be defined manually, many of the other com-
ponents can be generated by a tool that automatically maps a prior component to the new component.
We will see many examples of such mapping tools.

Reuse is the third required organizing principle of a benchmark framework. Reusing existing com-
ponents to create new components is one of the fundamental ideas behind frameworks of any kind,
and benchmark frameworks are no different. By reusing benchmark components, developers can
save development cost, benchmark relationships become more clear, and cross-validation between
components becomes more applicable. Reuse must be applied to several components of each con-
stituent benchmark in the framework. We will see many examples as we examine �Bench in detail
shortly, as so we will mention just a few applications of reuse here.

The queries comprising a workload can be mapped to a new language with a source-to-source
translation, either manually or with a tool. A separate source-to-source translation can map a stan-
dard language to a DBMS-specific variant. These translations can be composed, to define further
benchmark components.

Similarly, the mapping of the data component between two benchmarks can often be reused else-
where in the framework to produce yet other components, when two source benchmarks are also
related in a different way than to their child benchmarks. An example is the mapping of the data
from XBench to PSM being reused in the mapping from �XBench to �PSM. The source-to-
source mapping of a schema component can likewise be reused. The third potential for reuse is a
tool. For example, �Bench employs a single queryRunner Java application to time queries in
three of its constituent benchmarks (those employing the relational model).
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Organizational clarity is the fourth general principle. By clearly defining the relationships
between benchmark components, developers and users of the benchmarks can immediately deter-
mine the differences and similarities between them. Choosing which benchmark or set of bench-
marks to use, or which benchmark to extend, becomes much easier. These relations should be
formalized in a representation exemplified in Figure 1.

Providing consistency and validation checking is the final general principle required of benchmark
frameworks. As mentioned previously, users of benchmarks often have a high stake in the correct-
ness of benchmark components, as they are used to evaluate new technologies and make critical
business decisions. Benchmark frameworks allow a new level of consistency and validation checks
to be performed across benchmarks, because they share components and tools. Thus, the entire
benchmark framework is strengthened with each additional check of each additional component.

These five general principles work in concert to allow benchmark frameworks to be devel-
oped faster and to attain higher quality than a more loosely structured family containing the same
constituent benchmarks.

4.2. Relationships between benchmark components

A relationship between a component of a parent benchmark component and a component of a
child benchmark is an explicit link between the two, describing how to change one component into
the other. Component relationships characterize the flow of information between the benchmarks.
Relationships allow new benchmark components to be easily adopted from existing benchmark
components and for that adoption to be explicitly and clearly defined. Each component relationship,
annotating a line from one benchmark to another, is prefixed by one of the following symbols.

Expand (+). A component is expanded to include additional content. For example, the data
in �XBench are expanded from DC/SD XBench by making the data temporal (i.e., adding
timestamps to the data and changing random books and authors at various points in time).

Subset (�). A component is subsetted to remove content. As we will see in Section 5.4, the DDL of
�PSM, that of a temporal extension of the SQL DML, is subsetted back to that of SQL DML in the
subsequent �PSM-MaxMapped DML.

Retain (D). A component is retained without modification. For example, the DDL remains the same
(i.e., XML Schema) between the DC/SD XBench and �XBench benchmarks.

Replace (�). A component is replaced (i.e., completely removed) and substituted with a new
instance. For example, the data model for PSM, which is the relational data model, replaces DC/SD
XBench’s hierarchical data model.

Map (!). A component is mapped from one data model/DDL/DML to another, but the ideas behind
the components remain the same. For example, the workload for PSM is logically unchanged from
the DC/SD XBench benchmark (i.e., the queries are seeking the same information) but must be
mapped from the XQuery syntax to the PSM DML syntax. Here, the form of the component changes,
but the content remains.

We visualize the relationships of a benchmark framework by displaying a DAG, where nodes
are benchmarks and edges are relationships between them (e.g., Figure 1). We term this a
Benchmark–Relationship (or B-R) diagram.

A B-R diagram enumerates the benchmarks within the framework (or family) as well as between
frameworks and families. Thus, the XBench family is included in Figure 1 because one of its bench-
marks is used and extended in the �Bench framework. An edge between two benchmarks denotes
that components are shared between them; the edge is annotated with the exact relationship of each
component (we only annotate the first six components, because these best characterize the changes
from benchmark to benchmark). For consistency, component annotations are always displayed in
the same location. For example, the data component is shown in the upper left of the edge; the DML
component is shown in the bottom right. Note the left-right correspondence: the Data accords with
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a Data Model, the Schema is expressed in a DDL, and the Workload is expressed in a DML. For
brevity, component annotations are omitted from the display if the relationship is retain (D), except
in Figure 1, in which we aimed for completeness.

4.3. Relationship semantics

A new benchmark can be composed of components from multiple existing benchmarks (e.g., the
data and schema from one and the workload from another), which is precisely why a benchmark
framework forms a DAG instead of a tree. In these cases, a component annotation existing from
both parents implies that the components should be merged (by performing a union) into the child.

Each component can be associated with only one relationship between two benchmarks. If two
relationships are needed, such as expanding and mapping a workload, this is better expressed as two
steps, yielding the second benchmark derived from the original with one of the relationships, say
mapped, and the third benchmark, derived from the second with the other of the relationships, in
this case expanding.

When the data are expanded or subsetted, the semantics are clear: data were added or removed,
respectively. But when data models are expanded or subsetted, the semantics are domain dependent.
In the temporal database domain, for example, a data model can be expanded from nontemporal
relational to temporal relational. Although this can also be expressed as a replacement (�) of data
models, we feel that expanding (+) more clearly describes the relationship because the temporal
data model offers similar but more information.

In general, the map relationship (!) is only applicable to the data, schema, or workload compo-
nents; it is not appropriate to say that a data model, DDL, or DML has been mapped, because these
components contain ideas rather than content.

Finally, a change in one component may imply a change in other component(s). For example,
when changing the data model from the XML hierarchical data model (where the DDL is likely to
be XML Schema or Relax NG [34]) to the relational set-based data model, the DDL also must be
changed to an appropriate language (e.g., SQL DDL). Table II lists these and other structural impli-
cations that help define the validity of a benchmark framework. This list is not exhaustive but rather
illustrative of the semantics of component relationships. As mentioned in Section 9 (future work),
we envision an application-specific tool that can automatically validate component relationships,
given a list of constrains such as those in Table II. For example, if the relationship between the data
component of two benchmarks is subset (�), then the tool can read the datasets and ensure that one
is in fact a subset of the other; similar checks can be performed for schemas and workloads.

Table II. Examples of relationship constraints.

Relationship(s) Implication Explanation

D Data _� Data D Data model If the data remain the same, or are subsets, then
they must have the same data model, because the
data are an instance of the model

� Data D DDL^ Subsetting the data implies constraints on the
.D Schema _� Schema/ schema

� Data model � DDL^� DML ^ New data models need new DDLs and DMLs,
.! Data_� Data/ and the data must be mapped or changed to the

new model
! Data model .! DDL _�DDL/ ^ Mapping the data model implies fairly whole-

.! DML_�DML/ scale changes to the DDL and DML
D Schema _ � Schema D DDL The schema is an instance of the DDL
D DDL D Schema _ � Schema —
� DDL ! Schema_� Schema —
DWorkload _ �Workload D DML The workload is an instance of the DML
� DML !Workload _ �Workload Subsetting the DML necessitates changes to the

workload that utilizes the removed constructs
� DML !Workload_� Workload —
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4.4. Methodology

We now describe how to create a benchmark framework, which consists of three steps: (i) begin
with a foundation benchmark; (ii) transform the foundation benchmark into a new benchmark to
suite your application’s needs; and (iii) validate the correctness of the data, schema, and associated
constraints. Repeat the process for each additional benchmark that is required. We describe each
step in turn.

Foundation. Start with an existing benchmark as a solid foundation. In our example, we use DC/SD
XBench as the foundation benchmark, because it provides well-defined schema and datasets, which
are based on generally realistic assumptions [31].

Transformation. Build new components from existing components. Either manually or by using
automated tools, alter the components of existing benchmarks to create new benchmark components.
For example, use the �GENERATOR tool (to be described in Section 5.6.1) to generate temporal data
from the nontemporal data of DC/SD XBench. We term the resulting new benchmark the child and
the existing benchmark the parent, respectively.

Validation. Perform cross-validation of benchmark components throughout the process (i.e., after
each change). There are no standard set of validation steps applicable to all benchmark frameworks,
as these steps are highly domain and task dependent. Validation steps can be simple (e.g., check-
ing referential integrity of two relations using Perl hash tables) or complex (e.g., commutativity
validation of multiple benchmarks, described in Section 5.6.3); we provide examples in each of the
benchmark frameworks presented in this paper.

By performing continuous validation steps, each component is tested in different ways. Each
successful validation adds validity to the entire benchmark framework, because of the rich intercon-
nectedness of the benchmarks: when the data are validated in a child benchmark, the data are also
likely to be valid in the parent. These validation steps check more than just the data: they check
the schema, the data generation tools, the data and query translation tools, and the query engine.
The resulting ecosystem of benchmarks is now stronger than the sum of the individual benchmarks,
because of the validation of each component under multiple perspectives.

5. CASE STUDY: �BENCH

Using the methodology just presented, we have created a benchmark framework, called
�Bench [10, 35]. As we describe in the succeeding texts, �Bench makes use of the organizational
insight of using statement modifiers, commutativity validation, and temporal upward compatibility
when deriving temporal benchmarks from nontemporal benchmarks.

In this section, we first describe the structure of �Bench. We then outline the tools we have built
to support the creation and validation of the individual benchmarks of �Bench. Finally, we provide
a detailed example of the creation of one of the benchmarks in the framework.
�Bench currently consists of ten individual benchmarks, spanning various technologies includ-

ing XML, XML Schema [36, 37], XQuery [29], �XSchema [38–43], �XQuery [28, 44, 45],
PSM [46, 47], and �PSM [30, 44]; the B-R diagram is given in Figure 2, and the main compo-
nents are summarized in Table III. The benchmarks are fully described elsewhere [35]; we briefly
describe the components of each here.

5.1. The DC/SD XBench benchmark

XBench is a family of benchmarks for XML DBMSes, as well as a data generation tool for cre-
ating the benchmarks [31]. The XBench family has been widely used as standard datasets to
investigate the functionalities of new and existing XML tools and DBMSes (other XML bench-
marks include MBench [48], MemBeR [49], Transaction Processing over XML (TPoX) [50],
XMach-1 [51], XMark [52], XPathMark [53], and XOO7 [54]. Most of these benchmarks focus
on XQuery processing, as does XBench).

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe



BENCHMARK FRAMEWORKS AND �BENCH

DC/SD 

PSM XBench 

PSM-DB2 PSM 

PSM-MaxMapped 

XSchema 

PSM-MaxMapped-DB2 

 Model 
 DDL 
 DML 

 Data 
 Schema 
 Workload 

+ Model 

+ DML 

+  Data 
+  Schema 
→ Workload 

 DDL 
 DML 

 Schema 
Workload 

 DDL 
 DML 

 Schema 
 Workload 

+ Model 
+ DDL 
+ DML 

+   Schema 
→ Workload 

+ Schema 
 Workload 

 DDL 
 DML 

 Schema 
 Workload 

 Model → Data 

DC/SD TC/MD DC/MD TC/SD 

XBench Family 

PSM-PerStmtMapped 

PSM-PerStmtMapped-DB2 

 DDL 
 DML 

 Schema 
 Workload 

 DDL 
 DML 

 Schema 
 Workload 

Figure 2. The Benchmark–Relationship diagram of the �Bench framework.

Table III. A description of the �Bench benchmark framework.

Benchmark name Derived from Data model DDL DML

DC/SD XBench — XML XML Schema XQuery
�XBench DC/SD XBench XML �XSchema �XQuery
�XSchema �XBench XML �XSchema —
PSM DC/SD XBench Relational PSM DDL PSM DML
PSM-DB2 PSM Relational DB2 DDL DB2 DML
�PSM PSM, �XBench Relational PSM DDL �PSM
�PSM-MaxMapped �PSM Relational PSM DDL PSM DML
�PSM-MaxMapped-DB2 �PSM-MaxMapped Relational DB2 DDL DB2 DML
�PSM-PerStmtMapped �PSM Relational PSM DDL PSM DML
�PSM-PerStmtMapped-DB2 �PSM-PerStmtMapped Relational DB2 DDL DB2 DML

To create the datasets, the authors of XBench analyzed several real-world XML datasets to
quantify their characteristics and relationships. As a result of this analysis, XBench characterizes
database applications along two independent dimensions: application characteristics (i.e., whether
the database is data centric or text centric) and data characteristics (i.e., single document vs multi-
document). Thus, XBench consists of four different categories that cover DC/SD, DC/MD, TC/SD,
and TC/MD, respectively.

The DC/SD XBench benchmark is one of the four constituent benchmarks of the XBench family,
based strictly on the DC/SD category. We use this benchmark as the foundation of �Bench, because
of its combination of simplicity and generally realistic assumptions.

Schema. The schema of DC/SD XBench is specified as an XML Schema [36, 37]. The schema
defines the library catalog, where <item> (i.e., book) elements contain a list of <author>s, a
<publisher>, and a list of <related_items> of related books (Figure 3). Each <item>,
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Figure 3. An outline of the XBench DC/SD schema.

<author>, and <publisher> has a unique id attribute. The schema specifies several con-
straints, such as the uniqueness of the id attributes and that items can be related to between 0 and 5
other items.

Data. XBench populates each data element and attribute with random data generated from
ToXgene [25]. ToXgene is a template-based tool that generates synthetic XML documents according
to one or more user-defined templates.

The data in DC/SD XBench consist of a single document, catalog.xml, which contains
information about a library catalog, that is, items (books), authors, publishers, and related items. The
actual text content of each element or attribute is a randomly generated string or number, depending
on the specification in the ToXgene template. For example, an instance of the <last_name> of
an <author> could be the string ‘BABABABAOGREAT’ (however, some content is not random.
For example, a <related_ID> element will always point to an existing item ID).

A crucial point to note is that, because of the data generation process, there is a strict one-to-many
relationship between items and authors: although an item can have several authors, an author is only
the author of a single item (no two items share an author). Similarly, there is a strict one-to-one
relationship between items and publishers: an item has exactly one publisher, and each publisher
publishes exactly one item. These constraints are not, however, explicit in the schema but must be
satisfied by tools that manipulate the data, as we shall see in Section 5.6.1.

Workload. The workload consists of 17 XQuery [29] queries. Each query tests a different feature
of the query engine, such as existential quantifiers (query q6: ‘Return items where some authors
are from Canada’), sorting by string types (query q10: ‘List the item titles ordered alphabetically
by publisher name’), and unigram searching (query q17: ’Return the ids of items whose descrip-
tions contain the word hockey’). Each such query can thus be considered a microbenchmark [48],
designed to test the performance of a specific language construct. Other microbenchmarks include
IMbench [55] (addressing system latency), MemBeR [49] (also XQuery), and MBench [48]
(also XQuery).

5.2. The �XBench benchmark

This benchmark adds a temporal dimension to the XBench DC/SD benchmark, so that temporal
databases and query languages can be evaluated.

In particular, �XQuery is a temporal query language that adds temporal support to XQuery by
extending its syntax and semantics [28, 44, 45]. �XQuery moves the complexity of handling time
from the user/application code to the query processor. �XQuery adds two temporal statement mod-
ifiers [7] to the XQuery language: current and sequenced. A current query is a query on the current
state of the XML data (i.e., elements and attributes that are valid now) and has the same seman-
tics as a regular XQuery query applied to the current state of the XML data. Sequenced queries,
on the other hand, are queries applied to each point in time, resulting in a sequence of temporal
elements. Finally, �XQuery also has representational (also termed nonsequenced) queries, which
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query the timeline of the XML data irrespective of time. No statement modifiers are needed for
representational queries.

The �XBench benchmark was created to investigate �XQuery and other temporal query
languages.

Schema. The schema of �XBench is reused from XBench DC/SD and translated into a temporal
XML schema [38, 39], which is the same as an XML Schema, except with annotations to specify
which elements (i.e., books, authors, and publishers) may vary over time.

Data. The data of �XBench are the result of applying a temporal simulation, �GENERATOR

(Section 5.6), to the nontemporal XBench DC/SD dataset. This derived temporal dataset consists
of books whose titles, authors, and publishers change over time, authors whose names and addresses
change over time, and publishers whose lists of published books changes over time.

Workload. We defined a set of 85 �XQuery queries: a current and nonsequenced query for each of
the original 17 queries from XBench DC/SD and three sequenced queries for each of the original
17 XBench queries: a short period query that only considers 10% of the time line, a medium period
query that considers 50%, and a long period query that considers 90%.

The queries themselves are the same as those in the XBench DC/SD workload, except with tem-
poral statement modifiers prepended to the query. Semantically, the queries are expanded, but we
prefer in the B-R diagram to emphasize that an automated mapping (such as with TXL [27]) could
convert the original queries into new queries by simply prepending the temporal statement modi-
fiers. These new queries can then be executed by any tool that understands the statement modifiers,
such as the �XQuery engine, or by a source-to-source translator from �XQuery to XQuery.

5.3. The PSM and PSM-DB2 benchmarks

Persistent stored modules (PSM) is the Turing-complete portion of SQL in which stored programs
are compiled and stored in a schema and can be executed on the SQL server by queries [46, 47].
PSM consists of stored procedures and stored functions, which are collectively referred to as
stored routines. The SQL/PSM standard [46] provides a set of control-flow constructs (features) for
SQL routines.

We adopted the PSM benchmark from the XBench DC/SD benchmark to assess DBMSes that
implement PSM functionality. The PSM-DB2 benchmark is a simple transformation of the schema
and workload of the PSM benchmark so that the resulting benchmark is compatible and thus can
be executed in IBM DB2.

Data. The data are reused as XBench DC/SD and translated into six relations.
Shredding is the process of transforming an XML tree into a set of two-dimensional DBMS

relations [26]. Doing so often requires generating additional tables that contain relational or hierar-
chical information. For example, an additional table is required to list the relations between items
and authors in the XBench DC/SD data. This relationship is implicitly captured in XML by making
author a subelement of item but must be explicitly captured in its own relation during the shredding
process.

We have created a tool to shred the XBench DC/SD data into six relations: four for the origi-
nal four temporal elements, one to map author ids to item ids, and one to map publisher ids to
item ids. In general, each column of each shredded relation corresponds to the text content of a
subelement of the corresponding element.

Schema. The schema is the same as XBench DC/SD, except expressed as tables in the relational
DDL.

Workload. The workload is derived from the original 17 queries in the XBench DC/SD workload,
translated to be in the form of relational DML (i.e., SQL/PSM). Six queries were omitted, because
they had no conceptual counterpart in PSM, such as testing the access of relatively ordered XML
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elements. The workload was thus designed to be a microbenchmark, in that each PSM query high-
lights an individual construct of PSM, so that for example the performance of each construct can be
studied in isolation, while retaining as much as possible the semantics of the original XBench query
from which it was derived. Some queries, such as q2, were also changed to highlight a different
feature, such as multiple SET statements in q2b and nested FETCH statements in q7c. See also q7b.
Also, we added three queries, q17, q18, and q19, and one variant, q17b.

� Query q2 highlights the construct of SET with a SELECT row,
� Query 2b highlights multiple SET statements,
� Query q3 highlights a RETURN with a SELECT row,
� Query q5 highlights a function in the SELECT statement,
� Query q6 highlights the CASE statement,
� Query q7 highlights the WHILE statement,
� Query q7b highlights the REPEAT statement,
� Query q7c highlights the nested FETCH statements,
� Query q8 highlights a loop name with the FOR statement,
� Query q9 highlights a CALL within a procedure,
� Query q10 highlights an IF without a CURSOR,
� Query q11 highlights creation of a temporary table,
� Query q14 highlights a local cursor declaration with associated FETCH, OPEN, and CLOSE

statements,
� Query q17 highlights the LEAVE statement,
� Query q17b highlights a nonnested FETCH statement,
� Query q18 highlights a function called in the FROM clause, and
� Query q19 highlights a SET statement.

The result is a set of 17 queries.
The PSM-DB2 workload utilizes a source-to-source translation of standard PSM into the

syntactic variant supported by IBM DB2.

5.4. The �PSM and related benchmarks

Temporal SQL/PSM is a temporal extension to SQL/PSM that supports temporal relations and
queries in conjunction with PSM functionality [30, 44]. The approach is similar to �XQuery in
that it requires minor new syntax beyond that already in SQL/Temporal to define temporal PSM
routines. Temporal SQL/PSM enables current queries (which are evaluated at the current time),
sequenced queries (which are evaluated logically at each point in time independently), and nonse-
quenced queries (which are the most general of temporal semantics), as well as these three variants
of PSM routines, similar to those described earlier for �XQuery.

The �PSM benchmark was created to test and validate Temporal SQL/PSM. There have been
two different time-slicing techniques proposed for implementing Temporal SQL/PSM: maximally
fragmented slicing and per-statement slicing [30, 44]. These slicing techniques are each a source-
to-source translation of the sequenced queries and PSM routines of the workloads into conventional
queries and PSM routines that explicitly manage the timestamps in the data, to optimize the temporal
queries in various ways. Thus, we created the �PSM-MaxMapped and �PSM-PerStmtMapped
benchmarks for these techniques. We also used the translation discussed earlier to create the schemas
and workloads for the two DB2 variants, so that the resulting queries can be executed in DB2 (we
note that the SQL:2011 standard [56] and IBM DB2 10 very recently now support temporal tables;
our transformations are on conventional, i.e., nontemporal, tables and queries).

Data. The data of �PSM are the result of translating (shredding) the temporal XML data of
�XBench into six (temporal) relations (see the previous section). We defined three datasets of
different temporal volatility: DS1, DS2, and DS3. DS1 contains weekly changes; thus, it contains
104 slices over 2 years, with each item having the same probability of being changed. Each time
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step experiences a total of 240 changes; thus, there are 25K changes in all. DS2 contains the same
number of slices but with rows in related tables associated with particular items changed more often
(using a Gaussian distribution), to simulate hot-spot items. DS3 returns to the uniform model for
the related tuples to be changed, but the changes are carried out on a daily basis, or 693 slices in
all, each with 240 changes, or 25K changes in all (the number of slices was chosen to render the
same number of total changes). These datasets come in different sizes: SMALL (e.g., DS1.SMALL

is 12 MB in six tables), MEDIUM (34 MB), and LARGE (260 MB).
The data for the two �PSM-Mapped and two �PSM-Mapped-DB2 variants are equivalent to

those of �PSM.

Schema. The �PSM schemas are derived from the schemas of PSM. We extend each table with a
simple temporal statement modifier (i.e., ALTER TABLE ADD VALIDTIME ...) to make the
table time varying. In addition, we extend each primary key to include the begin_time column
and extend each assertion to be a sequenced assertion, thereby applying independently at each point
in time.

The schema for �PSM-Mapped is mapped from the temporal domain to the nontemporal
domain (because DBMSes do not yet support the statement modifiers of �PSM), by removing
ALTER TABLE ADD VALIDTIME keywords from the table creation commands.

The schema for �PSM-Mapped-DB2 is mapped to meet the syntax requirements of DB2.

Workload. We define 85 queries for �PSM that correspond to the 17 queries in the PSM benchmark:
51 sequenced queries (a short period, medium period, and long period sequenced query for each of
the original 17), 17 nonsequenced, and 17 current. The queries are derived directly from the PSM
queries by adding simple temporal statement modifiers (i.e., VALIDTIME for sequenced queries,
NONSEQUENCED VALIDTIME for nonsequenced queries, and no change for current queries) to
each of the queries.

The workload for four �PSM-Mapped variants is the result of an automated transformation,
using the previously mentioned maximally fragmented and per-statement slicing techniques [30,44],
expressed in TXL, to create 170 queries in total.

5.5. The �XSchema benchmark

�XSchema (Temporal XML Schema) is a language and set of tools that enable the construction
and validation of temporal XML documents [38,40–43]. �XSchema extends XML Schema [36,37]
with the ability to define temporal element types. A temporal element type denotes that an ele-
ment can vary over time, describes how to associate temporal elements across slices (or snapshots,
which are individual versions of a document), and provides some temporal constraints that broadly
characterize how a temporal element can change over time.

In �XSchema, any element type can be rendered as temporal by including in the schema a sim-
ple logical annotation stating whether an element or attribute varies over valid time or transaction
time, whether its lifetime is described as a continuous state or a single event, whether the item itself
may appear at certain times and not at others, and whether its content changes. So, a �XSchema
document is just a conventional XML Schema document with a few annotations.
�XSchema provides a suite of tools to construct and validate temporal documents. A temporal

document is validated by combining a conventional validating parser with a temporal constraint
checker. To validate a temporal document, a temporal schema is first converted to a representational
schema, which is a conventional XML Schema document that describes how the temporal informa-
tion is represented. A conventional validating parser is then used to validate the temporal document
against the representational schema. Then, the temporal constraint checker is used to validate any
additional temporal constraints specified by the user in the temporal schema.

We have created the �XSchema benchmark to test the functionality and performance of
�XSchema.

Schema. The schemas are the same as those in �XBench, augmented with seven additional manu-
ally specified constraints. These constraints provide a simple but comprehensive set for testing the
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four types of XML constraints (referential integrity, data type, identity, and cardinality) with the var-
ious time modifiers (sequenced and nonsequenced). For example, one of the additional constraints
specifies that ‘over a period of a year, an item may have up to 6 authors’, exercising a nonsequenced
cardinality constraint.

Data. The data are the same as the data in �XBench.

Workload. Because �XSchema is a schema language and tool system, and because the main goal of
testing such a system is to test its schema constraints, there is no workload in this benchmark (in
effect, the schema is the workload and a microbenchmark at that).

5.6. Supporting tools

To facilitate the creation and validation of the individual benchmarks in �Bench, we have devel-
oped a suite of tools that generate temporal data, validate the data in various ways, and validate the
correctness of the queries. The tool suite, along with the rest of �Bench, is available online [10].

The message of this section is that tools are some of the most important glue connecting the
benchmarks together into a framework. Some of the tools map a component, for example, data or
workload, in one benchmark into another, creating that component from hole cloth. Other tools
perform consistency checks within a benchmark. Tools that perform cross-validation are especially
critical, in that they ensure consistency between say the data components of two related benchmarks
in the framework. Such validation leverage the mapping and within-benchmark consistency check-
ing tools, because all the tools much work correctly for the end result to validate. These tools in
concert thus tied the benchmarks together into a coherent whole, raising the quality of all of the
individual benchmarks within the framework.

5.6.1. �GENERATOR. �GENERATOR is a simulation that creates XML temporal data from the
nontemporal XML data (Figure 4). To create the temporal data, �GENERATOR consists of a user-
specified number of time steps along with a user-specified number of changes to the data within
each time step. At each time step, a subset of the elements from the original document is changed,
creating a new slice of the temporal document. The simulation continues until all of the required
changes are made.

Simulation description. The details of the simulation are described elsewhere [35]. Here, we give
only a brief overview of the issues involved [43].

We designate the <item>, <author>, <publisher>, and <related_items> elements of
the DC/SD XBench XML data to be temporal elements, that is, their values can change over time.
The overall goal of the simulation is to randomly change, at specified time intervals, the content of
these four temporal elements. The simulation consists of the following four steps.

1. Setup. The simulation reads the user-created parameter file to initialize the simulation parame-
ters. The simulation then uses DOM [57] to load the user-specified XBench document (in this
case, catalog.xml) into memory. The simulation then creates an internal representation of
the temporal items (all instances of the four temporal elements), which at this point consist of
only a single version.

τGenerator Source 
Data 

Derived 
Data 

Schema for 
Derived Data 

User-specified 
Parameters 

Figure 4. Overview of the �GENERATOR process.
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2. Initial snapshot selection. The simulation selects a user-specified percentage of <item> tem-
poral elements (and all of their subelements) for the initial slice. The simulation selects the
elements uniformly at random from catalog.xml. Elements that are selected are called
active; those that are not selected for the initial slice are called inactive and put into a pool for
later use.

The simulation sets the begin and end time of the first (and only, at this point) version of
each selected temporal element to the user-specified begin date and the user-specified forever
date, respectively.

3. Time step loop. The simulation increases the current time by the user-specified time step. The
simulation then

� Randomly selects a set of active elements to change, on the basis of user-specified
parameters.
� Changes the selected elements, as well as adds new elements and deletes existing ele-

ments, on the basis of user-specified parameters. New elements, and the new values for
changed elements, come from the pool of inactive elements.
� Outputs the current slice in XML format. A temporal document, that is, all slices merged

together, is also maintained.
� Checks the stop criteria of the simulation. If the simulation has exceeded the user-

specified number of necessary changes, the simulation exits the time step loop and
continues to Step 4. Otherwise, it returns to Step 3.

4. Output. The simulation outputs the final temporal document.

During the aforementioned simulation process, it is important to maintain the original constraints
defined and implied in the DC/SD XBench XML schema. This will ensure that the generated data
validate to the sequenced semantics of the original schema. In addition, we add additional checks in
the simulation to maintain the set of nonsequenced constraints in the �XSchema benchmark.

We need not consider the original data type constraints, because the simulation does not change
the type of data at any point. Similarly, we need not consider identity constraints (which ensure, e.g.,
that the item’s id attribute is globally unique) because the simulation does not generate any ids of
its own—all items keep their originally assigned ids. Thus, as long as the original data is correct,
this portion of the generated data will also be correct.

However, we do need to consider the referential integrity constraint between item ids and related
items. Because only a subset of items is active at any given time, there is no guarantee that related
items will point to active item ids. Thus, the simulation must provide this guarantee explicitly. The
simulation satisfies this by adding a check at the end of each time step. The check builds a list of all
active item ids. Then, for any currently active related items that refer to an item id not in the list,
the simulation replaces the value with an id in the list. Note that this ensures both sequenced and
nonsequenced referential integrity constraints between item ids and related items.

We also need to consider the cardinality constraints placed on authors. Because the simulation
has the ability to add new authors and delete existing authors at any point in time, the simulation
must be careful not to violate the maxOccurs and minOccurs constraints in the original schema.
This is true for both the sequenced (i.e., at any given time, an item must have between one and four
authors) and nonsequenced (i.e., in any given year, an item can have up to six authors) variants of
this constraint. The simulation achieves these by maintaining an author counter for each item and
each period. For the sequenced constraint, the counter is incremented and decremented as the sim-
ulation adds or removes authors. For the nonsequenced, the counter is only incremented when an
author is inserted. Finally, when an item is selected by the simulation to insert or remove an author,
the simulation first consults this counter; if the counter indicates that such an action will violate
a constraint, the simulation chooses another item to change. The simulation will continue trying to
choose a viable author for a predefined number of iterations and then will halt to avoid infinite loops.

In this way, the resulting temporal data are made consistent for both sequenced and non-
sequenced constraints.
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5.6.2. Shredding XML data into relations. As mentioned earlier, we have created a tool to shred
the XBench DC/SD data into six relations. If the data to be shredded is temporal, the resulting
relations will have two additional columns representing the begin and end time for each row.

5.6.3. Validation tools. We have developed several tools to help us validate our translations and
simulations.

Validating the output of �GENERATOR. We have created a tool that validates the XML slices gen-
erated by �GENERATOR against their XML schema using XMLLINT [58]. In addition, the tool
validates the generated temporal document against its temporal schema using �XMLLINT [38].
These checks ensure that each generated slice is well formed and consistent with the schema con-
straints and that the generated temporal document is well formed and consistent with the sequenced
and nonsequenced semantics of the conventional schema.

Corrupting data. Constraints should be tested on both valid and invalid data. We thus corrupt the
data generated by �GENERATOR as a testing phase to determine if the validators and associated
schemas can detect the corruptions. We have developed a tool, called �CORRUPTOR, that takes as
input a temporal XML document and outputs another temporal XML document that is identical
as the input document except for one victim element. The victim element is modified to directly
contradict one of the constraints specified in the original schema.

Specifically, the input into �CORRUPTOR is a temporal XML document generated by
�GENERATOR, as well as a integer parameter specifying which of the seven temporal constraints to
invalidate.

1. Sequenced cardinality. Duplicates an entire author four times (but keeps each author id
unique).

2. Sequenced referential integrity. Changes a related item’s item_id attribute to a random
string.

3. Sequenced identity. Copies the ISBN of one item to another.
4. Sequenced datatype. Changes the number of pages to a random string.
5. Nonsequenced identity. Copies the id of an item i1 at time t1 to the id of an item i2 at time
t2, where i1 ¤ i2 and t1 ¤ t2.

6. Nonsequenced referential integrity. Changes a related item’s item_id to a random string.
7. Nonsequenced cardinality. Duplicates an entire <author_RepItem> six times (but keeps

each author id unique).

Checking primary keys of shredded relations. We have created a tool that checks each shredded
relation to ensure that each primary key is unique across the relation. It does so by building a hash
table of primary keys in each relation. If a row is encountered whose key is already defined in the
hash table, then the tool reports an error. Relations whose primary key are defined across multiple
columns require multidimensional hash tables.

Checking referential integrity of shredded relations. We have created a tool that checks each shred-
ded relation to ensure that each referential integrity constraint is valid across the relation. It does
so by first reading the entire relation and creating a hash table of the referenced primary keys. The
second pass ensures that each value in a foreign key column is defined in the hash table.

Comparing XML slices to the temporal XML document. We have created a tool that ensures that
the generated temporal XML document and the corresponding XML slices are consistent. The
last tool makes use of UNSQUASH, which is part of the �XSchema tool suite [38]. UNSQUASH

extracts each XML slice from a given temporal XML document. Our tool then compares each
generated slice with each extracted slice using X-Diff [59] to ensure that they are equivalent. If all
the slices are equivalent, then our tool reports that the temporal XML document and generated slices
are equivalent.
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Testing queries. Query Executor is a tool providing a simple way to quickly execute multiple queries
for a variety of DBMSes. After the DBMS and password are entered, the GUI will display a list of
active query directories and allow for additional directories to be added or for old directories to
be removed. Each query directory contains a parameter file (.queryexecutor) that specifies a
connection to the appropriate database. Queries within the selected directory appear in a separate
pane, and the tool allows a query to be run individually, all of the queries within the directory to be
run, or a selected group of the queries to be executed. The results of each query are stored in files,
and Query Executor can run a diff on the last two executions. If one or more of the previous two
runs were of more than a single query, the diff will be performed only on the queries from both runs
that have the same query number. Query Executor also allows for the results of any run or diff to
be exported to a file. This tool has proven very convenient for developing the queries within each
benchmark.

Comparing XQuery and PSM queries. We have created a tool that performs a pair of queries and
compares their output. First, it runs an XQuery query on the nontemporal XML data and saves the
output. Then, it runs the corresponding PSM query on the shredded relational data and saves the out-
put. Because the output formats are different, the tool reformats the PSM output to be of the same
format as the XQuery output. If the two results are textually identical, then the queries achieved the
same functionality.

This tool is part of our larger commutativity validation process. Commutativity validation com-
pares, for example, the output of performing a temporal query on a temporal database with the
output of performing a conventional query on a slice of the temporal database (Figure 5). Such
a comparison simultaneously validates several tasks and tools: slicing the temporal database; exe-
cuting temporal queries; slicing temporal relations; and executing conventional queries. Only if all
of these steps are working perfectly will the results be the same; thus, a strong level of validation
is ensured. This cross-validation relies on snapshot equivalence and temporal upward compatibil-
ity [8], as well as the sequenced semantics [7, 60], which relate in very simple ways nontemporal
and temporal data, queries, and constraints.

5.6.4. Example: creating the �XBench benchmark. To illustrate the procedure (and power) of
benchmark frameworks, we now present a detailed example from �Bench. We show how we created
the �XBench benchmark from the DC/SD XBench benchmark.

First, we execute �GENERATOR to create the temporal data. We specify an arbitrary start-
ing time of January 2010. We then specify that we want a new slice every week, for a total of
104 weeks (2 years). At each new slice, 240 elements are added, changed, or deleted; thus, there
are 25K changes in all. �GENERATOR performs the simulation and outputs the final temporal XML
document, temporal.xml (34 MB).
�GENERATOR also creates a temporal schema, temporalSchema.xml, which simply points

to the conventional XML schema and to the temporal document. It also contains a couple of simple
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Figure 5. Commutativity validation.
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temporal annotations, specifying, for example, that the <item>, <author>, <publisher>, and
<related_items> elements are temporal elements; that each temporal element has a unique id;
and that each <related_item> points to an existing (and active) <item> id.

Then, we use our tools to validate the generated output.
Next, we create temporal queries from DC/SD XBench’s nontemporal queries simply by adding

statement modifiers (i.e., current and sequenced); adding no modifier implies nonsequenced seman-
tics. We validate the results of the current queries by comparing their output with the output
of the original nontemporal queries executed on a slice of the temporalSchema.xml (using
UNSQUASH) at time now. We validate the output of the sequenced queries by using the commuta-
tivity tool. We do not validate the nonsequenced queries, as they are simply returning the results of
the temporal simulation.

After all of these steps, we can be confident that the data are correct, the schema is correct, and
the workload is correct. In addition, we know (and can easily describe) the exact origins of the data,
schema, and workload.

5.6.5. Running the benchmarks. We have developed a tool, QUERYRUNNER, that presents a graph-
ical interface to run a specified set of queries over a specified data set, collecting the relevant metrics.
This tool is applicable to the benchmarks utilizing the relational model.

5.7. Summary and lessons learned

In creating �Bench, several tools and concepts were realized. The original XBench benchmark was
branched in two different directions: creating a temporal version of XBench (�XBench) and creat-
ing a PSM version of XBench (PSM). Each of these was further branched for additional purposes.
To do so, we created tools to vary a nontemporal dataset over time, to change hierarchical data into
relational data, to validate the data changes, and many other tasks. The resultant benchmarks, their
relationships, and the tools used to create them, are all a part of �Bench.

As we built �Bench, we were surprised by the number of subtle bugs that we found in the tem-
poral data generator (�GENERATOR), which we only discovered by validating and executing the
derived benchmarks. With each consistency and validation check that we added to the benchmarks,
more bugs were uncovered. In the end, we developed confidence that �GENERATOR, and hence
our datasets, was correct and consistent. This process highlights the strength of the component
connections, and their ability to be cross checked, of benchmark frameworks.

We found that each additional benchmark required less time to create than the previous. Instead
of having to create ten benchmarks from scratch, we created a single benchmark and slightly
modified it ten times, using tools to automate as much as possible. In practice, we use each bench-
mark in �Bench for some research project, and we have already reaped the benefits of reuse in
terms of reduced development cost. We feel that benchmark frameworks are well worth any initial
startup costs.

In addition, we have found that describing the benchmarks has been simplified, because of the
added organizational clarity provided by regularized benchmark components and the B-R diagrams.

Finally, we found that because each benchmark component tends to be reused by derived bench-
marks, it becomes easier to justify the extra effort of ensuring each component is of the highest
quality.

Our experience with developing �Bench has been that each aspect of a benchmark framework,
including explicating shared and changed and new components in a new benchmark, exploiting
the opportunity for cross-validation, and sharing data and tools across constituent benchmarks,
brought with it benefits that fully justified the small amount of effort and rigor required. And some-
times, the sharing of components made developing a descendant benchmark substantially easier
than developing one from whole cloth.

To further demonstrate the generality and usefulness of benchmark frameworks, we now briefly
present two additional case studies from different domains: the MUD framework and the TPC
framework, examining how the general principles listed in Section 4.1 apply in these domains.
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Figure 6. Benchmark–Relationship diagram of the MUD benchmark framework.

6. THE MUD BENCHMARK FRAMEWORK

Mining Unstructured Data is a project from the empirical software engineering domain that uses
information retrieval (IR) models to mine the unstructured data found in software repositories such
as developer emails, bug report titles, source code identifiers and comments, and requirement doc-
uments [61]. An ongoing research project by the first author, the MUD project, considers different
software engineering tasks, such as test case selection and bug localization, with benchmarks for
each. We have created a benchmark framework to describe the MUD project, which we now present.

The organizational insight of the MUD benchmark framework is sharing (i) the data model,
(ii) DDL, (iii) data, (iv) data preprocessing techniques, and (v) validation tools across the constituent
benchmarks, to enable a common approach for evaluating different algorithm variations.

Figure 6 shows the B-R diagram for the MUD benchmark framework, which consists of four
constituent benchmarks.

6.1. The Concern Evolution benchmark

The foundation of the framework is the Concern Evolution benchmark, initially created for
measuring how the concerns (i.e., technical aspects, such as ‘printing’, ‘database connections’,
‘logging’, and ‘XML I/O’) in a software system [62] are evolving over time [63]. Here, the data com-
ponent is the source code of several real-world software projects (Eclipse JDT, Mozilla, Chrome,
and AspectJ). The source code is not executed by this benchmark but instead is treated as simple
text and input into different text mining algorithms. Specifically, the identifier names, comments,
and string literals from the source code are used, as these elements have been shown to represent
the developer’s thoughts and intentions of the code [64], making them appropriate for automated
concern mining algorithms. These code elements can be subjected to different preprocessing steps,
such as splitting identifier names (camelCase and under_scores) and removing stop words. Hence,
the dataset does not contain a set of executable commands but rather a set of words that happen to
be extracted from source code. The workload consists of the concern evolution mining algorithm
variations being researched, as algorithms can vary in which preprocessing steps are performed
and in which concern mining technique is used, such as latent Dirichlet allocation (LDA) [65] or
DiffLDA [66]. The data model and DDL are both the Java programming language, as the data are
in the form of Java source code. The schema contains informally expressed constraints, such as
‘identifiers have no embedded spaces’. The DML is the R programming environment, because that
is how the algorithm variations are implemented.

6.2. The Test Case Collection benchmark

The Test Case Selection benchmark is useful for evaluating IR-based test case selection algo-
rithms, which aim to choose a subset of all available test cases while still detecting as many faults in
the software as possible [67]. IR-based test case selection algorithms take as input a set of test cases
(i.e., the source code of the test cases) and output a subset of test cases (usually much smaller than
the total set) that, when executed, will still likely detect a majority of the bugs in the system. The
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selection algorithms work by maximizing the distance (in this case, using textual difference metrics,
such as the Levenshtein distance, between the source code of the test cases) between the subset
of selected test cases, thereby ensuring that all parts of the underlying software system are tested.
Here, the workload consists of the selection algorithm variations (i.e., different preprocessing steps,
different distance metrics, and different maximization algorithms), and the data are only a subset of
the data from the Concern Evolution benchmark, namely the source code files that correspond to
test cases. All other components remain the same.

6.3. The Bug Localization benchmark

The IR-based bug localization algorithms [68] aim to identify which source code files likely contain
faults (i.e., bugs), given a bug report from a bug repository (e.g., Bugzilla [69]). These algorithms
work by building an index on the (preprocessed) source code and then query this index using the
content of the bug reports. Again, the workload is the set of bug localization algorithm variations
(i.e., different IR models, different similarity measures, and different ranking algorithms). The data
are expanded from the Concern Evolution data to include bug report data, such as the bug report
title and detailed description entered by user; all other components remain the same.

6.4. The Bug Prediction benchmark

Finally, the Bug Prediction benchmark is used to evaluate bug prediction algorithms, whose aim is
to predict the location of bugs in the source code, this time without the help from a bug report [70].
Bug prediction algorithms work by measuring metrics on each source code module (e.g., complex-
ity, coupling/cohesion with other modules, number of changes, and number of previous bugs) and
train statistical models to predict the likelihood that each module contains a bug. Here, the workload
consists of bug prediction algorithm variations (i.e., which metrics to measure and what statistical
models to use), but all other components remain the same.

6.5. Supporting tools

In the creation, validation, and execution of the MUD benchmark framework, the following tools
are shared (reused).

Data generation. The data for the original Concern Evolution benchmark is composed of the
source code files of several real-world systems, totaling over 70 million lines of code. Specifically,
the data contain the source code of Eclipse (the 16 official releases from 2002–2009), IBM Jazz
(4 releases from 2007–2008), and Mozilla (10 release from 2004–2006). Typically, when using IR
or other text mining algorithms on source code, as MUD does, the source code is first preprocessed
to capture the domain-specific information encoded in the identifier names, comments, and string
literals in the code. The data generation tool for MUD thus preprocesses each source code file to
isolate these elements, removing language-specific syntax, keywords, and so on. Additionally, the
data generation tool splits identifier names, removes common English language stop words, and
stems each word in an effort to normalize the vocabulary (Figure 7).

Validation tools. Many validation tools are used to check the consistency of the data and data gen-
eration tools, as well as the results of the different workloads. For example, the lightweight source
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Figure 7. MUD data generation.
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code preprocessor (LSCP) tool has internal validation capabilities to ensure that the data prepro-
cessing is performed correctly, by checking the associativity of the tool (e.g., the tool is run three
times: once to isolate identifiers only; once to isolate comments only; and once to isolate comments
and identifiers. LSCP then compares the union of the first two runs with the third). Similar checks
can be performed for other tool parameters.

Additionally, many of the benchmarks train IR models on the data, which have their own class
of validity checks. For example, the LDA [65] model assigns topics to each document; we have a
validation script in R to check that the sum of each document’s assigned topics equals one, by the
definition of the LDA model. Dozens of similar checks are performed to ensure the correctness of
the data.

6.6. Summary and lessons learned

The MUD benchmark framework is simpler than �Bench, but many of the ideas are the same.
Starting with a foundation benchmark (i.e., Concern Evolution), the benchmark components
are changed to create new benchmarks. In the case of MUD, the data and workload components
were changed to create the Test Case Selection and Bug Localization benchmarks; the Bug
Localization benchmark was further changed to create the Bug Prediction benchmark. Tools
were created to automate the generation (i.e., via preprocessing) of the data and to validate the cor-
rectness of several IR models. The resultant benchmarks, their relationships, and the data creation
and validation tools are all a part of MUD.

During the creation of MUD, we learned a few important lessons. The first was the power of regu-
larizing the dataset in the root benchmark, so that it can easily be reused in subsequent benchmarks.
For example, when starting the bug localization project, instead of having to hunt for appropri-
ate data and create a new benchmark from scratch, we simply reused the data from the Concern
Evolution benchmark, added the bug reports, and implemented the algorithm variations.

As was the case with �Bench, we also found in MUD that the consistency and validation checks
helped to find subtle bugs and corner cases in the data generator. For example, a step in one of the
text mining algorithms in the workload of the Bug Localization benchmark is supposed to output
a vector that sums to one for every input document in the data. However, because of an inconsistent
parameter setting in the algorithm, the algorithm produced vectors containing all zeroes for some
input documents. Because we had created a data validation tool to check the vectors for this, we
were able to easily uncover and correct this error.

Finally, we found that by describing the research projects as benchmarks, which consist of course
of data and the workloads applied to the data, the resulting organizational clarity enable us to more
easily implement and test new algorithm variants. For example, with the Bug Localization bench-
mark in place, a researcher can test a new suite of bug localization algorithms by simply deriving a
new benchmark and replacing the workload, leaving the other components the same.

7. TPC: A REPRISE

As mentioned in the introduction, the TPC family of benchmarks, while loosely related, presents
complexity for end users in exercising these benchmarks in a unified fashion, because of the lack
of explicit relationships. We present a proposed benchmark framework for TPC to illustrate the
advantages of benchmark frameworks. We propose that the organizational insight is structuring the
constituent benchmarks around a single relational database that is both realistic and appropriate for
both transactional and analytical applications.

Figure 8 shows our TPC benchmark framework, composed of four individual benchmarks, along
with two separate benchmarks derived from them.

The TPC-C benchmark contains a large dataset for a wholesale supplier, consisting of ware-
houses, sales districts, and customer transactions. The OLTP workload consists of mostly simple
queries as well as small modifications such as INSERT and UPDATE operations.
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Figure 8. Benchmark–Relationship diagram of a proposed TPC framework.

The TPC-H benchmark utilizes a very similar, but not identical, set of tables. This benchmark
could in fact have shared the same data and schema as TPC-C. But because TPC-H emphasizes ana-
lytical applications, it uses an entirely new OLAP workload, consisting of sophisticated analytical
queries that extensively involve joins, predicates, and aggregations. For that reason, in our proposed
framework, we show the only difference between the two benchmarks being a changed workload.

The TPC-E benchmark was designed to evaluate DBMSes with a more generalized workload,
that of complicated analytical queries with transaction processing. As a family, this benchmark dif-
fers in small but nonessential ways from both of the prior benchmarks. In our proposed framework,
TPC-E is simply a merger of the TPC-C and TPC-H benchmarks, containing the same data and
schema as both, with a union of their queries.

The TPC-R benchmark is the same as TPC-H, except that it allows for optimizations to be per-
formed before executing the queries, such as creating indices on certain columns to enhance average
query performance. Thus, all benchmark components are the same, except the schema (which now
contains CREATE INDEX statements).

Even though this benchmark framework is simple, its understandability has been greatly increased
because of greater organizational clarity (a B-R diagram of the actual TPC family of benchmarks
would be quite a bit more complex, because of superfluous changes of components between bench-
marks). For example, an end user may not have been previously known if the TPC-C and TPC-R
benchmarks could have used the exact same data; now, it is clear that they do. And tools, such as
those for generating sample data at various scale factors and for executing the workload against
the database and collecting the metrics, could be reused across the framework. Finally, the work-
load, data, and DBMS query processing in the TPC-H, TPC-E, and TPC-R benchmarks can be
cross-validated by ensuring that the queries return the exact same results in these three benchmarks.

Moreover, we found that in practice, such benchmarks are often modified for evaluating certain
features of newly developed DBMSes. For instance, Stonebraker et al. investigated a column-
oriented DBMS implementation, namely the CStore [71]. They evaluated this system with a mod-
ified version of the TPC-H benchmark in which five tables were removed and the schema of
the remaining three tables was modified. In addition, they modified one original query from the
benchmark and added six new queries. Another example is the evaluation of the MonetDB/X100
system performed by Boncz et al., in which the schema of the TPC-H benchmark is modified by
creating additional indices on specific columns and sorting particular tables (both of which are addi-
tional physical schema additions) before queries are run [72]. The third example is a version of
TPC-C used to evaluate the automated partitioning facilities in the Horticulture system, in which
they ‘generated a temporally skewed load for TPC-C, where the WAREHOUSE_id used in the
transactions’ input parameters is chosen: : :[to present] a significant amount of skew’ [73].

If the TPC benchmarks employed the benchmark framework approach, these specific modifi-
cations performed by the previously discussed research could be more explicitly depicted in the
framework’s B-R diagram. Moreover, the change(s) applied on each path (e.g., data or schema)
of deriving a new benchmark from an existing one can be more clearly communicated. The TPC
framework B-R diagram emphasizes that the TPC-H CStore benchmark is in fact changed in both
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schema and workload, making it clear that the experimental results depend in part on these changes
and thus may not be applicable to the original TPC-H benchmark. This diagram also makes explicit
that the TPC-C (Skewed) benchmark has a skewed workload.

8. ADVANTAGES AND DISADVANTAGES OF BENCHMARK FRAMEWORKS

Benchmark frameworks are not meant to suite every purpose and every benchmark. When commer-
cial politics mandate a specific benchmark to be used time and time again, without modifications to
the benchmark, benchmark frameworks will offer no advantages.

The initial startup cost of benchmark frameworks (i.e., clearly defining benchmark components
and their relationships and creating shared tools and consistency checks) may be high for small
families of simple benchmarks or when the benchmarks share little-to-no components (in which
case, it is probably best to merge such benchmarks into neither a family nor a framework).

At the same time, the organization and mechanics of benchmark frameworks bring many benefits
to both the developers and the users of the individual benchmarks. First, benchmark frameworks
encourage the reuse of existing benchmarks and their components, without the need of creating new
components from scratch. Reuse is especially helpful with large and complex datasets, schemas,
and workloads.

Reuse also brings forth another advantage, that of reducing the development cost of subsequent
benchmarks. Components can be reused and iteratively modified to suite the new benchmark’s pur-
poses. Researchers and practitioners who may have otherwise not created a new benchmark now
enjoy a lower development cost. High quality need not be traded off against greater development
effort: the former can be increased at the same time that the latter is decreased through the general
principles inherent in benchmark frameworks.

The structure and organization of benchmark frameworks, embodied by the B-R diagrams and
explicit connections between components, are easier to understand than traditional benchmark fam-
ilies. When large, distributed groups collaborate to develop related benchmarks, and the organization
provided by benchmark frameworks becomes especially important and useful.

As illustrated in Section 7, the B-R diagram emphasizes what is borrowed and what is changed
when a benchmark is not used wholesale but rather piecemeal in the evaluation of a software or
hardware system.

Finally, and perhaps most importantly, the structuring of the framework and the sharing and cross-
validation that this structure encourages result in constituent benchmarks whose correctness is more
demonstrable, yielding greater confidence on the part of the developers and users of the correctness
of those constituent benchmarks. For benchmarks that are to be actually used for evaluation, the
relatively small amount of effort required to create a benchmark framework is generally well worth
this added confidence. As evidence, we have already had interest from benchmarking practitioners
involved with the TPC family, because of the benefits they see in the framework approach.

9. CONCLUSIONS AND FUTURE WORK

We have introduced the notion of a benchmark framework, which is an ecosystem of related bench-
marks having well-defined and well-specified relationships, as well as tools to help transform and
validate individual benchmarks, based on organizational principles. These synergistic properties of
benchmark frameworks help overcome the difficulties of maintaining, describing, and validating
families of related benchmarks. Benchmark frameworks bring clear communication for describ-
ing the changes made to existing benchmark components, by using B-R diagrams. Benchmark
frameworks also encourage sharing and reusing, allowing an existing benchmark to be quickly
adapted to test new systems or strategies, by using automated tools to translate existing compo-
nents into new ones. Benchmark frameworks encourage regularization of the execution of individual
benchmarks, by using shared tools and environments. Finally, benchmark frameworks help ensure
validity, by consistently evaluating the validity of benchmark components from various angles
(e.g., commutativity).
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We have also introduced �Bench, a benchmark framework for evaluating temporal schema and
query languages on XML and relational data [35]. Although �Bench spans many technologies (from
XML Schema to Temporal SQL/PSM) and is used by several distinct projects, the benchmarks are
easy to understand, and creating new, related benchmarks is straightforward and reliable; this is one
of the powers of benchmark frameworks. An early implementation of �Bench is available on our
project website [10]. Our experience with this framework is that it was easier to develop than a
family of only loosely related benchmarks, because of extensive sharing of components and tools
between constituent benchmarks.

To emphasize the generality of benchmark frameworks, we also briefly presented two additional
benchmark frameworks. Although these were from different domains (those of empirical software
engineering and OLTP/OLAP), the advantages of benchmark frameworks were still available: rela-
tionships between benchmarks were explicit, and tools helped in the creation and validation of each
individual benchmark.

In future work, we would like to augment the relationship constraints in Table II. We have devel-
oped an XML schema for B-R diagrams; it would be useful to have a meta-tool to test such
constraints. The meta-tool can check constraints by reading the data, schemas, and workloads of
two benchmarks and ensuring that they comply with the stated relationships in the B-R diagram.
For example, if the diagram shows that the data component of one benchmark is equivalent to the
data component of its parent benchmark, then the meta-tool can ensure this equality.

In this paper, we have discussed the generality of benchmark frameworks and the methods to cre-
ate and validate them. In future work, as we and others develop more benchmark frameworks from
other domains, we wish to determine whether the tools could themselves also benefit from general
principals. For example, can we find general design choices and techniques for data generation and
validation tools, no matter the underlying domain of the benchmark framework? Or are these tools
only contributory to such general principals?

The �Bench benchmark framework can be expanded in several directions: automating some of the
mappings (such as for the �XBench workload), adding new DBMSes for PSM (that should be eas-
ier with automated mappings), adding new mapping strategies for �PSM (also aided by automated
mappings), adding new schema languages for XML, and adding new implementation strategies for
�XSchema. In particular, several DBMSes now offer temporal support. Oracle 10g added support
for valid time tables and transaction time tables, and Oracle 11g enhanced support for valid time
queries [74]. Teradata recently announced support in Teradata Database 13.10 of most of these
facilities as well [75], as did IBM for DB2 10 for z/OS [76].

Designing an individual benchmark as well as a realized benchmark framework is the result of a
long sequence of design decisions. For example, in designing the PSM benchmark, we adopted a
particular way of shredding the XML document into relations. It would be useful to have a way of
capturing such interbenchmark transformations in a more complete manner than just the five rela-
tionships listed in Section 4.2, for example, with annotations that name the software that performs
that shredding, or better yet, with a formal notation that gives the semantics of that transforma-
tion. Doing so would richen the kinds of relationship constraints (e.g., Table II) that could be stated
and verified.

Finally, we encourage the XBench, SPEC, and TPC organizations to consider refining their
respective benchmark families into more structured and more convenient benchmark frameworks.
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