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Abstract

In this paper, we survey kinetic visibility problems. Unlike the research in traditional vis-
ibility problems, the researchers have also taken moving objects into consideration. These
problems have been addressed from different practical aspects, such as computational graphics
and robotic design. Over the years, some general combinatorial results of the visibility graph
have been shown. Leveraging temporal coherence has been used in kinetic visibility studies for
different scenes. Data structures that have been developed to support the kinetic operations,
and kinetic algorithms that have been designed to achieve efficient visibility computation and
maintanence are reviewed in this paper. Open problems related with kinetic visibility will be
addressed from different perspectives. Both theoretical and practical work needs to be done in
future studies.

Glossary

backward view object the object that intersects the starting point of
a directed maximal segment, 6

bitangent a line segment that is tangent to two objects,
6

boundary segment a free line segment from the viewpoint that is
tangent to an object in the object space, 18

certificates a set of simple geometric attributes that is
chosen to validate the combinatorial struc-
tures of the attribute that we want to main-
tain in a KDS, 12

chipped line a line through two points in the plane exclud-
ing the line segment between the two points,
16

chipped line arrangement
(CL-arrangement) a line arrangement constructed by drawing a

chipped line through each pair of points in the
plane, 16

edge (visibility complex) a line segment connecting two vertices in the
quotient space of the visibility complex that
corresponds to a group of maximal segments
in the original object space which are tangents
to one object and have the same forward and
backward view objects, 11

event a failure of a certificate in a KDS, 12
external events the set of events that affects the attribute of

interest in a KDS, 14
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face (visibility complex) a set of all points in the quotient space of
the visibility complex bounded by some ver-
tices and edges that corresponds to a set of
all maximal segments in the original object
space which can be transformed into each
other while keeping their forward and back-
ward view objects, 11

forward view object the object that intersects the ending point of
a directed maximal segment, 6

gerenal position no three objects share a common tangent line,
7

internal events the set of events that is used to maintain the
correctness of the certificates, however does
not affect the attribute of interest in a KDS,
14

kinetic data structure (KDS) a data structure that maintains an attribute
of interest in a system of geometric objects
undergoing continuous motion, 12

kinetic scene a scene where every object may have its own
moving trajectory in the object space, 8

kinetization the process of taking an algorithm for com-
puting a discrete attribute, turning it into a
proof that this attribute is correct, and ani-
mating this proof through time, 13

maximal segment a line segment in the object space that only
intersects two object boundaries at its two end
points, 6

object space the space (in 2D or 3D) that contains the set
of objects, 6

polyhedral complex a finite set of closed convex polytopes, the
faces of the set, in real n-space Rn, such that
two conditions are satisfied: all faces of the
polytopes are included; the intersection be-
tween two polytopes is either empty or is a
face of both polytopes, 10

pseudo-triangle a simple ploygon in the plane with exactly
three convex vertices, 7

pseudo-triangulation a tiling of a planar region into pseudo-
triangles, 7
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smooth a well-defined tangent line through each
boundary point, 7

static scene a scene where the objects do not move except
the observer, 8

upper envelope the portion of the lines in an arrangement that
is visible from the point (0,+∞), 13

vertex (visibility complex) a point in the quotient space of the visi-
bility complex that corresponds to a bitan-
gent (maximal segment) in the original object
space, 11

visibility complex a mathematical structure (or a polyhedral
complex) applied as a data structure that nat-
urally captures visibility in a set of convex ob-
jects, 9

visibility graph the set of all free bitangents of the objects in
the object space, 6

visibility polygon a polygon formed by all points of the plane
directly visible to the observer (viewpoint), 6

1 Introduction

Imagine a group of intelligent robots working together on a large open ground in the near future.
Each of the robots is equipped with a radar of “infinite” power, such that they can “see” others as
long as there is no other robot blocking their sight. Now, just like us, the robots need to have the
ability to organize themselves to accomplish a task together. Each of them needs to know which
ones they can see at any time. This kind of teamwork is essential, because they need to ask others
for help (again, just like us) and, of course, they do not want to bump into each other. In fact, we
are grouped together to work like this all the time.

Intelligent robots need algorithms to help them keep track of other robots that are visible. In the
field of computational geometry, we know that this problem is related to the visibility computation.
Like all other algorithmic fields, we need efficient algorithms to help the robots calculate and update
their visibility information in real time to avoid possible collisions. In the theoretical world, we
usually start from the simplest case, where the robots stand still without any movement (like base
stations). Decades of studies have provided us some good algorithms to calculate the visibility
information in this case. However, we want the robots to have the ability to move around so that
they can be greater helpers to us. The challenge is not only to calculate the visibility information,
but also to maintain the visibility information with the respect of motion. A good algorithm shall
provide the robot quick update ability when detecting any change in visibility. Of course, it is not
hard to see that recalculating the visibility information from scratch whenever there is a change is
not efficient at all.

Before we get into the formality of examining the current literature, let’s step back and take
an informal look at how we (humans) process the visibility information in our daily life. Instead
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of a radar and a computer, we have our two eyes and a brain, which comprise our visual system.
This system appears to take advantage of temporal coherence in absorbing visual information [32].
Under most circumstances, the scene changes relatively slowly with the respect to our movements,
such that if we take two close snapshots on our continuous moving path, they would be very much
the same. If we further restrict the question to report what things (objects) we can see, then
the visibility information only needs to be updated at certain points where an object is blocked
(occluded) or becomes visible to us. This is rather the case for the robots in the scenario proposed
at the beginning of this section.

Clearly, in designing visibility algorithms for the future intelligent robot, we need to utilize
coherence information to achieve efficiency just like our visual system does. In this paper, we take
a look at current developments in deriving efficient algorithms to leverage temporal coherence in
visibility computations. This topic is recognized as “kinetic visibility” to distinguish it from the
traditional visibility problems where we do not consider motion. Related questions such as collision
detection and room searching are also studied in this framework. We classify this framework into
two categories. We start from the simple version where only one supervisor robot is moving around
to check on the others, such that the environment for the supervisor is static. Then we continue to
a more general problem where there is no supervisor, and every robot is trying to coordinate with
others. The scene for any robot is dynamic (kinetic)1.

We consider various formally defined models of robots and their working spaces, so that we
can tackle these problems using algorithmic and analytic tools from the field of computational
geometry. The working space is mainly addressed in 2D from the current developments in this
field. The robot models that we consider in 2D are:

• a point set (i.e., imagine the working ground is “infinitely” big, such that a robot can be
modeled as a point in the space.)

• convex polygons

• simple polygons (i.e., some vertices of the polygon may not be convex)

In 3D, we are expecting to use some well-defined geometric objects (e.g., balls or convex poly-
topes) as the robot models in the future studies.

We formalise the problems in Chapter 2 with technical definitions. Related data structures are
discussed in Chapter 3, and algorithms are discussed in Chapter 4 and Chapter 5. Open problems
are surveyed in Chapter 6.

2 Problem Statements

In this section, we formalise the visibility problems introduced by the intelligent robot above.
Visibility problems in computational geometry have been intensively studied for over 30 years. The
research is primarily focused on combinatorial issues, or algorithms involving problems like the
art gallery theorems, illumination of convex sets, and mirror reflections. O’Rourke has provided
a broad survey on many traditional visibility problems in [30] (Chapter 28). However, the set

1Strictly speaking, in computational geometry, “dynamic” has already been used for the set of problems where
we can add/delete objects to/from the scene [9]. For the sake of clarification, we will use “kinetic” throughout this
paper instead.
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of problems proposed by the intelligent robot have taken continuous motion into account. Many
practical problems in computational graphics and robotics share the same feature.

2.1 Technical Terms

We begin with the definitions of some common terms used in this context. Following the conven-
tions, we also make some assumptions throughout this paper unless explicitly specified. Each robot
is generalized as an object. The object space is in 2D or 3D2, which contains the set of objects.
Objects are assumed to be convex. For the ease of notation, the object space is presented in a
graphic box (can be treated as another object). The boundary of the box denotes the “blue sky”.
The observer is an object in the object space (referred to as viewpoint if the observer is a point). In
kinetic visibility problems, object motion is assumed to be continuous, distinguished from object
motion in the dynamic set of problems concluded in [9], in which objects can be deleted or added
discretely from the object space.

2.1.1 Visibility

In computational geometry, we say an object O1 is visible to another object O2 if there exists a
straight line segment in the object space of O1 and O2 that only intersects object O1 and O2 at
its two endpoints and intersects no other objects. The visibility graph of the scene is defined as
a vertex-edge incident graph, such that each object corresponds to a vertex, and two vertices are
connected by an edge if only if the two objects defining the vertices are visible to each other. In
dealing with convex objects, a more commonly used visibility graph is defined on free bitangents,
which are line segments that are tangents to two objects at their endpoints and intersect no other
objects. The (tangent) visibility graph thus contains all free bitangents of the set of objects. We
will use this visibility graph throughout this paper. Figure 1 (a) depicts the visibility graph of
three objects. Note that the bitangent drawn with a dashed line is not free, and thus not included
in the visibility graph.

v

(a) (b)

l m

Figure 1: (a) the (tangent) visibility graph of a collection of three objects. Note that the dashed
bitangent is not free, and thus not included in the visibility graph. (b) the visibility polygon (shaded
area) from the viewpoint v. l and m are maximal segments in this scene.

A large set of visibility problems considers the view from an observer. The view is normally
described as the visibility polygon (or visibility region in 3D). The visibility polygon is normally

2Technical definitions are addressed in 2D unless otherwise specified.
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a polygon formed by all points of the plane directly visible to the observer; that is, those points
that can be connected via a line segment to the observer without intersecting any object interior.
The visibility region can be defined similarly. Figure 1 (b) shows the visibility polygon from the
viewpoint v in the scene. Alternatively, instead of describing the exact geometry of the view, we
can keep a combinatorial description of the view, which only consists of a circular ordered list of
visible objects (or vertices and edges) in the order in which they appear on the boundary of the
visibility polygon from the observer. This is beneficial in solving kinetic visibility problems as we
shall see later. Of course, having this combinatorial description, it is easy to construct the exact
visibility polygon. A related important definition is the maximal segment, which is a line segment
in the object space that only intersects two object boundaries (or the blue sky) at its two end
points. Assuming line segments are oriented, the forward view object of a maximal segment is the
object that intersects the ending point of the directed line segment, and the backward view object
is the object that intersects the starting point of the directed line segment. We can thus categorize
a set of maximal segments by their forward and backward view objects. Line segment l and m in
Figure 1 (b) are both maximal segments, where m “intersects” the blue sky (i.e., the free space) at
one end. This definition motivates later developments of the visibility complex data structure.

Note that when taking bitangents of a set of convex objects, the objects are normally assumed
to be smooth (i.e., there is a well-defined tangent line through each boundary point). This can be
guaranteed by taking the Minkowski sum of the objects with an infinitesimally small circle. The
general position (i.e, no three objects share a common tangent line) is also assumed, which can
be achieved by applying some perturbation technique in practice. The following figures are drawn
based on these two assumptions.

2.1.2 Pesudo-triangulation

Pocchiola and Vegter introduced a space partition method named pseudo-triangulation [47]. A
pseudo-triangulation of a set of objects is the subdivision of the plane induced by a maximal (with
respect to inclusion) family of pairwise non-crossing free bitangents [46]. A pseudo-triangle is then
simply a connected subset T of the plane, such that (1) the boundary of T , ∂T , consists of three
convex curves, with each two curves sharing a tangent at their common endpoints, and (2) T is
contained in the triangle formed by the three endpoints (defined as cusps) of these convex chains. A
pseudo-triangle is thus a simple polygon with three angles less than π. Figure 2 depicts two pseudo-
triangulations of a collection of five objects. Same as the triangulation (e.g., on a set of points), it
is easy to see that there are many possible ways to pseudo-triangulate a given set of objects. We
also know that the bounded free regions of any pseudo-triangulation are pseudo-triangles.

Pseudo-triangulation is a powerful data structure in the computational geometry field. It has
been applied to support various algorithms for different problems, such as in rigidity calcula-
tions [54] [31]. Different combinatorial results on pseudo-triangulation have been exposed. The
number of pseudo-triangles (of a pseudo-triangulation of a collection of n objects) is 2n − 2, and
the number of bitangents is 3n − 3 [47] [46]. The nice thing about this partition is that it has
been shown we can easily construct a pseudo-triangulation by adding free bitangents in a “greedy”
fashion considering some topological order based on the angles of the bitangents, such that the
pseudo-triangles in the partition admit some partial order from any non-horizontal direction (see
Figure 2). The resulting algorithm is called the Greedy Flip Algorithm [46] [8], which is essen-
tial to data stuctures and algorithms built on top of the pseudo-triangulation. Rote, Santos and
Streinu recently provided a comprehensive survey on this subject and its various combinatorial
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Figure 2: Two pseudo-triangulations of a given scene with five objects. The pseudo-triangles admit
a partial order (as labelled) in (b) such that for any non-horizontal, free line segment t (intersects
no object) in the object space, the sequence of pseudo-triangles intersected by t is ordered according
to increasing y-coordinate.

properties [51].

2.2 Kinetic Visibility Problem with Static Scene

As in the case of traditional visibility problems, if the objects stand still in the object space, we
call such a scene static. Considering static scenes in kinetic visiblity problems helps to simplify
the underlying environment and isolate the motion to a single observer (or viewpoint). In our
supervisor robot senario, only the supervisor travels around, and other robots are mounted on the
ground. The supervisor needs to maintain its “sight” when it moves around. The environment to
the supervisor is a static scene. The supervisor is a single observer in this case.

Many practical problems fit into this category. In computational graphics, we consider the
problem of retrieving some visual space (e.g., a room). The objects in the space are static, and
we walk into the space as an observer. In the mobile world, the base stations (access points) are
normally fixed. A mobile device can be carried remotely as long as it can communicate with some
base stations. In order to build communication channels, the mobile device may need to know
which stations are “visible” to it. In recent developments on wireless sensor networks [59], each
sensor has wireless communication capability and some level of intelligence for signal processing and
networking of the data. Information is collected through the data received from each sensor, which
has limited transmission range. In order to gather data from all the sensors, each sensor needs to
have the ability to forward the data. Certain algorithmic questions can be addressed in the kinetic
visibility field, such as how to get data from the sensors under different topologies. Fekete and
Kröller in their recent study [26] also pointed out that it is essential to make use of the underlying
geometry of wireless sensor networks to achieve distributed knowledge of global network properties
with a limited amount of strictly local information among the sensors.

2.3 Kinetic Visibility Problem with Kinetic Scene

A more general set of problems that are considered in kinetic visibility has no restriction on which
object(s) move. Every object in the object space may have its continuous moving trajectory.
We call this environment a kinetic scene. Under kinetic scenes, we can look at kinetic visibility
problems from different aspects. From a particular object point of view, it now lives in a kinetic
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environment. Recalling our robot example, if every robot is moving around, the supervisor has to
take other robots’ motion into calculation in order to know which ones are visible. Obviously, this is
a harder problem than the previous senario with a static scene. If there does not exist a supervisor
among the set of robots, every robot instructs itself. Then as we have discussed, everyone needs to
be self-disciplined in the kinetic scene. An important task is to avoid collision. Indeed, the popular
collision detection problems have been studied in this context as well.

In mobile ad hoc network, the network consists of a set of self-configuring mobile routers (and
associated hosts) connected by wireless links, the union of which form an arbitrary topology. The
routers are free to move randomly and organize themselves arbitrarily. The network’s wireless
topology may change rapidly and unpredictably. Various questions related with mobile ad hoc
network are being studied currently [56]. From the algorithmic point of view, distributed rout-
ing algorithms for the mobile devices [17] and network coverage problems [41], where localized
algorithms are needed to calculate the best path from one device to another, can be addressed in
relation to kinetic visibility as well.

In the following sections, we survey some important developments in kinetic visibility starting
from the data stuctures. Related algorithms are introduced and some results are reviewed. Limited
by the space of this paper, we do not get into details of any particular data stucture or algorithm,
but rather leave it to the original literature for the reader who is interested. We conclude with
open questions and some future plans for research in this subject.

3 Data Structures

Similar to the dynamic computational geometry problems discussed by Atallah [9], to solve kinetic
visibility problems, we need some supporting data structures. The difficulty of developing efficient
data structures for kinetic operations is that the continous motion in this set of problems implies
that some global computation is hard to avoid. Two important data structure developments (vis-
ibility complex and kinetic data structures) reviewed in this section are both built on the idea of
localizing the visibility recalculation triggered by continous motion to achieve efficiency. In order
to do so, we need to utilize the combinatorial stuctures of the visibility graph and take advantage
of temporal coherence. In other words, instead of examining the exact visibility graph, we shall
only alter the data structure for a combinatorial change (e.g., an object gets blocked or becomes
visible). This also provides a natural way of leveraging temporal coherence, because not every
“move” yields a combinatorial change of the visibility graph.

More or less, because the combinatorial properties of the visibility graph are hard to explore,
the data structures for this set of problems are complicated. The complexity of understanding
those data structures is thus high.

3.1 Visibility Complex

To overcome this difficulty and identify the combinatorial structures of the visibility graph in a
given scene, Pocchiola and Vegter introduced the visibility complex [47], which provides some richer
structures through mapping the original scene onto a quotient space. The complex is then built on
some partition of the maximal segments according to the segments’ views. Because a comprehensive
catalogue of relationships between mutually visible objects is encoded in the visibility complex,
visibility maintenance in the complex is straightforward as the objects move [50]. An optimal
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approach3 using the greedy flip algorithm with linear space usage to construct the visibility complex
through pseudo-triangulations is proposed by Pocchiola and Vegter as well [46]. The resulting
algorithm matches the optimal time to construct the visibility graph for a set of convex objects [29]
(i.e., Ω(n log n + k), where n is the number of objects, and k is the size of the visibility graph).
Thus, preprocessing the scene into a visibility complex provides numerous combinatorial properties
to build efficient kinetic algorithms dealing with moving objects.

The formal definition of the visibility complex is very much involved. For the purpose of this
survey, we give an intuitive explanation of the construction of the visibility complex here based
on a simplified implementation in the CGAL library [7] by Angelier and Pocchiola, and on Rote,
Santos and Streinu’s survey of pseudo-triangulation [51]. A ray in the object space is a pair (p, α)
consisting of a point p in free space and a direction α ∈ S1 (the 1-sphere4). The visibility complex
of a constrained scene SH is the quotient space of the set of rays with respect to the following
equivalence relation ∼: (p, α) ∼ (q, β) if and only if both α and β are the direction of the line
(p, q), and the segment [p, q] lies in the free space of SH . The orgins of the rays belonging to a
same equivalence class under the ∼ relation define a maximal segment in the object space. The
visibility complex of a 2D scene is a mathematical structure (or a polyhedral complex5 concluded
in Rote, Santos and Streinu’s survey [51]). The vertices, edges, and faces of the visibility complex
are depicted in Figure 3.

O1

O3

O4

O2

Face

O1

O3

O4

O2

EdgeVertex

O1

O3

O4

O2

forward view 

object
backward view 

object

Figure 3: The vertex, edge and face are defined in the 2D visibility complex. Two vertices are
defined by two bitangents to O1 and O3. An edge in between the two vertices corresponds to a
group of maximal segments tangent to object O3 and touching the same objects O1 and O2. A face
is defined by the set of maximal segments with backward view object O1 and forward view object
O2 in the shaded region.

• Vertices: a vertex corresponds to a maximal segment that is tangent to two objects. Each
vertex thus associates with a bitangent.

• Edges: an edge corresponds to a group of maximal segments that tangent to one object. This
group of maximal segments can be visualized by imagining a single maximal segment that
rotates around the object boundary while keeping its forward and backward view objects.

3Under the assumption that the common tangents between two objects of constant size can be determined in O(1)
time.

4A 1-sphere is a circle of radius r.
5A polyhedral complex is a finite set of closed convex polytopes, the faces of the set, in real n-space Rn, such

that two conditions are satisfied: all faces of the polytopes are included; the intersection between two polytopes is
either empty or is a face of both polytopes. An example of a polyhedral complex is the set of all vertices, edges and
two-dimensional faces of the standard three-dimensional cube. [6]
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• Faces: a face is defined by a set of all maximal segments that can be transformed into each
other while keeping their forward and backward view objects.

The visibility complex, regarded as a set of vertices, edges, and faces together with the incidence
between them, forms an abstract polyhedral complex, which can be stored as a data structure.
Under the general position assumption that no three objects share a common tangent, the visibility
complex has a quite regular structure: every edge belongs to three faces, and every vertex belongs
to four edges and six faces (see [47] for details).

The original visibility complex development suffers a critical drawback that the transformations
taken to build this complex are complicated, and the whole picture of the complex is very difficult
to be visualized. Pocchiola and Vegter showed that the 1-skeleton6 of the visibility complex is
isomorphic to the visibility graph [47]. Later, Durand and Puech came up a “dual arrangement” [22]
to recognize this visibility complex from a different aspect that helps us to visualize its structure.
Durand, Drettakis, and Puech then upgraded the visibility complex for 3D scenes [19], [20] following
the same duality idea. The duality transform is demonstrated in Figure 4 adopted from the original
paper [22] with two discs and a viewpoint, where (a) is the original scene, and (b) is the dual
arrangement of the scene.

Oi

Oj

(a) (b)

D1
D2

D3

x

y u

θ
D1

D2

D3

µj

µi

λj

λi

v

v

Figure 4: The dual arrangement of two discs (Oi and Oj) and a viewpoint v. (a) The scene with
two discs. (b) The dual arrangement of the scene. The view around v is a sine curve in the dual
space.

The mapping in Figure 4 is defined as: −x sin(θ)+y cos(θ) = u 7→ (θ, u), such that a line in the
original (primal) space is transformed into a point in the dual space, parameterized by the line’s
slope and the signed distance from origin. A given object has (for each θ) two tangents denoted by
(θ, λ(θ)) and (θ, µ(θ)). Each line (θ, u) with λ(θ) < u < µ(θ) intersects the object. According to
the mapping, each point in the primal space is transformed into a sine curve. Each point on the
sine curve represents a line in the primal that passes the original point. An disk is thus transformed
into a strip bounded by two sine curves. For a set of discs, these strips partition the dual space into
connected components corresponding to the lines in the object space. Lines from the viewpoint (v
in the figure) are transformed into a sine curve in the dual space as well. For examples, line D1 and
D3 (of v) correspond to two points on the sine curve of v in the dual. D2 is not a line passing v, and
thus not on the sine curve of v. Also, line D1 intersects both Oi and Oj ; the corresponding point
of D1 in the dual space is in a region defined by two object strips. To report the combinatorial
changes (of visibility) from the viewpoint, we only need to check the sine curve of v in the dual
space against different intersections defined with the object strips.

6The 1-skeleton of a polyhedral complex is the set of edges and vertices of the surface. For example, the 1-skeleton
of a cube is the set of twelve edges connecting the corners.
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The dual arrangement itself does not encode the occlusion information (i.e., the maximal seg-
ment). In order to construct the complete visibility complex, we need to add another dimension to
recognize the maximal segment. So the visibility complex from the dual arrangement is constructed
in a 3D surface structure. The algorithm for building the visibility complex based on the concepts
outlined above, does not achieve the optimal time complexity (in fact, it runs in O(k log n), where n
is the number of objects, and k is the size of the visibility graph [22]). However, it is straightforward
to implement in practice. A couple of applications [45] [16] on this subject applied this algorithm
to build the visibility complex.

The visibility complex provides a unified way to describe the combinatorial structure of the
visibility graph. A set of rays can be recognized as a subset of the complex. Sweeping the ray around
a viewpoint in the scene corresponds to “walking” along a trajectory in the visibility complex.
Temporal coherence is nicely encoded in the complex cell structures. Rivière has shown how to
use the visibility complex to maintain the view around a moving point in a static scene [50].
His algorithm takes the advantage that local changes of visibility in the scene only yield local
recomputations in the complex. Rivière also worked out an algorithm for maintaining the visibility
complex for kinetic scenes, and showed its usage in global visibility computations. This job has also
been done with the dual arrangement [22]. It is noticeable that most visibility algorithms do not
explicitly represent the entire visibility complex, due to the complex’s large size. The linear size
space usage proposed with the development of the visibility complex by its original authors comes
from the pseudo-triangulation [46] [47]. Hall-Holt also came up with a linear size substructure of
the visibility complex (i.e., the visible zone) that can be represented and maintained explicitly [32].

Applications of the visibility complex are currently addressed in 2D. Otri et al. utilized the
visibility complex in the radiosity computation to calculate the global visibility in static scenes [45].
Cho and Forsyth developed a method of producing ray-traced images of 2D environments at inter-
active rates based on the visibility complex [16]. Hall-Holt took the visible zone substructure, and
arrived the corner arc algorithm for efficient visibility computations in kinetic scenes [32]. The 3D
extension of the algorithm has also been discussed.

The 3D visibility complex has been worked out theoretically with an introduction of a fourth
dimension [19]. The complexity has again been a barrier to apply this data structure to a 3D
scene. In 2D, only tangent and bitangent segments are considered, while in 3D, we need to consider
segments tangent to four objects or three objects (special tritangents). Also, because the lines in
general are no longer hyperplanes in 3D (i.e., separability fails), some convexity or monotonicity
properties do not hold in 3D accordingly. As a consequence, we cannot perform efficient sweepline
algorithms like we did in 2D. For these various difficulties, there has not been any practical work
done directly applying the 3D visibility complex so far to our knowledge.

3.2 Kinetic Data Structures

Kinetic Data Structures (KDSs) are closely related to data structures used in event-based simula-
tions. The goal of a KDS is to efficiently maintain a geometric attribute in a given kinetic scene
through time. The key idea is to choose a set of simple geometric attributes as certificates, which
validates the combinatorial structures of the attribute that we want to maintain. When the ob-
jects are moving, certificates sometimes fail signaling the combinatorial changes of the attribute.
Through maintaining the correctness of the certificates, the attribute is maintained. The failure of
a certificate is an event. Effective certificates are chosen based on leveraging temporal coherence in
a given problem, which provides the advantage of keeping the changes to a partial structure instead
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of to the full arrangement. The job of updating the certificates when an event happens is local.
Basch summarized in his Ph.D. thesis [10] that a KDS can be obtained by taking an algorithm for

computing a discrete attribute, turning it into a proof that this attribute is correct, and animating
this proof through time. This process is called kinetization. The first step in designing a KDS is to
come up with a set of certificates that could be effectively used to validate the attribute of interest.
If we have an efficient algorithm to calculate the attribute in the static case, we can drive out the
set of certificates from the algorithm. However, not all algorithms are suitable to be kinetized.
Because the certificates are going to be updated on the fly, the combinatorial structures involved in
the updates should be local to guarantee efficiency. For example, if we want to maintain the Voronoi
diagram for a set of moving points, we may choose certificates as the Delaunay triangulation because
of the well-known duality relationship between them. The problem is that moving a point may
effect the whole triangulation. In this case, we may have to recompute the triangulation globally.
Therefore, the Delaunay triangulation is not suitable for maintaining kinetic Voronoi diagrams.

In terms of computing the convex hull of a set of points in the plane, various algorithms have
been developed to compute the static convex hulls in the plane using different techniques [48] [49].
Combinatorial structures of convex hulls have been studied intensively, making the convex hull
computation an ideal starting point for a new adventure with KDSs. Two static convex hull
algorithms have been kinetized so far [12] [1].

a

a

a

a
b

b

b

bc

c c

c

d d d d

t

(a) (b) (c) (d)

Figure 5: Four combinatorially equivalent convex hulls of four points in the plane.

The four convex hulls depicted in Figure 5 are combinatorially equivalent (i.e., point a, b, and
c are in a convex position counterclockwise, and d is inside this convex hull). Considering a motion
of d in the last convex hull, at time t in the figure, d is on the convex hull. Clearly, if d continuously
moves in that direction, the convex hull will be changed, and d will be on the hull. Based on the
definition, at time t, there is an event, where the attribute (the convex hull) needs to be updated.
The next step is to find out appropriate certificates. It is generally known that we can take each
triplet of the point set, and test the configurations among the set to validate the convex hull. Thus,
the convex hulls in Figure 5 can be validated with the certificates in Table 2.

Certificate Value
(a, b, c) a left of

−→
bc

(d, b, c) d left of
−→
bc

(b, a, d) b right of
−→
ad

(c, a, d) c left of
−→
ad

Table 2: The certificates for the convex hulls in Figure 5

These intuitive geometric relationships function well as certificates. The only problem is that
the number of certificates is in O(n3) because the number of triplets in a set of n points is bounded
by this complexity. The KDS for the convex hull problem can be improved by reducing the num-
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ber of certificates through applying the line-point duality transformation like Hershberger demon-
strated [34]. After the transformation, finding the convex hull of the set of points is equivalent to
compute the upper envelope7 of the set of lines corresponding to the points. The static algorithm
for computing the upper envelope of n lines can be done optimally in O(n log n) time [34]. So,
instead of maintaining the convex hull, the upper envelopes are maintained. A set of certificates
can be identified to validate the relative configuration between two upper envelopes in order to
merge them. The number of certificates is bounded by O(1) (see Basch’s thesis [12] for details).
The record of the entire computation is kept in a balanced binary tree. Each node in the tree is in
charge of maintaining the upper envelope of the two upper envelopes computed by its children. If
an event creates a change, the event is processed through the tree. Each event can be handled in
O(log n) time.

3.2.1 KDS Efficiency Measures

Measuring the complexity of a KDS is not a simple task because different continuous motion could
be applied to the KDS, and the process does not terminate at some particular point. The original
authors of KDS [12] propose some possible measures about the cost of the individual event update,
and the relationship between the number of events and the number of changes to the attribute of
interest. We list them below in Table 3 with general descriptions.

Name Description
Compactness If a KDS size is not much more than the size of the smallest

certificates used to verify the correctness of the attribute
of interest, the KDS is compact.

Responsiveness If the worst case complexity of processing an event (update
the proof) is small, the KDS is responsive.

Efficiency If the total number of events processed by a KDS in the
worst case is asymptotically in the same order as, or only
slightly (say poly-logarithmic) larger than the number of
external events in the worst case, the KDS is efficient.

Locality If the maximal number of events in the event queue that
depend on a single object is small, the KDS is local.

Table 3: Efficiency measures for KDSs proposed in [12] [10]

The efficiency definition makes a distinction between external events, which affect the attribute
of interest, and internal events, which are needed to maintain the correctness of the certificates,
but do not change the attribute. The external events are unavoidable given the moving trajectory.
Efficient KDSs shall have a small number of internal events. In the definitions, some terms like “not
much more” and “small” are used instead of actual complexity bounds. In KDSs, the actual bound
depends a lot on the underlying structure. For example, in kinetic sorting, it is efficient to use
binary heaps [10]. The update operation with binary heaps is bounded in Ω(log n), which means
that we cannot expect our KDSs based on binary heaps to do better than that. In most cases, like
the traditional complexity analysis, O(log n) is taken as the meaning of “small” asymptotically.

7Regarding lines as opaque obstacles, the upper envelope is defined as the portion of the lines visible from the
point (0, +∞).

Ph.D. depth paper Kinetic Visibility 14



3.2.2 KDSs in Geometry

KDSs have been developed for some basic geometric problems so far. Kinetic sorting [12] [10]
is introduced as an 1D example. The same designers also worked out KDSs for the closest pair
problem in 2D. Recently, Abam and de Berg studied kinetic sorting and kinetic convex hulls [1], and
proved tight lower bounds for the sorting problem. They showed that even for linear motion, the
worst case maintenance cost is Ω(n2) if one wants to be able to reconstruct the sorted list in o(n)
time. Let m be a parameter, 2 ≤ m ≤ n, then if we relax the time to o(n log m) for reconstruction
(between Ω(n) and O(n log n)), the lower bound on maintenance cost is roughly Ω(n2/m). Their
KDS for the convex hull problem kinetizes a different algorithm of the static convex hull calculation,
which gives the ability to answer extreme point queries and convex hull containment queries.

In visibility computations, we have seen the similar idea being used in the visibility complex.
We know that the coherence boundaries are some free bitangent lines crossing which will trigger
the combinatorial changes of visibility. Thus, the visibility complex is built as a data structure to
contain those boundaries. What different is that a KDS further requires some partial structure
built by the set of chosen certificates to achieve update efficiency when an event happens. Hall-
Holt’s visible zone [32] follows this idea, which derives a substructure from the visibility complex to
help the KDS design. The difficulty of applying the KDS approach in visibility is that identifying
combinatorial structures of the certificates is not straightforward like in the previous convex hull
problem. More work needs to be done to address kinetic visibility problems with KDSs.

3.3 Other Developments

Various other data structures have been proposed for visibility related problems. Although they
have not been directly applied to kinetic visibility problems so far, it is interesting to see different
properties that have been unveiled through them. The visibility skeleton introduced in computer
graphics and computer vision[21] has been applied to compute global visibility information. The
visibility skeleton is a graph structure, in which an arc is defined by a set of lines that incident
on four polygon edges in the scene and a node is where two sets of lines (i.e., two arcs) merge.
The visibility skeleton encodes all global visibility information for polygonal scenes. In comparison
with the visibility complex, it is much simpler to be constructed and visualized in practice. Du-
rand, Drettakis, and Puech also implemented this data structure [21]. It is noticeable that their
development and implementation are targeted on 3D polygonal scenes.

Room searching problems have captured some recent interests in the visibility area. Kameda
et al. developed a data structure named the visibility diagram[13][38] to encode the occlusion
information inside a 2D polygon. The essential idea of this data structure is to transform the
visibility computation into a path searching in the visibility diagram. The duality explored by this
data structure is elegant, and with its help, we can report whether a room is searchable in linear
time. Further development with the visibility diagram is possible as one of the authors pointed out
in his Ph.D. thesis [58].

Kinetic visibility problems are a set of very practical problems requiring highly efficient data
structures to support kinetic operations. At the data structure level, we still need to find new ways
of targeting these problems from different aspects. Along with various new problems being brought
into this set, we will also need to study the underlying problem domain more specifically.
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4 Static Scene Algorithms

From a theoretical point of view, a successful kinetic visibility algorithm shall leverage temporal
coherence through recognizing some combinatorial properties. The goal is to recognize the combina-
torial equivalence of the properties throughout the motion. Only update the visibility information
when the equivalence breaks and avoid global visibility recomputation for every change. Algorithms
designed for simple static scenes like a set of points [18] or a set of line segments [27] [28] [43] follow
this approach, although the specific usages in the algorithms are different.

Ghali and Stewart have developed an efficient algorithm for maintaining the view around a
moving viewpoint in a static scene consisting of line segments [27] [28]. The same problem was
studied by Nechvile and Tobola [42] [43], who improved the original algorithm with a topological
map on the local structure of the line segments, which identifies the visibility changes through
cases. The original algorithm [27] [28] is built on the standard duality transform that maps a
set of points to a set of lines, and vice visa, in a one-to-one manner. The mapping is given as
(m, b) ↔ y = mx − b. It is known that this transformation preserves the incidence and order
among lines and points between the primal and the dual spaces. The visibility maintenance from a
viewpoint in the scene is solved by checking whether any point in the dual space (corresponding to
a line connecting two segment end points in the primal space) changes its position with the respect
of the line (corresponding to the viewpoint in the primal space). Ghali and Stewart applied the
method of maintaining two dynamic convex hulls, one each side of the line in the dual space, to
check whether the visibility from the viewpoint has been changed combinatorially. The problem of
this approach, as Nechvile and Tobola pointed out, is that the convex hulls need to be constantly
maintained even though the set of visible segments does not change. In other words, the first
algorithm keeps a global configuration of the convex hulls and tries to maintain it through time.
The improvement follows logically from this observation. The second algorithm [42] [43] with a local
structure thus eliminates some unnecessary updates by exploiting temporal coherence locally. This
problem was studied before the development of the KDS framework. Applying the KDS knowledge,
we can see that Nechvile and Tobola actually built a KDS based on the relative geometries among
the line segments to validate the view from the viewpoint.

Nechvile and Tobola’s algorithm [42] [43] does not improve the theoretical bound from Ghali
and Stewart’s algorithm [27] [28]. Both algorithms solve the problem spending O(n log n) on pre-
processing, and O(log n) on an update, where n is the number of line segments. However, Nechvile
and Tobola also implemented the two algorithms and compared them from a practical aspect. Their
algorithm showed some significant improvement in the experiments.

The algorithm developed by Devillers et al. [18] addresses the problem of given a set of n points
in the plane, computing the circular ordering of the points around a viewpoint v and efficiently
maintaining this order list as v moves. The main result is that, after an O(n log n) preprocessing, a
moving point query along a specified line segment can be answered in O(k log n+s) amortized time
or O(k log2 n + s) worst case time8 where k is the number of different views and s is the output
size. If we further simplify to report only the changes (not the whole point set) on the moving
trajectory, then each update can be done in constant time, outputting the two points that swapped
their order on the list.

Temporal coherence in this problem is explored through observing the chipped line arrangement.
A chipped line is a line through two points in the plane excluding the line segment (chipped line

8The O(log n) or O(log2 n) factor for each update comes from the cost of maintaining a dynamic convex hull.
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segment) between the two points. The chipped line arrangement (CL-arrangement) induced by a
set of points is constructed by drawing a chipped line through each pair of points (see Figure 6 for
an example). The claim is that this arrangement encodes temporal coherence. It is not hard to see
that crossing any chipped line segment does not trigger any circular order change, while crossing any
chipped line does. Furthermore, the change of crossing a chipped line is combinatorially equivalent
to swapping the circular order of the two points defining that chipped line. For example, in Figure 6,
the viewpoint v has the initial view of (a, b, c, d, e) counterclockwise. When it moves to v′ crossing
two chipped line segments on the way, the view (order) does not change. However, from v′ to v′′,
the viewpoint crosses a chipped line cd. The view at v′′ becomes (a, b, d, c, e) where c and d are
swapped.

v

v’ v”

a

b

c

d

e

Figure 6: The CL-arrangement of a set of five points in the plane.

We could thus build a cell structure based on the CL-arrangement. Within each cell, temporal
coherence is captured. The edges of a cell are determined by consecutive points on the circular
ordered list from the perspective of any point within the cell. This observation implies that, in
order to compute a cell, it suffices to know the view (the circular order) from a point in that cell.
We can thus construct the initial view and the cell around the viewpoint. As the moving trajectory
is given online, we calculate the edge of the cell that will be crossed by the moving viewpoint.
Then, we update and output the view at the crossing. The new cell is “updated” by deleting two
half-planes and inserting two new ones. The same procedure is repeated if more intersections are
conducted.

Hall-Holt studied a more general kinetic visibility problem with a set of static convex objects
at the beginning of his Ph.D thesis [32]. He adopted the traditional radial sweep technique and
developed the visible zone. Figure 7 depicts the visible zone for a viewpoint v in a static scene.
The important design is on the update, such that we only update the visible zone when two radial
sweep lines coincide. In the figure, the arrow marks the moving direction of v in (a). The first
update is going to be conducted at (b) where two sweep lines overlap (the dashed line). Note that
other “unrelated” radial sweep lines are untouched at the update.

The visible zone is essentially a KDS constructed from the radial sweep, and attempts to
minimize the number of internal update events which do not effect the visibility. Based on this
data structure, Hall-Holt did case analysis on all possible situations where an update needs to be
configured. An online algorithm follows his case studies directly. Given a static scene and the
viewpoint, the algorithm first runs a radial sweep from the viewpoint to construct the initial visible
zone. At each event point, it analyses which update case should be applied. It is possible to have
recursive updates at some event because the radial sweep lines are not required to be aligned with
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Figure 7: The visible zone from the viewpoint v. The update only happens when two radial sweep
lines coincide. (a) the original visible zone from v. (b) first update on the moving path of v.

the viewpoint on the moving trajectory. However, Hall-Holt managed to show that the worst event
can still be done in linear time [32]. He later paired with Rusinkiewicz to apply this algorithm on
the real-time occlusion culling [33].

In some broader sense, more algorithms can be put into this category for problems like room
searching[39][40][38][13] and visibility maintenance inside a polygon[57]. Recent data structure
developments[38][13], as we have reviewed in the previous section, have derived some interesting
algorithms which solve the 2D room searching problems in optimal time under different settings.
The newly arrived algorithm for the visibility maintenance problem inside a polygon [57] applies
the KDS design approach. An interested reader can follow the references to get more details.

5 Kinetic Scene Algorithms

General kinetic visibility problems are studied with kinetic scenes of a set of convex objects [35] [32] [33].
There are not many algorithms developed so far in this category, considering the difficulty of deal-
ing with various motions in the object space. An important related question addressed more often
is the collision detection problem among a set of moving objects [15] [36] [23]. Some KDSs have
been used on this set of problems as well [53] [3] [11]. Speckmann explained how KDSs can be
used in solving collision detection problems in her Ph.D. thesis [53]. She also provided a KDS for
detecting collision among a set of simple polygons. Agarwal et al. built a KDS [3] for maintaining a
pseudo-triangulation of a point set, and they extended the KDS to support an efficient algorithm on
detecting collision among a set of simple polygons. Basch et al. designed a more efficient KDS for
detecting collisions between two simple polygons in motion [11]. Their KDS uses fewer certificates.

In kinetic scenes, Hall-Holt’s corner arc algorithm [32] is a major development, which solves
the visibility maintenance problem for a set of moving convex objects. This algorithm is explained
through three problem transformations. The first step is based on temporal coherence in visibility
such that maintaining a list of visible objects from a viewpoint is combinatorially the same as
maintaining a description of the boundary segments. A boundary segment is a free line segment
from the viewpoint that is tangent to an object in the object space (e.g., the dashed line segments
in Figure 8). When motion is taking place, we transform the problem of maintaining the boundary
segments into the maintenance of a topologically equivalent structure, named a corner arc. Figure 8
(a) depicts a corner arc for a boundary segment. Given a boundary segment θ, let O3 be the tangent
object (a is the tangent point). Extend the boundary segment θ to intersect object O1 (i.e., the
far object) at b and c where c is at the far side. Let σ be the shortest path homotopic to θ from
a to c. The path σ can be partitioned into the part incident to O1 (i.e., the partial boundary of
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O1 from d to c, where d is the first incident point on O1), and the part not incident to O1. The
corner arc of θ is the part from a to d on σ. Alternatively, the corner arc can be understood as
turning θ into an elastic band and pulling the end of θ along the far object away from the visibility
polygon, until it becomes tangent to the far object. A special kind of corner arc is defined as the
shared corner arc. In order to avoid intersections of bitangents as depicted in Figure 8 (b), where
bitangent t1 and t2 intersect each other, we use bitangent t3 instead. The final transformation is
an attempt to localize the maintenance of corner arcs through some partition of the object space.
From the success of the visibility complex, pseudo-triangulation is chosen as the partition for the
spatial subdivisions.

v v

(a) (b)
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O3 O3

O1 O2
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Figure 8: (a) A corner arc that is defined by the two bitangents. (b) The special kind corner arc
that is shared by two boundary segments when they face each other along the same far object.

The above description actually gives the basic idea of how this algorithm works. Executing
the problem transformation steps backward, we construct a pseudo-triangulation of the objects;
sweep within the pseudo-triangulation from the viewpoint to get boundary segments; and calculate
the corner arcs for the boundary segments. Visibility maintenance is now a matter of fact through
maintaining the pseudo-triangulation bitangents, corner arcs, and boundary segments. To compute
the event time of a tangency event, it suffices to compute the time that a boundary segment will
become tangent to the first object along its corner arc. There are also pseudo-triangle events that
need to be processed. Details of handling different types of events are omitted. The critical point
is that the corner arc captures temporal coherence as some predicate for the next combinatorial
change. For a boundary segment, the change is going to take place along its corner arc, and thus,
through maintaining the corner arc, we can predict when the coherence needs to be updated.

There are some subtleties on handling different events as proposed in the original paper [32].
However, the proof for the correctness of the update procedure is quite straightforward from the
development of the pseudo-triangulation. Events are kept in a heap based on the processing time
of the event.

Hornus and Puech proposed another algorithm for this kinetic problem considering some weak
radial decomposition with a similar event identification mechanism [35]. They also extended their
algorithm to some simple polygonal objects (i.e., object boundary may contain some concave ver-
tex). The main idea is to consider vertices on the boundary of the object, and categorize them
based on whether they are convex or concave. So, instead of working with objects of a scene, we
are dealing with vertices from each object in the plane. However, the details of their work did not
appear in the publications.

Interestingly, the corner arc algorithm shows that the intrinsic complexity of maintaining visi-
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bility in a temporally coherent manner for static and kinetic scenes is asymptotically the same, up
to a poly-logarithmic factor in the number of visible objects. Obviously, the algorithms for visibility
maintenance in kinetic scenes solve the same problem of the static version as well. However, the
reverse is not necessarily true from the first intuition. Hornus and Puech also claimed in their
paper [35] that the complexity for visibility maintenance in simple polygonal object scenes is the
same as for convex smooth object scenes.

6 Open Problems

There are various open problems in kinetic visibility and related fields. In general, recognizing
the combinatorial structures of the visibility graph has long been an open question.9 Different
communities have been looking at this set of problems from different perspectives. In this section,
we try to describe open problems from both theoretical and pragmatic points of view.

6.1 Combinatorial Issues

We have seen numerous efforts to discover the combinatorial structures of the visibility graph in
different scenes. The visibility complex is one such attempt that provides a natural context for
understanding and developing visibility algorithms for kinetic visibility problems. The main focus
from the theoretical aspect is on exploring temporal coherence in the scenes. In order to achieve this,
we have to address the scene specifically. Throughout this survey, we have seen different properties
being shown for different scenes. However, building the visibility complex for a convex scene is
complicated; the current implementation [7] and experiment [25] simplify the objects into discs,
which suggests that we need to find other ways to leverage temporal coherence more effectively.
Although Hornus and Puech claimed that their algorithm [35] can deal with objects having non-
convex boundaries, understanding the properties of a simple polygonal scene is still far from clear.

The combinatorial difference between 2D and 3D is dramatic. Temporal coherence may be
especially vulnerable in this case. Most of the literature that we have reviewed so far leaves the 3D
version of the problem open. The lack of realization of the combinatorial structure of the visibility
graph prevents algorithm designers from working in 3D or any higher dimensional spaces. The
hope of solving this problem seems to depend on some mathematical system such as the oriented
matroids to build some combinatorial model for organizing the combinatorial data, as Björner et
al. pointed out [2] [14]. Nevertheless, it would be interesting to explore initially the connections
between the kinetic visibility problems and the oriented matroids.

6.2 Complexity Analysis

Analyzing the complexity of a kinetic data structure or algorithm is another challenging aspect. We
usually address the complexity by evaluating the number of events along the motion path and the
time complexity of processing the event(s). For instance, Davenport-Schinzel sequences [52] are used
to bound the number of events in designing a KDS [10]. This method could be generally applied.
However, in kinetic visibility computation, there is some difficulty in using this approach because
the events may be cascaded (recursively defined). The complexity of the corner arc algorithm [32]

9One version is that given a graph G and a Hamiltonian circuit C, determine in polynomial time whether there is
a simple polygon whose vertex visibility graph is G, and whose boundary corresponds to C. [44]
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is thus derived from some probability analysis. In order to work with the statistical model, the
distribution (density) of the objects in the space has to be assumed. This approach is much more
involved than using Davenport-Schinzel sequences.

For KDSs, the original authors have proposed some efficiency measures [12] (Table 3), but
the validity of applying these measures seems to be case based. Because the algorithm for a
kinetic problem does not terminate at certain point in time, the time complexity analysis has to
be addressed with some given moving trajectories. In some instances, the worst case complexity
measure may not reflect the true performance of the algorithm and/or the data structure. Above
all, complexity analysis for kinetic visibility data structures and algorithms is an ongoing topic.

6.3 Visibility Applications

Visibility has various applications. The application questions are addressed in relation to com-
putational graphics, robotic design, and some new fields such as network discovery in wireless
networks [59] [56]. Here, we focus our discussion on the theory behind the application. Some
applications like radiosity computation [45] have already been studied in kinetic visibility. A large
number of applications in graphic rendering, collision detecting, and network discovery can also be
addressed in the field of kinetic visibility. On the other hand, many practical problems involving
3D visibility computation are waiting to be solved.

In computational graphics, few algorithms utilize the prior or future positions of the observer,
particularly when the objects are moving. Although the pontential value of temporal coherence
for visibility computations is well-recognized, few methods are known for leveraging it effectively.
Sutherland et al. have showed different ways of calculating visibility information from a practical
point of view with hidden-surface removal algorithms [55]. Hubschman and Zucker further applied
the frame-to-frame coherence to improve the hidden-surface removal computation [37]. Currently,
ray tracing is an active topic in the graphics community. We have seen one application of the
visibility complex on this subject[16]. With the current developments on kinetic visibility, it may be
possible to apply other techniques to the ray tracing problem in order to gain further computational
efficiency.

Collision detecting is an important algorithmic topic in robotic design. It has also been studied
in the kinetic visibility domain. The KDS approach has been generally applied. Building on the
current developments, we may be able to look at this problem from a more general perspective
with fewer restrictions on the shape of the object or the consistency of the scene.

Different groups have been focusing on the sensor network design problems. From the compu-
tational geometry point of view, we ask questions related to visibility and range searching. Because
there could be different network configurations, we may have a set of interesting problems address-
ing different aspects such as sensor communication and network topology.

6.4 Other Interests

Validation of an algorithm or a data structure could also be done from the implementation, which
is a practical approach to evaluate data structures and algorithms. Nechv́ıle and Tobola proved
their local enhanced algorithm [43] from the original algorithm [28] by comparing the testing re-
sults. Implementing and testing of the visibility complex have also been done recently [7] [25].
Implementation is probably a necessary step in proving and validating the algorithms and data
structures in kinetic visibility problems, because most developments aim at solving practical visi-
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bility computations. At the time of writing, many implementations and empirical studies still need
to be done.

Numerous other problems arise from visibility computations. Everett et al. studied the problem
of the complexity of predicates for line transversals in 3D [24]. Although in theory, we generally
assume each predicate can be computed in constant time, the constant factor could be very high
in 3D as Everett et al. demonstrated in their paper. Their eventual goal is to find efficient kinetic
visibility algorithms in practice. So, when evaluating kinetic visibility algorithms, we may have to
take the complexity of predicates into consideration as well.

Finally, in addition to the traditional computation model, kinetic visibility problems may be
good candidates to be addressed in the parallel computation world. In our intelligent robot case, we
indeed have a parallel or distributed model where all the robots process information simultanously.
Akl and Lyons studied some computational geometry problems in parallel models in the 1980s [5].
Their studies could be extended here as well.

7 Conclusion

Akl wrote in his recent technical report that “tracking moving objects becomes harder as they
travel away from the observer (for example, a spaceship racing towards Mars)” [4] as an example of
unconventional computing problems. The eventual goal of studying kinetic visibility problems is to
explore enough combinatorial properties of the visibility information in different scenes such that
efficient visibility computations can be achieved. The computations here involve not only calculating
the visibility information at the starting point but also always maintaining such information.

Currently, our ability to solve such kinetic problems is very limited. General problems are
always simplified by proposing constraints to the object and the scene. We have not been able to
satisfy the requirements of building the intelligent robot so far. However, we have seen significant
progress from different research communities targeting kinetic problems from different aspects.
And, of course, they have been proposing new problems at the same time.

We conclude this survey with rather more questions than we had at the beginning in a certain
sense. Our research plan would be to continuously work on this set of problems based on the
previous developments. We believe that, gradually, we will get to know more about this complex
world, and be able to build our intelligent robot!
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