
Bayesian Network Classifiers in Weka

Remco R. Bouckaert
remco@cs.waikato.ac.nz

September 1, 2004

Abstract

Various Bayesian network classifier learning algorithms are implemented in Weka [10].
This note provides some user documentation and implementation details.
Summary of main capabilities:
• Structure learning of Bayesian networks using various hill climbing (K2, B, etc) and general
purpose (simulated annealing, tabu search) algorithms.
• Local score metrics implemented; Bayes, BDe, MDL, entropy, AIC.
• Global score metrics implemented; leave one out cv, k-fold cv and cumulative cv.
• Conditional independence based causal recovery algorithm available.
• Parameter estimation using direct estimates and Bayesian model averaging.
• GUI for easy inspection of Bayesian networks.
• Part of Weka allowing systematic experiments to compare Bayes net performance with gen-
eral purpose classifiers like C4.5, nearest neighbor, support vector, etc.
• Source code available under GPL allows for integration in other systems and makes it easy
to extend.

Contents

1 Introduction 2

2 Local score based structure learning 5

3 Conditional independence test based structure learning 8

4 Global score metric based structure learning 10

5 Fixed structure ’learning’ 11

6 Distribution learning 12

7 Running from the command line 13

8 Inspecting Bayesian networks 16

9 Bayesian nets in the experimenter 19

10 Adding your own Bayesian network learners 20

11 FAQ 21

12 Future development 22

1

1 Introduction

Let U = {x1, . . . , xk}, k ≥ 1 be a set of variables. A Bayesian network B over a set of variables U
is a network structure BS , which is a directed acyclic graph (DAG) over U and a set of probability
tables BP = {p(u|pa(u))|u ∈ U} where pa(u) is the set of parents of u in BS . A Bayesian network
represents a probability distributions P (U) =

∏
u∈U p(u|pa(u)).

Below, a Bayesian network is shown for the variables in the iris data set. Note that the links
between the nodes petallength, petalwidth and class do not form a directed cycle, so the graph is
a proper DAG.

This picture just shows the network structure of the Bayes net, but for each of the nodes a
probability distribution for the node given its parents are specified as well. For example, in the
Bayes net above there is a conditional distribution for petallength given the value of sepalwidth.
Since sepalwidth has no parents, there is an unconditional distribution for sepalwidth.

Basic assumptions

The classification task consist of classifying a variable y = x0 called the class variable given a set
of variables x = x1 . . . xk, called attribute variables. A classifier h : x→ y is a function that maps
an instance of x to a value of y. The classifier is learned from a dataset D consisting of samples
over (x, y). The learning task consists of finding an appropriate Bayesian network given a data
set D over U .

All Bayes network algorithms implemented in Weka assume the following for the data set:

• all variables are discrete finite variables. If you have a data set with continuous variables,
you can use the class weka.filters.unsupervised.attribute.Discretize to discretize
them.

• no instances have missing values. If there are missing values in the data set, values are filled
in using the weka.filters..unsupervised.attribute.ReplaceMissingValues filter.

The first step performed by buildClassifier is checking if the data set fulfills those assump-
tions. If those assumptions are not met, the data set is automatically filtered and a warning is
written to STDERR.1

1If there are missing values in the test data, but not in the training data, the values are filled in in the training
data with a ReplaceMissingValues filter based on the training data.

2

Inference algorithm

To use a Bayesian network as a classifier, one simply calculates argmaxyP (y|x) using the distri-
bution P (U) represented by the Bayesian network. Now note that

P (y|x) = P (U)/P (x)

∝ P (U)

=
∏

u∈U
p(u|pa(u)) (1)

And since all variables in x are known, we do not need complicated inference algorithms, but
just calculate (1) for all class values.

Learning algorithms

The dual nature of a Bayesian network makes learning a Bayesian network as a two stage process
a natural division: first learn a network structure, then learn the probability tables.

There are various approaches to structure learning and in Weka, the following areas are dis-
tinguished:

• local score metrics: Learning a network structure BS can be considered an optimization
problem where a quality measure of a network structure given the training data Q(BS |D)
needs to be maximized. The quality measure can be based on a Bayesian approach, minimum
description length, information and other criteria. Those metrics have the practical property
that the score of the whole network can be decomposed as the sum (or product) of the score
of the individual nodes. This allows for local scoring and thus local search methods.

• conditional independence tests: These methods mainly stem from the goal of uncovering
causal structure. The assumption is that there is a network structure that exactly repre-
sents the independencies in the distribution that generated the data. Then it follows that if
a (conditional) independency can be identified in the data between two variables that there
is no arrow between those two variables. Once locations of edges are identified, the direc-
tion of the edges is assigned such that conditional independencies in the data are properly
represented.

• global score metrics: A natural way to measure how well a Bayesian network performs on
a given data set is to predict its future performance by estimating expected utilities, such
as classification accuracy. Cross validation provides an out of sample evaluation method to
facilitate this by repeatedly splitting the data in training and validation sets. A Bayesian
network structure can be evaluated by estimating the network’s parameters from the training
set and the resulting Bayesian network’s performance determined against the validation set.
The average performance of the Bayesian network over the validation sets provides a metric
for the quality of the network.

Cross validation differs from local scoring metrics in that the quality of a network structure
often cannot be decomposed in the scores of the individual nodes. So, the whole network
needs to be considered in order to determine the score.

• fixed structure: Finally, there are a few methods so that a structure can be fixed, for example,
by reading it from an XML BIF file.

For each of these areas, different search algorithms are implemented in Weka, such as hill
climbing, simulated annealing and tabu search.

Once a good network structure is identified, the conditional probability tables for each of the
variables can be estimated.

3

You can select a Bayes net classifier by clicking the classifier ’Choose’ button in the Weka
explorer, experimenter or knowledge flow and find BayesNet under the weka.classifiers.bayes

package (see below).

The Bayes net classifier has the following options:

The BIFFile option can be used to specify a Bayes network stored in file in BIF format2.
When the toString method is called after learning the Bayes network, extra statistics (like extra
and missing arcs) are printed comparing the network learned with the one on file.

The searchAlgorithm option can be used to select a structure learning algorithm and specify
its options.

The estimator option can be used to select the method for estimating the conditional proba-
bility distributions (Section 6).

When setting the useADTree option to true, counts are calculated using the ADTree algorithm
of Moore [8]. Since I have not noticed a lot of improvement for small data sets, it is set off by
default. Note that this ADTree algorithm is different from the ADTree classifier algorithm from
weka.classifiers.tree.ADTree.

The debug option has no effect.

2See http://www-2.cs.cmu.edu/˜fgcozman/Research/InterchangeFormat/ for details on XML BIF.

4

2 Local score based structure learning

Distinguish score metrics (Section 2.1) and search algorithms (Section 2.2). A local score based
structure learning can be selected by choosing one in the weka.classifiers.bayes.net.search.local
package.

Local score based algorithms have the following options in common:
initAsNaiveBayes if set true (default), the initial network structure used for starting the traversal
of the search space is a naive Bayes network structure. That is, a structure with arrows from the
class variable to each of the attribute variables.
If set false, an empty network structure will be used (i.e. no arrows at all).
markovBlanketClassifier (False by default) if set true, at the end of the traversal of the search
space, a heuristic is used to ensure each of the attributes are in the Markov blanket of the classifier
node. If a node is already in the Markov blanket (ie, is a parent, child of sibling of the classifier
node) nothing happens, otherwise an arrow is added.
If set false no such arrows are added.
scoreType determines the score metric used (See Section 2.1 for details). Currently, K2, BDe,
AIC, Entropy and MDL are implemented.
maxNrOfParents is an upper bound on the number of parents of each of the nodes in the network
structure learned.

2.1 Local score metrics

We use the following conventions to identify counts in the database D and a network structure BS .
Let ri (1 ≤ i ≤ n) be the cardinality of xi. We use qi to denote the cardinality of the parent set
of xi in BS , that is, the number of different values to which the parents of xi can be instantiated.
So, qi can be calculated as the product of cardinalities of nodes in pa(xi), qi =

∏
xj∈pa(xi)

rj . Note

pa(xi) = ∅ implies qi = 1. We use Nij (1 ≤ i ≤ n, 1 ≤ j ≤ qi) to denote the number of records in
D for which pa(xi) takes its jth value.We use Nijk (1 ≤ i ≤ n, 1 ≤ j ≤ qi, 1 ≤ k ≤ ri) to denote
the number of records in D for which pa(xi) takes its jth value and for which xi takes its kth
value. So, Nij =

∑ri
k=1Nijk . We use N to denote the number of records in D.

Let the entropy metric H(BS , D) of a network structure and database be defined as

H(BS , D) = −N
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk
N

log
Nijk
Nij

(2)

5

and the number of parameters K as

K =

n∑

i=1

(ri − 1) · qi (3)

AIC metric The AIC metric QAIC(BS , D) of a Bayesian network structure BS for a database
D is

QAIC(BS , D) = H(BS , D) +K (4)

A term P (BS) can be added [1] representing prior information over network structures, but will
be ignored for simplicity in the Weka implementation.

MDL metric The minimum description length metric QMDL(BS , D) of a Bayesian network
structure BS for a database D is is defined as

QMDL(BS , D) = H(BS , D) +
K

2
logN (5)

Bayesian metric The Bayesian metric of a Bayesian network structure BD for a database D
is

QBayes(BS , D) = P (BS)

n∏

i=0

qi∏

j=1

Γ(N ′ij)

Γ(N ′ij +Nij)

ri∏

k=1

Γ(N ′ijk +Nijk)

Γ(N ′ijk)

where P (BS) is the prior on the network structure (taken to be constant hence ignored in the
Weka implementation) and Γ(.) the gamma-function. N ′ij and N ′ijk represent choices of priors on

counts restricted by N ′ij =
∑ri

k=1N
′
ijk . With N ′ijk = 1 (and thus N ′ij = ri), we obtain the K2

metric [5]

QK2(BS , D) = P (BS)

n∏

i=0

qi∏

j=1

(ri − 1)!

(ri − 1 +Nij)!

ri∏

k=1

Nijk !

With N ′ijk = 1/ri · qi (and thus N ′ij = 1/qi), we obtain the BDe metric [7].

2.2 Search algorithms

The following search algorithms are implemented for local score metrics;

• K2 [5]: hill climbing add arcs with a fixed ordering of variables.
Specific option: useRandomOrder if true a random ordering of the nodes is made at the
beginning of the search. If false (default) the ordering in the data set is used. The
only exception in both cases is that in case the initial network is a naive Bayes network
(initAsNaiveBayes set true) the class variable is made first in the ordering.

• Hill Climbing [2]: hill climbing adding and deleting arcs with no fixed ordering of variables.
useArcReversal if true, also arc reversals are consider when determining the next step to
make.

• Repeated Hill Climber starts with a randomly generated network and then applies hill
climber to reach a local optimum. The best network found is returned.
useArcReversal option as for Hill Climber.

• TAN [3, 6]: Tree Augmented Naive Bayes where the tree is formed by calculating the maxi-
mum weight spanning tree using Chow and Liu algorithm [4].
No specific options.

• Simulated annealing [1]: using adding and deleting arrows.
The algorithm randomly generates a candidate network B ′S close to the current network BS .

6

It accepts the network if it is better than the current, i.e., Q(B ′S , D) > Q(BS , D). Otherwise,
it accepts the candidate with probability

eti·(Q(B′S,D)−Q(BS ,D))

where ti is the temperature at iteration i. The temperature starts at t0 and is slowly decreases
with each iteration.

Specific options: TStart start temperature t0.
delta is the factor δ used to update the temperature, so ti+1 = ti · δ.
runs number of iterations used to traverse the search space. seed is the initialization value
for the random number generator.

• Tabu search [1]: using adding and deleting arrows.
Tabu search performs hill climbing until it hits a local optimum. Then it steps to the
least worse candidate in the neighborhood. However, it does not consider points in the
neighborhood it just visited in the last tl steps. These steps are stored in a so called tabu-
list.

Specific options: runs is the number of iterations used to traverse the search space.
tabuList is the length tl of the tabu list.

• Genetic search: applies a simple implementation of a genetic search algorithm to network
structure learning. A Bayes net structure is represented by a array of n · n (n = number of
nodes) bits where bit i · n+ j represents whether there is an arrow from node j → i.

7

Specific options: populationsize is the size of the population selected in each generation.
descendantPopulationsize is the number of offspring generated in each generation.
runs is the number of generation to generate.
seed is the initialization value for the random number generator.
useMutation flag to indicate whether mutation should be used. Mutation is applied by
randomly adding or deleting a single arc.
useCrossOver flag to indicate whether cross-over should be used. Cross-over is applied by
randomly picking an index k in the bit representation and selecting the first k bits from
one and the remainder from another network structure in the population. At least one of
useMutation and useCrossOver should be set to true.
useTournamentSelection when false, the best performing networks are selected from the
descendant population to form the population of the next generation. When true, tourna-
ment selection is used. Tournament selection randomly chooses two individuals from the
descendant population and selects the one that performs best.

3 Conditional independence test based structure learning

Conditional independence tests in Weka are slightly different from the standard tests described
in the literature. To test whether variables x and y are conditionally independent given a set
of variables Z, a network structure with arrows ∀z∈Zz → y is compared with one with arrows
{x→ y} ∪ ∀z∈Zz → y. A test is performed by using any of the score metrics described in Section
2.1.

8

At the moment, only the ICS algorithm [9] is implemented. The algorithm makes two steps,
first find a skeleton (the undirected graph with edges iff there is an arrow in network structure)
and second direct all the edges in the skeleton to get a DAG.

Starting with a complete undirected graph, we try to find conditional independencies 〈x, y|Z〉
in the data. For each pair of nodes x, y, we consider sets Z starting with cardinality 0, then 1
up to a user defined maximum. Furthermore, the set Z is a subset of nodes that are neighbors
of both x and y. If an independency is identified, the edge between x and y is removed from the
skeleton.

The first step in directing arrows is to check for every configuration x−−z−−y where x and y
not connected in the skeleton whether z is in the set Z of variables that justified removing the link
between x and y (cached in the first step). If z is not in Z, we can assign direction x→ z ← y.

Finally, a set of graphical rules is applied [9] to direct the remaining arrows.

Rule 1: i->j--k & i-/-k => j->k

Rule 2: i->j->k & i--k => i->k

Rule 3 m

/|\

i | k => m->j

i->j<-k \|/

j

Rule 4 m

/ \

i---k => i->m & k->m

i->j \ /

j

Rule 5: if no edges are directed then take a random one (first we can find)

The ICS algorithm comes with the following options.

9

Since the ICS algorithm is focused on recovering causal structure, instead of finding the optimal
classifier, the Markov blanket correction can be made afterwards.

The maxCardinality option determines the largest subset of Z to be considered in conditional
independence tests 〈x, y|Z〉.

The scoreType option is used to select the scoring metric.

4 Global score metric based structure learning

Common options for cross validation based algorithms are: initAsNaiveBayes, markovBlanket-
Classifier and maxNrOfParents (see Section 2 for description).

Further, for each of the cross validation based algorithms the CVType can be chosen out of the
following:

• Leave one out cross validation (loo-cv) selects m = N training sets simply by taking the
data set D and removing the ith record for training set Dt

i . The validation set consist of
just the ith single record. Loo-cv does not always produce accurate performance estimates.

• K-fold cross validation (k-fold cv) splits the dataD inm approximately equal partsD1, . . . , Dm.
Training set Dt

i is obtained by removing part Di from D. Typical values for m are 5, 10 and
20. With m = N , v-fold cross validation becomes loo-cv.

10

• Cumulative cross validation (cumulative cv) starts with an empty data set and adds instances
item by item from D. After each time an item is added the next item to be added is classified
using the then current state of the Bayes network.

Finally, the useProb flag indicates whether the accuracy of the classifier should be estimated
using the zero-one loss (if set to false) or using the estimated probability of the class.

The following search algorithms are implemented: K2, HillClimbing, RepeatedHillClimber,
TAN, Tabu Search, Simulated Annealing and Genetic Search. See Section 2 for a description of
the specific options for those algorithms.

5 Fixed structure ’learning’

The structure learning step can be skipped by selecting a fixed network structure. There are two
methods of getting a fixed structure: just make it a naive Bayes network, or reading it from a file
in XML BIF format.

11

6 Distribution learning

Once the network structure is learned, you can choose how to learn the probability tables selecting
a class in the weka.classifiers.bayes.net.estimate package.

The SimpleEstimator class produces direct estimates of the conditional probabilities, that is,

P (xi = k|pa(xi) = j) =
Nijk +N ′ijk
Nij +N ′ij

where N ′ijk is the alpha parameter that can be set and is 0.5 by default. With alpha=0, we get
maximum likelihood estimates.

With the BMAEstimator, we get estimates for the conditional probability tables based on
Bayes model averaging of all network structures that are substructures of the network structure
learned [1]. This is achieved by estimating the conditional probability table of a node xi given
its parents pa(xi) as a weighted average of all conditional probability tables of xi given subsets
of pa(xi). The weight of a distribution P (xi|S) with S ⊆ pa(xi) used is proportional to the
contribution of network structure ∀y∈Sy → xi to either the BDe metric or K2 metric depending
on the setting of the useK2Prior option (false and true respectively).

12

7 Running from the command line

These are the command line options of BayesNet.

General options:

-t <name of training file>

Sets training file.

-T <name of test file>

Sets test file. If missing, a cross-validation will be performed on the training data.

-c <class index>

Sets index of class attribute (default: last).

-x <number of folds>

Sets number of folds for cross-validation (default: 10).

-s <random number seed>

Sets random number seed for cross-validation (default: 1).

-m <name of file with cost matrix>

Sets file with cost matrix.

-l <name of input file>

Sets model input file.

-d <name of output file>

Sets model output file.

-v

Outputs no statistics for training data.

-o

Outputs statistics only, not the classifier.

-i

Outputs detailed information-retrieval statistics for each class.

-k

Outputs information-theoretic statistics.

-p <attribute range>

Only outputs predictions for test instances, along with attributes (0 for none).

-r

Only outputs cumulative margin distribution.

-g

Only outputs the graph representation of the classifier.

Options specific to weka.classifiers.bayes.BayesNet:

-D

Use ADTree data structure

-B <BIF file>

BIF file to compare with

13

-Q weka.classifiers.bayes.net.search.SearchAlgorithm

Search algorithm

-E weka.classifiers.bayes.net.estimate.SimpleEstimator

Estimator algorithm

The search algorithm option -Q and estimator option -E options are mandatory.
Note that it is important that the -E options should be used after the -Q option. Extra options

can be passed to the search algorithm and the estimator after the class name specified following
’–’.

For example,
java weka.classifiers.bayes.BayesNet -t iris.arff

-Q weka.classifiers.bayes.net.search.local.SearchAlgorithmK2 -- -P 2 -S ENTROPY

-E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 1.0

Overview of options for search algorithms

Options specific to weka.classifiers.bayes.net.search.local.K2:
-N Initial structure is empty (instead of Naive Bayes)
-P <nr of parents> Maximum number of parents
-R Random order. (default false)
-S [BAYES|BDeu|MDL|ENTROPY|AIC] Score type

Options specific to weka.classifiers.bayes.net.search.local.HillClimber:
-P <nr of parents> Maximum number of parents
-R Use arc reversal operation. (default false)
-S [BAYES|BDeu|MDL|ENTROPY|AIC] Score type

Options specific to weka.classifiers.bayes.net.search.local.RepeatedHillClimber:
-U <integer> Number of runs
-R <seed> Random number seed
-P <nr of parents> Maximum number of parents
-R Use arc reversal operation. (default false)
-S [BAYES|BDeu|MDL|ENTROPY|AIC] Score type

Options specific to weka.classifiers.bayes.net.search.local.TAN:
-S [BAYES|BDeu|MDL|ENTROPY|AIC] Score type

Options specific to weka.classifiers.bayes.net.search.local.SimulatedAnnealing:
-A <float> Start temperature
-U <integer> Number of runs
-D <float> Delta temperature
-R <seed> Random number seed
-S [BAYES|BDeu|MDL|ENTROPY|AIC] Score type

Options specific to weka.classifiers.bayes.net.search.local.TabuSearch:
-L <integer> Tabu list length
-U <integer> Number of runs
-P <nr of parents> Maximum number of parents
-R Use arc reversal operation. (default false)
-S [BAYES|BDeu|MDL|ENTROPY|AIC] Score type

Options specific to weka.classifiers.bayes.net.search.local.GeneticSearch:
-L <integer> Population size
-A <integer> Descendant population size
-U <integer> Number of runs
-M Use mutation. (default true)
-C Use cross-over. (default true)

14

-O Use tournament selection (true) or maximum subpopulation (false). (default false)
-R <seed> Random number seed
-S [BAYES|BDeu|MDL|ENTROPY|AIC] Score type

Options specific to weka.classifiers.bayes.net.search.ci.ICSSearchAlgorithm:
-S [BAYES|BDeu|MDL|ENTROPY|AIC] Score type

Options specific to weka.classifiers.bayes.net.search.global.K2:
-N Initial structure is empty (instead of Naive Bayes)
-P <nr of parents> Maximum number of parents
-R Random order. (default false)
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type
-Q Use probabilistic scoring. (default true)

Options specific to weka.classifiers.bayes.net.search.global.HillClimber:
-P <nr of parents> Maximum number of parents
-R Use arc reversal operation. (default false)
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type
-Q Use probabilistic scoring. (default true)

Options specific to weka.classifiers.bayes.net.search.global.RepeatedHillClimber:
-U <integer> Number of runs
-R <seed> Random number seed
-P <nr of parents> Maximum number of parents
-R Use arc reversal operation. (default false)
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type
-Q Use probabilistic scoring. (default true)

Options specific to weka.classifiers.bayes.net.search.global.TAN:
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type
-Q Use probabilistic scoring. (default true)

Options specific to weka.classifiers.bayes.net.search.global.SimulatedAnnealing:
-A <float> Start temperature
-U <integer> Number of runs
-D <float> Delta temperature
-R <seed> Random number seed
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type
-Q Use probabilistic scoring. (default true)

Options specific to weka.classifiers.bayes.net.search.global.TabuSearch:
-L <integer> Tabu list length
-U <integer> Number of runs
-P <nr of parents> Maximum number of parents
-R Use arc reversal operation. (default false)
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type
-Q Use probabilistic scoring. (default true)

Options specific to weka.classifiers.bayes.net.search.global.GeneticSearch:
-L <integer> Population size
-A <integer> Descendant population size
-U <integer> Number of runs
-M Use mutation. (default true)
-C Use cross-over. (default true)
-O Use tournament selection (true) or maximum subpopulation (false). (default false)
-R <seed> Random number seed
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type
-Q Use probabilistic scoring. (default true)

Options specific to weka.classifiers.bayes.net.search.fixed.FromFile:
-B <BIF File> Name of file containing network structure in BIF format

Options specific to weka.classifiers.bayes.net.search.fixed.NaiveBayes:

15

Overview of options for estimators

Options specific to weka.classifiers.bayes.net.estimate.SimpleEstimator:
-A <alpha> Initial count (alpha)

Options specific to weka.classifiers.bayes.net.estimate.BMAEstimator:
-A <alpha> Initial count (alpha)

Generating random networks and artificial data sets

You can generate a random Bayes nets and data sets using weka.classifiers.bayes.net.BayesNetGenerator
The options are
-B: when specified, the network is printed, otherwise an arff file with instances randomly drawn
from the network is printed.
-N <integer>: number of nodes in the network (default 10).
-A <integer>: number of arcs in the network (default 10).
-C <integer>: cardinality of the variables (default 2).
-S <integer>: random seed value (default 1).
-M <integer>: number of instances to be generated (default 10).
-F <filename>: read Bayes network from file instead of generating it randomly (default no file
specified).

The network structure is generate by first generating a tree so that we can ensure that we have
a connected graph. If any more arrows are specified they are randomly added.

8 Inspecting Bayesian networks

You can inspect some of the properties of Bayesian networks that you learned in the Explorer in
text format and also in graphical format.

Bayesian networks in text

Below, you find output typical for a 10 fold cross validation run in the Weka Explorer with
comments where the output is specific for Bayesian nets.

=== Run information ===

Scheme: weka.classifiers.bayes.BayesNet -S -D -B iris.xml

-Q weka.classifiers.bayes.net.search.local.TabuSearch -- -P 2

-E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5

Options for BayesNet include the class names for the structure learner and for the distribution
estimator.

Relation: iris-weka.filters.DiscretizeFilter-B2-Rfirst-last

Instances: 150

Attributes: 5

sepallength

sepalwidth

petallength

petalwidth

class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Bayes Network Classifier

16

not using ADTree

Indication whether the ADTree algorithm [8] for calculating counts in the data set was used.

#attributes=5 #classindex=4

This line lists the number of attribute and the number of the class variable for which the classifier
was trained.

Network structure (nodes followed by parents)

sepallength(2): petalwidth

sepalwidth(2):

petallength(2): sepalwidth

petalwidth(2): petallength

class(3): petallength petalwidth sepalwidth

This list specifies the network structure. Each of the variables is followed by a list of parents, so the
class variable has parents petallength, petalwidth and sepalwidth while sepalwidth has no parents.
The number in braces is the cardinality of the variable. It shows that in the iris dataset there are
three class variables. All other variables are made binary by running it through a discretization
filter.

LogScore Bayes: -479.9282866605174

LogScore BDeu: -431.83882596810105

LogScore MDL: -574.6304836846906

LogScore ENTROPY: -479.42841309686185

LogScore AIC: -517.4284130968618

These lines list the logarithmic score of the network structure for various methods of scoring.
If a BIF file was specified, the following two lines will be produced (if no such file was specified,

no information is printed).

Missing: 1 Extra: 3 Reversed: 3

Divergence: -0.21124512294538134

In this case the network that was learned was compared with a file iris.xml which contained
the naive Bayes network structure. The number after “Missing” is the number of arcs that was in
the network in file that is not recovered by the structure learner. Note that a reversed arc is not
counted as missing. The number after “Extra” is the number of arcs in the learned network that
are not in the network on file. The number of reversed arcs is listed as well.

Finally, the divergence between the network distribution on file and the one learned is reported.
This number is calculated by enumerating all possible instantiations of all variables, so it may take
some time to calculate the divergence for large networks.

The remainder of the output is standard output for all classifiers.

Time taken to build model: 0.39 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 115 76.6667 %

Incorrectly Classified Instances 35 23.3333 %

etc...

17

Bayesian networks in GUI

To show the graphical structure, right click the appropriate BayesNet in result list of the Explorer.
A menu pops up, in which you select Visualize Graph.

The Bayes network is automatically layed out and drawn thanks to a graph drawing algorithm
implemented by Ashraf Kibriya.

When you hover the mouse over a node, the node lights up and all its children are highlighted
as well, so that it is easy to identify the relation between nodes in crowded graphs.

Saving Bayes nets You can save the Bayes network to file in the graph visualizer. You have
the choice to save as XML BIF format or as dot format. Select the floppy button and a file save
dialog pops up that allows you to select the file name and file format.

Zoom The graph visualizer has two buttons to zoom in and out. Also, the exact zoom desired
can be entered in the zoom percentage entry. Hit enter to redraw at the desired zoom level.

Graph drawing options Hit the ’extra controls’ button to show extra options that control
the graph layout settings.

18

The Layout Type determines the algorithm applied to place the nodes.
The Layout Method determines in which direction nodes are considered.
The Edge Concentration toggle allows edges to be partially merged.
The Custom Node Size can be used to override the automatically determined node size.
When you click a node in the Bayesian net, a window with the probability table of the node

clicked pops up. The left side shows the parent attributes and lists the values of the parents, the
right side shows the probability of the node clicked conditioned on the values of the parents listed
on the left.

So, the graph visualizer allows you to inspect both network structure and probability tables.

9 Bayesian nets in the experimenter

Bayesian networks generate extra measures that can be examined in the experimenter. The
experimenter can then be used to calculate mean and variance for those measures.

The following metrics are generated:

• measureExtraArcs: extra arcs compared to reference network. The network must be pro-
vided as BIFFile to the BayesNet class. If no such network is provided, this value is zero.

• measureMissingArcs: missing arcs compared to reference network or zero if not provided.

• measureReversedArcs: reversed arcs compared to reference network or zero if not provided.

• measureDivergence: divergence of network learned compared to reference network or zero if
not provided.

19

• measureBayesScore: log of the K2 score of the network structure.

• measureBDeuScore: log of the BDeu score of the network structure.

• measureMDLScore: log of the MDL score.

• measureAICScore: log of the AIC score.

• measureEntropyScore:log of the entropy.

10 Adding your own Bayesian network learners

You can add your own structure learners and estimators.

Adding a new structure learner

Here is the quick guide for adding a structure learner:

1. Create a class that derives from weka.classifiers.bayes.net.search.SearchAlgorithm.
If your searcher is score based, conditional independence based or cross validation based, you
probably want to derive from ScoreSearchAlgorithm, CISearchAlgorithm or CVSearchAl-
gorithm instead of deriving from SearchAlgorithm directly. Let’s say it is called
weka.classifiers.bayes.net.search.local.MySearcherderived from ScoreSearchAlgorithm.

2. Implement the method
public void buildStructure (BayesNet bayesNet, Instances instances). Essentially,
you are responsible for setting the parent sets in bayesNet. You can access the par-
entsets using bayesNet.getParentSet(iAttribute) where iAttribute is the number of
the node/variable.

To add a parent iParent to node iAttribute, use
bayesNet.getParentSet(iAttribute).AddParent(iParent, instances)where instances
need to be passed for the parent set to derive properties of the attribute.

Alternatively, implement public void search (BayesNet bayesNet, Instances instances).
The implementation of buildStructure in the base class This method is called by theSearchAlgorithm
will call search after initializing parent sets and if the InitAsNaiveBase flag is set, it will start
with a naive Bayes network structure. After calling search in your custom class, it will add
arrows if the MarkovBlanketClassifier flag is set to ensure all attributes are in the Markov
blanket of the class node.

3. If the structure learner has options that are not default options, you want to implement
public Enumeration listOptions(), public void setOptions(String[] options), public
String [] getOptions() and the get and set methods for the properties you want to be
able to set.

NB 1. do not use the -E options since that is reserved for the BayesNet class to distinguish
the extra options for the SearchAlgorithm class and the Estimator class. If the -E option is
used, it will not be passed to your SearchAlgorithm (and probably causes problems in the
BayesNet class).

NB 2. make sure to process options of the parent class if any in the get/setOpions methods.

4. Add an entry to weka/gui/GenericObjectEditor.props so that the class shows up when
selecting a structure learner. Just add the name of the class
weka.classifiers.bayes.net.search.local.MySearcher to the item
weka.classifiers.bayes.net.search.SearchAlgorithm.

20

Adding a new estimator

This is the quick guide for adding a new estimator:

1. Create a class that derives from weka.classifiers.bayes.net.estimate.BayesNetEstimator.
Let’s say it is called
weka.classifiers.bayes.net.estimate.MyEstimator.

2. Implement the methods
public void initCPTs(BayesNet bayesNet), public void estimateCPTs(BayesNet bayesNet),
public void updateClassifier(BayesNet bayesNet, Instance instance), and public

double[] distributionForInstance(BayesNet bayesNet, Instance instance).

3. If the structure learner has options that are not default options, you want to implement
public Enumeration listOptions(), public void setOptions(String[] options), public
String [] getOptions() and the get and set methods for the properties you want to be
able to set.

NB do not use the -E options since that is reserved for the BayesNet class to distinguish
the extra options for the SearchAlgorithm class and the Estimator class. If the -E option is
used and no extra arguments are passed to the SearchAlgorithm, the extra options to your
Estimator will be passed to the SearchAlgorithm instead. In short, do not use the -E option.

4. Add an entry to weka/gui/GenericObjectEditor.props so that the class shows up when
selecting an estimator. Just add the name of the class
weka.classifiers.bayes.net.estimate.MyEstimator to the item
weka.classifiers.bayes.net.estimate.BayesNetEstimator.

11 FAQ

How do I use a data set with continuous variables with the BayesNet
classes?

Use the class weka.filters.unsupervised.attribute.Discretize to discretize them. From the
command line, you can use
java weka.filters.unsupervised.attribute.Discretize -B 3 -i infile.arff -o outfile.arff

where the -B option determines the cardinality of the discretized variables.

How do I use a data set with missing values with the BayesNet classes?

You would have to delete the entries with missing values or fill in dummy values.

How do I create a random Bayes net structure?

Running from the command line
java weka.classifiers.bayes.net.BayesNetGenerator -B -N 10 -A 9 -C 2

will print a Bayes net with 10 nodes, 9 arcs and binary variables in XML BIF format to standard
output.

How do I create an artificial data set using a random Bayes nets?

Running
java weka.classifiers.bayes.net.BayesNetGenerator -N 15 -A 20 -C 3 -M 300

will generate a data set in arff format with 300 instance from a random network with 15 ternary
variables and 20 arrows.

21

How do I create an artificial data set using a Bayes nets I have on file?

Running
java weka.classifiers.bayes.net.BayesNetGenerator -F alarm.xml -M 1000

will generate a data set with 1000 instances from the network stored in the file alarm.xml.

How do I save a Bayes net in BIF format?

GUI: In the explorer,
o learn the network structure,
o right click the relevant run in the result list,
o choose Visualize Graph in the pop up menu,
o click the floppy button in the Graph Visualizer window. o a file “save as” dialog pops up that
allows you to select the file name to save to.

Java: Create a BayesNet and call BayesNet.toXMLBIF03() which returns the Bayes network
in BIF format as a String.

Command line: Cannot be done (yet).

How do I compare a network I learned with one in BIF format?

Specify the -B <bif-file> option to BayesNet. Calling toString will produce a summary of extra,
missing and reversed arrows. Also the divergence between the network learned and the one on file
is reported.

How do I use the network I learned for general inference?

There is no general purpose inference in Weka, but you can export the network as XML BIF file
(see above) and import it in other packages, for example JavaBayes available under GPL from
http://www.cs.cmu.edu/˜ javabayes.

12 Future development

If you would like to add to the current Bayes network facilities in Weka, you might consider one
of the following possibilities.

• Implement more search algorithms, in particular,

– general purpose search algorithms (such as an improved implementation of genetic
search or k-step look ahead hill climbers).

– structure search based on equivalent model classes.

– implement those algorithms both for local and global metric based search algorithms.

– implement more conditional independence based search algorithms.

• Allow BayesNets to be saved in XML BIF format from the command line.

• Implement score metrics that can handle sparse instances in order to allow for processing
large datasets.

• Implement traditional conditional independence tests for conditional independence based
structure learning algorithms.

• Currently, all search algorithms assume that all variables are discrete. Search algorithms
that can handle continuous variables would be interesting.

22

• A limitation of the current classes is that they assume that there are no missing values. This
limitation can be undone by implementing score metrics that can handle missing values. The
classes used for estimating the conditional probabilities need to be updated as well.

• Only leave-one-out, k-fold and cumulative cross validation are implemented. These imple-
mentations can be made more efficient and other cross validation methods can be imple-
mented, such as Monte Carlo cross validation and bootstrap cross validation.

• Implement methods that can handle incremental extensions of the data set for updating
network structures.

And for the more ambitious people, there are the following challenges.

• A GUI for manipulating Bayesian network to allow user intervention for adding and deleting
arcs and updating the probability tables.

• General purpose inference algorithms built into the GUI to allow user defined queries.

• Allow learning of other graphical models, such as chain graphs, undirected graphs and vari-
ants of causal graphs.

• Allow learning of networks with latent variables.

• Allow learning of dynamic Bayesian networks so that time series data can be handled.

References

[1] R.R. Bouckaert. Bayesian Belief Networks: from Construction to Inference. Ph.D. thesis, Uni-
versity of Utrecht, 1995.

[2] W.L. Buntine. A guide to the literature on learning probabilistic networks from data. IEEE
Transactions on Knowledge and Data Engineering, 8:195–210, 1996.

[3] J. Cheng, R. Greiner. Comparing bayesian network classifiers. Proceedings UAI, 101–107, 1999.

[4] C.K. Chow, C.N.Liu. Approximating discrete probability distributions with dependence trees.
IEEE Trans. on Info. Theory, IT-14: 426–467, 1968.

[5] G. Cooper, E. Herskovits. A Bayesian method for the induction of probabilistic networks from
data. Machine Learning, 9: 309–347, 1992.

[6] N. Friedman, D. Geiger, M. Goldszmidt. Bayesian Network Classifiers. Machine Learning, 29:
131–163, 1997.

[7] D. Heckerman, D. Geiger, D. M. Chickering. Learning Bayesian networks: the combination of
knowledge and statistical data. Machine Learining, 20(3): 197–243, 1995.

[8] Moore, A. and Lee, M.S. Cached Sufficient Statistics for Efficient Machine Learning with Large
Datasets, JAIR, Volume 8, pages 67-91, 1998.

[9] Verma, T. and Pearl, J.: An algorithm for deciding if a set of observed independencies has a
causal explanation. Proc. of the Eighth Conference on Uncertainty in Artificial Intelligence,
323-330, 1992.

[10] I.H. Witten, E. Frank. Data mining: Practical machine learning tools and techniques with
Java implementations. Morgan Kaufmann, 2000.

23

