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1 Introduction 

 

Backing to 1736, when Leonhard Euler published his famous paper [3] asking 

whether or not it is possible to stroll around Konigsberg (later called Kaliningrad) 

crossing each of its bridges across the Pregel (later called the Pregolya) exactly 

once, which was recognized as the earliest paper on graph theory later, he 

probably did not expect there would come such a powerful mathematical tool so 

called computer later in this world to extend this theory started by his paper to the 

next generation. At recent two decades, much has happened in graph theory no 

less than elsewhere: deep new theorems have been found, seemingly disparate 

methods and results have become interrelated, entire new branches have arisen 

as stated at the beginning of book [2]. The interesting thing to observe theoretically 

is that how graph theory working at computer science area, which of course is our 

course’s topic - algorithmic graph theory. From computer science perspective, 

graph theory has been extensive studied with related problems. Furthermore, 

various graph algorithms have been developed along with our increasing 

computing power. If we look at this from other side, graph problems and algorithms 

always accompany with relative high time complexity in terms of computer science 

solution. So, it is predictable that some structural change of computer architecture 

to enhance our computing power will eventually reshape our algorithmic graph 

theory. In this sense, parallel computing, one of the most popular new computing 

architecture nowadays will no doubt give us some fascinating results in graph 

theory. 
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 Actually, developing parallel graph algorithm is not new anymore. McHuge 

included a chapter in his graph theory book [4] to talk about parallel graph 

algorithms, and the book was published in 1990. However, since the parallel 

algorithm has not been as well studied as sequential algorithm, and various 

parallel computing models involved, people did not really design algorithms in 

terms of graph theory, instead, many basic computing problems including some 

graph problems have been studied. So, in general sense, parallel algorithmic 

graph theory is still not here yet. As a person with a great enthusiasm about 

knowing different algorithms, I would like to pick up some parallel algorithms from 

various publishes, and try to arrange them in the way that we can get some idea 

about how parallel computing makes the difference in algorithmic graph theory 

field.  

 This report is organized to serve the above topics. Some personal 

understanding about how we can relate graph theory with parallel computing as 

well as how to utilize the additional power provided by multiprocessors in graph 

algorithms are discussed at Section 2. In order to look at those parallel algorithms, 

some notations and operations have to be introduced, and Section 3 is there for 

this purpose. I consider a better way to get a good taste or understanding of 

parallel algorithm with graph theory is through studying some classic problems. So 

I present some classic graph problems in parallel algorithm world that I collected at 

Section 4 as the beginning of our adventure. Section 5 is to look at some possible 

“practical” uses of parallel graph algorithms. It is only a little piece of what have 

been done and what is going on in this field. Finally, I summarize this report at 
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Section 6, pointing out some interesting things I have learned so far. My generally 

hope is that this report may help you get to know and enjoy this amazing new 

parallel graph world. 
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2 Graph Theory and Parallel Computing 

 

Parallel computing is different from sequential computing most with its various 

computing models, in other words, the multiprocessor structure. From some point 

of view, the algorithm design in parallel is getting more flexible companied with the 

increases of algorithm complexity caused by the model uncertainty. Of course, the 

ultimate idea in parallel is somehow coming from taking the advantages of those 

multiprocessor models. And more important, I guess we already make the 

connection between graph theory and parallel computing since the models, which 

can be simplified as organization of processors without losing too much of 

generality, is nothing new to be represented as graphs. As a matter of fact, many 

attributes of certain graphs like tree, star, hypercube, etc have been wildly used in 

parallel computing models. And the advantages exposed by graph theory of a 

certain structure are also the intuitions for researchers to think about algorithms in 

parallel fashion. In general, I think it is fair to say parallel computing was born with 

graph theory related. At the following works in this section, I would like to explore 

this relationship with some popular parallel computing models as well as their 

applications. 

 Binary tree, one of most extensive studied graph structure in our graph 

theory is no wonder a good start example here. Figure 1 is an example of a binary 

tree interconnected network with 16 nodes (processors in terms of parallel 

computing model) from Alk’s book [1]. In general, it is easy to see that this kind of 

complete binary tree organization has log(n) levels, where n is the total number of 
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nodes. Now, in order to see the power of this simple structure, let’s examine a 

problem where it is asked to find out the maximal or minimal value from a given list 

(assume the size n of the list is 2k). Sequentially, we can do this simply by 

comparing two value and keeping the maximum or minimum. Of course, the 

traversal will take us at least linear time, which is O(n), and which is optimal in this 

case. However, we will see that this binary tree parallel model can solve this 

problem in logarithmic time, which is faster than linear. Actually, it is not hard to see 

this algorithm from Figure 1 at all. We simply feed two values to the leaf processors. 

Each processor then compares the two values, and sends the larger or smaller 

one to its parent processor. Finally, by repeating this process at each level, we will 

eventually get the two values to the root processor, and the last comparison by the 

root processor will be able to tell us the maximal or minimal value.  Clearly, we only 

need logarithmic time since the total number of steps is equal to the height of the 

tree.    

  

    Figure 1: A tree interconnection network. [1] 
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A more sophisticated model is the hypercube like Figure 2 which is a 3 dimensional 

case. The beauty of hypercube structure is well-known as its logarithmic structure. 

The degree which is defined as the number of neighbors of a processor in a given 

network topology [1], and the diameter which is defined as the longest shortest 

path counting on number of links from any Pi to Pj [1] (i.e. the diameter of Figure 2 

is 3 since the longest shortest path from one processor to another is 3.) are both 

log(N) where N is the number of processors in the hypercube. Interesting enough 

is that the dimension of the hypercube can be naturally expressed by binary 

labeling. Like at the Figure 2 case, where we have 8 processors which forms a 3 

dimensional hypercube (log8 = 3). We can label each processor based on the way 

that each adjacent pair has hamming distance of one. The labeling basically 

explores the wonderful partition ability with the hypercube structure as we will see 

at the later example using hypercube. Furthermore, as Figure 3 shows, the 

hypercube can be transformed to different presented graphs. In 3 dimensional 

case, we can even get a planar graph representation of the hypercube. 

  

  Figure 3: Alternative of figure 2. [1] 

Figure 2: A hypercube interconnection network. [1] 

 A very common computing problem that has been efficiently solved by 

hypercube model is the prefix sum calculation. The prefix sum problem gives an 
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array of { x0, x1, x2, … , xn }, and asks to calculate the set of sums { S0, S1, S2, …, 

Sn }, where Si = ∑xk where (k from 0 to i). Akl’s book [1] has presented a simple 

parallel algorithm assuming that each hypercube processor Pi has two registers Ai 

and Bi, where 0 ≤ i ≤ n-1. The algorithm is stated as following: 

 for j = 0 to log(n) – 1 do 
  for all i < i(j) do in parallel 

(1) Ai
(j) ← Ai

(j) + Bi 
(2) Bi

(j) ← Bi
(j) + Bi 

(3) Bi ← Bi
(j)  

end for 
 end for.                                 
The algorithm is illustrated in Figure 4 for n = 8, where Ai and Bi are represented as 

the top and bottom registers of Pi respectively, and Xij is used to denote xi + xi + …+ 

xj. 

 

 

 

 

(a) Initially; 

(b) j = 0; 

(c) j = 1; 

(d) j = 2; 

 

 

 

 

Figure 4: Computing the prefix sums on a hypercube. [1] 
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Again, the algorithm manages to complete the calculation within log(n) time, where 

the sequential calculation time complexity is linear since the simple traversal takes 

O(n) time. When the hypercube calculations are finished, we will have the set of 

prefix sums at the A registers. Every B register will have the total sum of all values.   

 The above idea is quite simple. However, it does explore the structural 

advantage of the hypercube. The idea of partition a graph structure is well 

practiced in this algorithm. The parallel operations are all based on the separations 

of dimensions. Precisely, if we take the Figure 4 case, at each round, the parallel 

algorithm cuts the 3 dimensional hypercube to two 2 dimensional hypercubes 

based on different directions. And the cut can be simply done by recognizing the 

most significant bit at different location. The paper [5] which states a perfect load 

balancing on hypercube multiprocessors algorithm even extends this approach 

with a simple mathematic decision function, and achieves an amazing result to 

balance the job load to each processor on hypercube.  

 Limited by the length of this report, I can not keep demonstrating more 

parallel computing models such as mesh, star, mesh of tree, etc. But I think from 

the above two examples, we can get a basic taste of the relationship between the 

model and our graph theory. Most models using in parallel computing today have 

been already carefully studied from graph theory point of view even long time ago. 

I also found that it was quite efficient to understand a model by studying its related 

graph to get its attributes and features. In this sense, as I stated at the beginning of 

this section, graph theory is the base of parallel computing models we are talking 

about now. Of course, this relation is not just at the model level. More important, it 
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is a fascinating area from both sides when designing some parallel algorithms to 

solve those hard problems in graph theory.  

Graph theory itself has been studied more than 200 years, many puzzles 

have been solved, and many still remain unsolved. Algorithmically speaking, we do 

get lots of NP-hard, NP-complete problems from graph theory such as Hamiltonian 

path, Travel Sales Man problem, Maximum Matching problem, etc. On the other 

hand, parallel computing was brought to us because computer scientists 

recognized that this would be a neat way to provide extra computing powers. I 

guess it would not be a surprise that people tackle on those hard graph problems 

with parallel computing. Actually, I find many interesting parallel graph algorithm 

papers have been published or being published at present. Academically, this is 

one of the hottest fields in algorithm designs. I selected the paper [3] which states 

an algorithm about parallel I/O scheduling using the edge coloring method as a 

case to explore this kind of graph problems represented in parallel world. 

 The problem in the paper [3] is already familiar with us, which is basically 

focused on how to schedule the CPU with I/O so that the contention can be 

eliminated while maintaining an efficient use of bandwidth. The idea in this paper is 

to deduce the CPUs and I/Os to a bipartite graph, and solve the edge-coloring and 

maximum matching for this graph. Of course, this only makes sense in parallel 

computing, since we have multiprocessors (CPUs). The authors managed to study 

the highest degree first (HDF) heuristic, and got pretty nice performance from their 

algorithms. The algorithm is really nothing new in terms of edge-coloring and 

maximum matching problems. However, the key point here is we have 
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multiprocessors in parallel, and the algorithm allows each processor calculates the 

maximum matching at the same time, in other words, doing distribution parallelly. I 

would like to stop here since the relation between graph theory and parallel 

computing is well examined at this point for this paper. Problems like this, such as 

Hamiltonian path which is NP-complete have been well studied in parallel. It is also 

not hard to see how we can efficient calculate Hamiltonian path using 

multiprocessors. Intuitively, if we have enough processors, we can use one 

processor calculate a path simultaneously. It is easy to see we will get the result 

pretty fast this way. Of course, many parallel Hamiltonian path algorithms are 

much trickier than above. We can not only measure a parallel algorithm by time 

complexity. As we will see at the following section, the measurement of parallel 

algorithm is somehow different from traditional algorithm. Obviously, this is also 

the reason that we keep inventing new algorithms for those hard graph problems. 

 I think up to now, I can conclude this section with the strong relations 

between graph theory and parallel computing, that have been explored by 

previous paragraphs. First of all, the lower level, or the base of parallel computing, 

which is the computing model, is directly related with graph theory, and well funded 

by graph theory. Parallel algorithm is built on top of parallel model, in other words, 

parallel algorithm is supported by graph theory. On the other hand, the most 

important feature of parallel computing is extra computing power provided by 

multiprocessors. It becomes so natural to examine new parallel algorithms for 

those graph problems since there are so many unsolved or time-consuming 

puzzles in graph theory field. Exactly, graph theory provides parallel computing 
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with basic model support, and parallel computing gives us new ideas to design 

graph algorithms dealing with those tough problems in graph field. In the later 

sections, we will see more such kind of relations, which can give us more inside 

look at this new algorithm field.           
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3 Basic Parallel Operations and Measurements 

 

Before we can look at some exciting parallel graph algorithms, it is worth our time 

to settle down some basic parallel computing operations as well as some 

measurements. Like the sequential algorithm world, parallel algorithm does come 

with some physical limitations from the computer structures. Furthermore, parallel 

computing models are various as we have seen couple of them at the previous 

section. And it is not appropriate to refer a parallel algorithm without specify the 

computing model. This is where parallel algorithm design differs from sequential 

algorithm design the most. So, at the following, we will look at some very general 

assumptions that have been taken when designing parallel algorithms. Of course, 

the measurements of parallel algorithm are somewhat different from sequential 

algorithm as we can imagine for the same reasons.  

The most common choice for parallel algorithm designers is obviously the 

Parallel Random Access Machine (PRAM). Just like we study sequential 

algorithms, in the Random Access Machine (RAM) model we can think 

preprocessing and communication only take constant time. The beauty of this is 

well-known as easy to analyze an algorithm. And the memory is assumed to be 

shared for the same reason of eliminating those hardware effects. However, the 

PRAM models are not all uniformed. With different memory access methods, 

PRAM models actually vary in four preliminary divisions. Firstly, we have basic two 

types of instructions as reading and writing. So for the reading, we will subdivide 

into Exclusive Read (ER) which provides processors to access memory with a 
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one-to-one fashion, and Concurrent Read (CR) which allows processors to read 

from a memory location simultaneously. Of course, for the writing, we have two 

types respectively, which are Exclusive Write (EW) and Concurrent Write (CW). 

Because of the purpose of this report, I will not get into more details about further 

divisions such as Priority CW, Common CW, etc. For your interests, please look at 

book [1] and [7] for comprehensive information. If you think back our examples at 

the Section 2, clearly, they are not just taking PRAM as the model, but more 

complex structures. The book [7] treats them as processor connected model 

algorithms which are different from PRAM model algorithms. As demonstrated 

from previous problems, taking those models such like tree and hypercube would 

give us many benefits in terms of algorithm design. One thing we have to keep in 

mind is that the communication between processors does take time, and 

sometimes, it can not be assumed as a constant. The memory access in some 

situation suffers the same problem that simply taking constant time can lead to a 

wrong time complexity analysis.  

 As an algorithm designer, the most important thing is to analyze the 

algorithm and understand the algorithm efficiency or time complexity. We have 

used the asymptotic system well-known as big “O” and big “Ω” for year. In parallel 

algorithm world, we keep using it to measure our time bound. However, we always 

like to think about optimal for problems such as sorting, we know the best we can 

do is O(nlogn) proved with sequential computing algorithms. But if we reverse our 

first example algorithm, and feed the values that we want to sort from the root 

processor, then divide into two part along the binary tree, we will get the sorted 
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array from the leaves in O(logn) time. Of course, the speedup in this case is O(n) 

from using this parallel algorithm. And the question is whether this is optimal in our 

parallel case since it already beats the sequential lower bound. This motivates us 

to look at new measurements at parallel world. The obvious measurement solution 

is the cost. The cost is defined as the time complexity multiples by the number of 

processors used. In the above case, the tree structure has nx(n-1)/2 which is O(n2) 

processors. So the cost is O(logn)xO(n2) = O(n2logn), and not optimal at all. It is 

quite reasonable this way since we can not just add processors for nothing, and 

the number of processors is another important issue to consider with. For many 

graph problems, it is even critical to control the number of processors as graphs 

can get eventually very large and complicated. There are also other 

measurements like works, etc. A parallel algorithm analysis may be done in quite a 

different way. Sometimes the traditional way of analysis results a very inaccurate 

estimation. Many efforts have been put on analysis a parallel algorithm. The report 

will not cover those interesting topics from other measurement methods since the 

algorithms provided here are quite elegant for analyzing. I think that the best way 

we can explore new analysis ideas about parallel algorithms would be through 

reading those papers from various parallel algorithm publishes nowadays. It is no 

doubt the truth that analysis of an algorithm becomes harder and harder since the 

newly developed algorithms especially in parallel world become more and more 

complicated. The topic itself is a big area being studied.  

 We now have examined some basic operations and measurements which 

we need to consider for understanding our parallel algorithms. As I mentioned 
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above, those are very preliminary ones. More advanced ones are needed for 

different parallel algorithms which I do not include in this report. The essential two 

things we have to keep in mind from this section are the model dependency of a 

parallel algorithm, and new analysis measurements involved with parallel 

algorithms.   
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4 Parallel Classic Graph Algorithms  

 

At the beginning of this report, I have already explored some parallel algorithms 

related with graph theory. Those algorithms are pretty elementary like sorting 

using tree model, prefix sum from hypercube model, etc. However, really graph 

problems have also be extensively studied in parallel, and those parallel graph 

algorithms are not as simple as above ones. More issues like partition, 

representation, etc have to be considered careful. In this section, we will examine 

some classic graph problems in parallel. 

It is really easy to pick up some parallel algorithms from many publishes. 

However, I feel many of them are more concentrated on their parallel part, which is 

to say that the articles and papers are really focused on parallel techniques while 

using the graph problems as their media. However, it makes more sense to find 

something really related with graph theory more here. So I guess this is the 

motivation that I choose the shortest path problem from book [7]. The book is no 

doubt tackling on graph problems as it is a graph theory book. And the shortest 

path problem (SP) is also a well-known graph problem captured so many big 

names like Dijkstra, Floyd-Warshall, Bellman-Ford, and so on. For all those 

reasons, I think this problem would be a perfect choice to put in this section. Two 

traditional SP algorithms as Dijkstra and Floyd will be discussed in parallel at the 

following part. We will also look at the analysis of these two parallel algorithms. 

Dijkstra’s SP algorithm is probably one of most widely used algorithms not 

only in graph theory, but also some other practical fields like networking, database, 
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and so on. Dijkstra’s algorithm is essentially a greedy algorithm which always 

chooses the lightest or closest vertex in the given graph. And the sequential 

version runs O( |V|2 ) time generally speaking, where |V| is the number of vertices. 

The parallel version given by book [7] introduces an O( |V| log |P| ) algorithm where 

P is the processors. This parallel algorithm takes PRAM EREW model. In order to 

see the parallel algorithm, we can first find out the performance bottlenecks in 

sequential version algorithm. Clearly, identifying the next vertex to include in the 

shortest path tree, where the vertex is the search tree vertex with the smallest 

estimated distance from the start vertex, and which is not yet in the shortest path 

tree, costs most time of the algorithm. And of course, after identifying the next 

vertex, we have to update each vertex distance to others in the whole graph. It is 

not hard to find out the possible parallel operations here. With the divide and 

conquer idea in mind, we can organize the required computations in the fashion of 

a binary tree. At the leaf level of the tree, we group the values of the distances from 

one vertex to another into |V|/2 pairs, and find the minimum of each of the pairs 

using |V|/2 processors which is constant time operation. Then group the resulting 

|V|/2 minima into |V|/4 new pairs and repeat the process again. Without loss of 

generality, we can assume |V| is some power of 2, then after log ( |P| ) stages, we 

have found the minimum distance.  Now, next step is to update the shortest 

distances for each pairs. We can again use the binary tree to broadcast the 

distance from one processor to others. The process works that one processor tells 

another processor, and then they each tell two other processors, and so on. 

Obviously, this task can be done linear time respected to the size of the graph 
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which is |V|. So the total algorithm will take O( |V|log|V| ) combining the two 

dominant steps mentioned above. The book [7] also mentions the situation where 

we do not have enough processors. At this situation |P| < |V|/2, and we can put 

|V|/|P| vertices into each processor in stead of just a pair. So the minimum distance 

part will take O( |V|/|P| + log|P| ), and the broadcasting will take O( |V|/|P| + log|P| ), 

which are some kind of input sensitive. The EREW provided by the model assures 

that when calculating the distance concurrently as well as the updating the 

distances, each vertex from the graph is only accessed by one processor at each 

stage. This is very important in terms of the correctness of this algorithm. The cost 

for this parallel algorithm is O( |V|2log|V| ) which is no better than the O( |V|2 ) time 

algorithm sequentially.  The standard trick is to use O( |P| / log|V| ) processors to 

hit the sequential bound if it is measured by the cost of parallel algorithm. Because 

the additional data that a processor gets in this case will be relative small 

comparing with the whole process, the sequential manner additional calculation in 

each processor will have minor effect towards time complexity, or asymptotically 

no increase of the total run time. So, eventually, we can make the cost of this 

algorithm O( |V|2 ) to match the sequential time complexity. 

Another well-known algorithm for SP problem is the Floyd SP algorithm. 

One of its parallel versions is also presented by book [7]. I include it here as an 

example comparing with above Parallel Dijkstra’s SP algorithm. The Floyd SP 

algorithm is based on the distance matrix. Through manipulating the matrix, the 

algorithm identifies the paths for each pair vertices.  We will denote the shortest 

distance matrix as SD at the following description. Actually, matrix manipulations 
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are natural to be thought in parallel. So it is relatively easy to bring Floyd SP 

algorithm to parallel. Notice that every entry in SD that can change at stage k 

depends only on its current value and the values of a pair of components in the kth 

row and column. The components of SD may be updated in parallel because each 

entry at a stage is sort of independent to others. We only need to make sure only 

one processor can write to certain memory location at each stage.  EW as we 

specified as the model of this algorithm ensures the one to one writing at each 

stage. And CR is needed, because the components of the kth row and column have 

to be read concurrently in order to utilize the multiprocessors. Each stage now only 

needs constant time to be calculated since each entry is updated concurrently. 

Finally, the algorithm needs to run through all vertices which takes O( |V| ) time.  In 

this case, we ask for |P| = |V|2, if we do not have enough processors, we can apply 

the same technique as mentioned by the end of previous algorithm. However, if the 

number of processors is significant less than what we need, the sequential process 

in each processor can not be ignored asymptotically.  The time complexity of the 

parallel algorithm will be estimated as O( |V|3/|P| ). 

Parallel Dijkstra’s SP algorithm and parallel Floyd SP algorithm are two 

parallel algorithms tackle on the SP problem in graph theory brought from their 

sequential versions. The idea is similar to examine the sequential algorithms and 

figure out where in the algorithms can be paralleled, in other words, the jobs can be 

executed simultaneously without disturbing each other. In parallel Dijkstra’s 

algorithm, the shortest distances from one vertex to others at a stage can be 

calculated independently, and in parallel Floyd algorithm, the SD entries can also 
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be updated concurrently with exclusive write control. The speedup of the parallel 

algorithm is indeed brought to us by those parallel abilities. Essentially, these two 

algorithms are easy to understand because the minor changes from their 

sequential versions. However, this is not always the case, even with classic graph 

problems. A good example to look at is the Hamiltonian problem. Many parallel 

algorithms have been presented dealing with Hamiltonian problem. If we only look 

at the time complexity, we can check a graph in constant time assuming we have 

enough processors one for each vertex. The most naïve algorithm is almost the 

same as sequential and speedup comes purely from the multiprocessors plugged 

in. Of course, as we have seen from previous sections, the parallel algorithm has 

many unique techniques with parallel models. So it is not hard to find many 

improvements from papers presenting parallel Hamiltonian algorithms. 

Unfortunately, Hamiltonian problem is still NP-complete even in parallel world. It is 

generally believed that if we can find a parallel algorithm with a polynomial cost, 

then it is possible to find a sequential algorithm with a polynomial time complexity 

dealing with the same problem by simulating the parallel one. In this sense, many 

classic NP-complete graph problems stay unsolved in parallel computing. Of 

course, for those problems, parallel algorithms vary a lot with sequential algorithms. 

I decide not to give such example in this report simply because describing one 

instance using totally new approach will take another entire report. But as we have 

noticed, it is obviously true that classic graph problems in parallel are generally 

much harder to be solved than the two examples we have seen above. 
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5 Parallel Graph Algorithm Applications  

 

The parallel graph algorithm application is really an implicit concept to me. Graph 

theory as a widely used field has been applied to so many areas. Even some very 

theoretic areas like computational geometry as one good example, can be called 

as an “application” of graph theory. Of course, for the sake of the meaning of 

application, a theoretic area can not be application rigidly speaking. So, the two 

problems I prepared for this section which are one geometry problem and one 

marriage problem are somehow unfortunately fall into the theoretic “application”. 

However, for the faith of algorithmic interest, I still would like to include them, 

because I found them rather interesting to me.  

 The first problem is a graph problem with some geometric meaning, which 

was given by Professor David Rapapport (Faculty of School of Computing, 

Queen’s University), and brought to parallel by Professor Selim Akl (Faculty of 

School of Computing, Queen’s University). It is a very elegant example to 

demonstrate the power of parallel algorithms giving us an amazing computational 

speed up. The problem simply asks for a transformation from the (a) in Figure 6 to 

(b). The rule for transformation is that at each stage, we can move and add edges 

while maintaining a triangulation of the rectangle inside, as we can see the initial 

graph (a) is triangulated inside. Geometrically, the final goal of the transformation 

is to reverse the triangulation direction putting “0 fan” marked in (a) from upward to 

downward, and “1 fan” from downward to upward. In other sense, this can also be 

considered as moving each upward triangle to one downward triangle location. So, 
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if we have a sequential algorithm to do this, the algorithm will need to move each 

triangle n/2 steps forward or backward, and half triangles have to be move to 

achieve the transform which is n/2, where n is the total number of triangles we 

have. Clearly, we need roughly n2/4 steps. In the Figure 6 case, n = 6, we need 

62/4 = 9 steps.  

    

Figure 6: question demonstration. (a) Initial stage. (b) Finial stage. 

 

Figure 7 below shows the sequential algorithm to process this transform. The 

first step is certain that we have to move the diagonal and add an edge like (a) in 

Figure 7 represented by a dot line. Then (b) part demonstrates the step two to five 

which move the remaining edges of two sides and replace with those dot edges. 

Step six from part (c) has to remove the central dot line and replace it with a 

forward dash line. The seventh to eighth steps are used to establish the two sides’ 

triangles. Final step is just to replace the central dash line with a diagonal line to 

finish the transform. Exactly, there are nine steps as we stated at above paragraph. 

If we count triangles as input, we will have a time complexity of O(n2) in this case 

with sequential algorithm. Furthermore, there is no way to speedup at sequential 

manner, since we have to move and replace an edge a time without losing any 

triangle, in other words, half triangles have to be moved step by step with the total 
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number of at least n/2 each.  

 

    

    

 Figure 7: transformation steps. (a) First replace step. (b) Second to fifth steps 

       (c) Sixth step.      (d) Seventh and eighth steps. 

 

In order to compare with sequential algorithm, we would like to see how parallel 

algorithm can accelerate our transform, and more important, how good it can do. In 

this case, the parallel algorithm leads a simple constant time algorithm. It is quite 

easy to imagine the algorithm just thinking that we have enough hands to grab all 

triangles up and restore them once. With n processors, we can put each triangle to 

a processor simultaneously, and restore all triangles at constant time without 

violating the rules. The cost here is O(n) (c(n) = O(1)xO(n)), and speedup is O(n2) 

comparing with O(n2) time complexity from sequential. It happens that this is also 

an example where the classic speedup theorem, which states the speedup can not 

go over the ratio of processors used, fails, since we only use O(n) processors, and 
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we get the speedup of O(n2). I think this is a very impressive problem where a 

simple geometric graph problem can be resolved efficiently with parallel 

algorithms. 

The second example for application at this section is the “old” marriage 

problem in graph theory. Of course, it is also extensive studied and widely used. 

The parallel algorithm we will look at later is a relatively new development from 

paper [6]. The algorithm is not as understandable as the previous example. We 

have briefly looked at the problem and some solutions from previous works in class. 

However, for the sake of completeness, I will restate the problem here, but ignore 

the previous sequential solutions and studies about this problem. The problem is 

also called stable marriage problem, which was first introduced by Gale and 

Shapley. Given n men, n women, and 2n ranking lists in which each person ranks 

all members of the opposite sex in order of preference, a matching is a set of n 

pairs of man and woman with each person in exactly one pair. A matching is 

unstable if there are two persons who are not matched with each other, and each 

of whom strictly prefers the other to his/her partner in the matching; otherwise, the 

matching is stable. Gale and Shapley showed that every instance of the stable 

matching problem admits at least one stable matching and such a matching can be 

computed in O(n2) iterations. The paper [6] propose a new approach, parallel 

iterative improvement (PII), to solving the stable matching problem. The PII 

algorithm basically consists of two alternating phases. The first phase is a 

procedure that randomly generates a matching, and the second phase consists of 

multiple improvement iterations. The parallelism is explored as identifying a subset 
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of unmatched pairs to replace matched pairs for an existing matching so that the 

number of unstable pairs in newly obtained matching can be reduced. The authors 

also managed to design this algorithm for various parallel models. They found that 

both phases took O(logn) time on completely connected multiprocessor system 

and array with multiple broadcasting buses, which are very naïve models, however, 

not practical at all, and O(log2n) time on both hypercube and MOT (mesh of tree). 

Let’s look at this PII algorithm in more details at following.  

Let M = { m1, m2, …, mn } and W = { w1, w2, …, wn } be the sets of n men and n 

women respectively like the paper [6] specified. Let mLi = { wri,1, wri,2, … , wri,n } and 

wLi = { mri,1, mri,2, … , mri,n } be the ranking lists for man mi and woman wi, where 

wri,j (resp. mri,j) is the rank of woman wj (resp. man mj) by man mi (resp. woman wi). 

Then, we can get a ranking matrix of size n x n. The below Example 1 comes from 

the paper which will make our first construction clear. 

 

    Example 1: an instance of ranking matrix. [6] 

 

The two phases of the PII algorithm no doubt will be set up working with this 

ranking matrix to find out a stable matching. It is easy to say that a matching is 

stable if and only if there is no unstable pair in the selection set from the matrix. 

The paper [6] identifies two types of pairs in the process. A set NM1 of type-1 new 

matching pairs (simply nm1-pairs) is defined as follows. If there is no unstable pair, 
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NM1 = null. Otherwise, for every row Ri with at least one unstable pair, select the 

one with the minimum left value among all unstable pairs as an nm1-generating 

pair; for every column Cj with at least one nm1-generating pair, select the one with 

the minimum right value as an nm1-pair. Based on NM1, a set NM2 of type-2 

matching pairs (simply nm2-pairs) can be found by a procedure that first identifies 

nm2-generating pairs and then identifies nm2-pairs using an nm2-generating graph. 

For any nm1-pair ai,j in the set, pair al,k with l being the pair at the same column and 

k being the pair at the same row is called the nm2-generating pair corresponding to 

ai,j. If we choose any set (i.e. any matching) from the matrix, the degree of 

nm2-generating graph is at most 2. Then we can swap the original unstable pairs 

out, and replace them with nm-pairs as we described above. The paper [6] states 

that if let NM = NM1 U MN2, and RM be the set of ai,j which is going to be replaced, 

then we can get the stable matching by (M – RM) U NM, where M is the random 

matching set from the first phase. 

Based on this idea, the algorithm first picks up a matching randomly. The basic 

technique uses to find a matching is through pointer jumping. A pair of processors 

swap their pointers with each other, and O(logn) time to find a matching since the 

length of the list is n. The second phase is to identify the NM1 and NM2 which have 

been defined above. To find NM1 through checking each row and each column, we 

have to find the minimum left or right value, which takes O(logn) time. All rows and 

columns can be checked concrrently. To find NM2, because the NM2 graph has a 

degree at most 2, parallel computing can do this in constant time. After we find out 

NM1 and NM2, we can use (M – RM) U NM to calculate the new matching. Again, 
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it will only take O(1) time. Ideally, because the algorithm identifies the parallelism 

of calculating NM1 and NM2, the total time complexity stays O(logn).  We have 

seen at Section 2 that parallel algorithms are model dependent. So the paper tries 

to implement this PII algorithm with different possible models. The Figure 8 is the 

representations of the models that have been chosen from the paper. It terms out 

the time complexity which has been specified at the previous paragraph is model 

dependent too. The array with multiple broadcasting buses is an ideal model to use 

here which achieves O(logn) bound. However, the hypercube and the MOT both 

increase the time complexity to O(log2n). The main explanation for this is that the 

communication or broadcasting at a hypercube or a MOT take O(logn) time, but 

only constant time through buses. Buses used here are generally treated as O(1) 

time for each read or write operation. And each processor can send or broadcast 

data to any processor in the array within constant time. And in this PII algorithm, at 

phase two, we need to find the NM2 through checking NM1, which is some kind of 

broadcasting operation. When hypercube or MOT is taken into consideration, we 

can not assume finding NM2 is an O(1) time operation, instead, it has to take 

O(logn) time. 
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 Figure 8: (a) a 16-processor hypercube (b) a 4x4 mesh of trees (c) a 4x4 array 

with multiple broadcasting buses. 

 

We have looked at two recent parallel graph algorithms. Although it is only an 

overview, please refer back to the original publishes for details, we can still 

experience the difference on how parallel algorithms are to be constructed and 

analyzed. Many new issues have been taken into consideration. From graph 

theory side, we have seen the power of using parallel ideas to solve some graph 

problems either new or traditional. The implementations of those parallel graph 

algorithms also can be very useful in practice. Like the PII algorithm for marriage 

problem can be applied to scheduling algorithm in order to provide QoS 

guarantees suggested by paper [6].  Of course, parallel algorithms applied to 

graph problems are always complicated nowadays. It will be a very challenging 

field in the future I believe.  
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6 Summary 

 

I feel this report still a very basic summary of the works have been done so far. 

Limited by the size of this report, I have to give up many interesting parallel graph 

algorithms. Book [1] covers very detail about parallel computing, which happens to 

be a good textbook to understand the parallel world. Book [7] is the only book in 

graph theory I found with parallel algorithms. The parallel algorithm chapter in this 

book is definitely a good start to get some idea about parallel graph algorithm. Of 

course, one may suffer from the out of date problem reading some algorithms in 

the books. I think this is the main reason I included two relative new examples at 

Section 5. Since the parallel algorithm is changing so fast, the best way to get 

around this would be reading papers from recent publishes. It is quite beneficial to 

me as I actually formed this topic from the paper reading.  

 My expectation with writing this paper is to explore a new way of thinking 

dealing with algorithmic graph problems in parallel computing. I consider the 

observation of a graph problem from a different angle to be more interesting than 

the algorithm presented here. Parallel is a very power idea, and expected to 

reshape our traditional computational world. In this sense, looking at our traditional 

graph problem from a new perspective would be rather elegant. If you feel 

enjoyable with some new thinking from this report, it would be the best reward for 

me to have it. 
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