
TYPING DIGIT CLASSIFIER
PATTERN RECOGNITION PROJECT

HENRY XIAO

1. Project Overview

This project is primarily a classifier design for recognizing typing digits. We
follow the conventional classifier design process (see [1] section 1.4) to construct our
classifiers. Typing digit features have been studied here from the training samples.
A set of features can be extracted from our program and important ones have been
showed through some statistics. Two classifiers have been derived using decision
tree and nearest neighbor methods. We evaluate the classifiers through testing using
different typing digit samples. We also propose some further discussions based on
our studies through out this project.

The difficulty of recognizing typing digits is that various fonts existing today
which make the feature extraction relatively hard as if more font options are con-
sidered. In general, if all font options are taken into account, the diversity of
typing digits would match handwritten’s. Then clearly, classifying typing digits
will be equally hard as classifying handwritten ones. However, for the requirement
of this project, we only develop our classifier based on some “regular” fonts and
test on limited samples.

The two classifiers that we come out in this project are based on different criteria.
We measure some intuitive features like “holes” in the digit etc. to come up the
first decision tree classifier. This somehow does not work well because of various
fonts as we have stated early. The latter classifier tries a different approach based
on template matching. The feature set we measured at the beginning becomes
useless here which is a little disappointing to us. The better testing results from
the second classifier further shows the incapability of developing an highly accurate
typing digit classifier with our intuitive feature set.

2. Digit Features

Feature extraction is an essential step towards a good classifier. As the beginning,
we measure a set of intuitive features which can be directly visualized from many
typing digits. The contents of the features are listed in Table 1 below.

We set the percentage for “H Line” and “V Line” to 90% and it is easy to verify
that Hole = Up Hole + Center Hole + Down Hole. Some features like “Width”
and “Height” are clearly not useful to be applied in the classification, and thus to
be eliminated from our consideration later.

The template matching is not using the above features from the set. However, we
create a {0, 1} map for each of the digit extracted from an input digit image which

Date: November 2004.

1



2 HENRY XIAO

Num# Feature Name Feature Description
1 Width The bounding box width.
2 Height The bounding box height.
3 Width/Height The ratio of the bounding box width to the height
4 Hole The number of holes in the digit.
5 Up Hole The number of holes in the upper part of the digit.
6 Center Hole The number of holes in the center
7 Down Hole The number of holes in the lower part of the digit.
8 Notch The number of notches in the digit.
9 H Line The number of horizontal lines longer than given

percentage of the width.
10 V Line The number of vertical lines longer than given per-

centage of the height.
11 Digit/Area The ratio of the black pixels to the total pixels
12 Hole/Area The ratio of the pixels in the holes to the total

pixels
13 Notch/Area The ratio of the pixels in the notches to the total

pixels.
Table 1. Intuitive feature set

becomes very useful for scaling the digit without applying some image processing
algorithm. An example of the {0, 1} map of a digit “8” is showed in Figure 1.

Figure 1. A digit “8” image and its {0, 1} map.

It is not hard to imagine that the matching is simply a process of identifying
agreed black (i.e.0) pixels between the template map and the input digit map. And
the scaling of a map is relatively a straight forward task.

3. Classifier Design

Two classifiers are designed namely Decision Tree Classifier (DTC) and Nearest
Neighbor Classifier (NNC) based on the classification method used.



DIGITAL CLASSIFIER 3

3.1. Decision Tree with Digit Features. The DTC is based on some features
from the Table 1. We measure the importance of each feature through studying
on a set of training samples. For each digit, we have a subset of 150 samples with
different fonts and sizes. (i.e. there are in total 15 fonts used and 10 samples with
different sizes for each font.) Figure 2 shows an example sample image for digit “0”
with certain font and different sizes.

Figure 2. A training sample image for digit “0” with certain font
and different sizes

We then collect the feature statistics from the training samples and identify
possible features that can discriminate a digit from another, or others. The result
statistics can be found in [2]. The final decision tree of our DTC is constructed man-
ually using features identified from the studies. Figure 3 is a graph representation
of our decision tree.

4, 5 notches

Holes
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Notch/Area
{6, 8, 9}

Hole/Area H and V Line
{1, 2, 3, 5, 7}{0, 6, 9}

Up Hole
{6, 9}

6

H and V Line
{0, 4, 6, 9}

4 Up Hole
{0, 6, 9}

9 V Line
{0, 6}

Width/Height
{1, 7}

Notches
{2, 7}

Notches
{3, 5}0

1 27 7 3 5

8

9

60

2 holes
1 hole

0 hole

< 0.3 >= 0.3

1 up hole others

< 0.3 >= 0.3

1 H line and 1 V line

others

1 hole others

2 V lines others

1 H line and 1 V line 1 H line and 0 V line others

< 0.6 >= 0.6

3, 4 notches 2 notches

4, 6 notches

Figure 3. The decision tree for our DTC

Couple of things can be noticed from the graph. The DTC is rooted at the
“Holes” which is regarded as the most important feature in our design. Thus, in



4 HENRY XIAO

general, the digits with one hole or two (i.e. “0”, “4”, “6”, “9”, and “8”) should
have a better chance to be correctly classified than those without holes. The DTC
has problem discriminating “2”, “3”, and “5” since the three digits are very likely
in all our feature dimensions. The classification between “3” and “5” is no better
than a random guess here.

3.2. Nearest Neighbor with Template Matching. The concept of the NNC is
simpler than the DTC. The important thing is to get the template library right. The
template library is a connection of digits with the value specified by the file name in
our system (i.e. digit “4” template samples are stored in a file named “4 lib.dat”).
The classification is based on the comparisons between the input samples and the
library samples. The prediction result is the digit sample value given the minimum
distance.

We have already seen the {0, 1} map at the previous section, and it is only a
problem of defining distance measure here in order to do the matching between two
{0, 1} maps. We measure the distance by the difference of the black (i.e.0) pixels
between the two maps in percentage to the total black pixels. So formally, we define
distance from one map to the other d as:

(3.1) d =
black pixel difference

black pixel total
.

The finally distance D is calculated by applying Equation 3.1 twice with respect
to the input sample and the library sample, and taking the average of the two d.

(3.2) D =
dinput + dlibrary

2
where dinput = black pixel difference

black pixel total of input sample , dlibrary = black pixel difference
black pixel total of library sample .

Notice that it is important to scale the library and the input samples into the
same comparable size. This is done by taking the ratio of the two heights from the
two maps and scaling the width by the same ratio. So the normalized two maps
will have same number of rows with the number of column may differing. In order
to simplify the normalization process, we further make the library contains ”large”
size digit such that the input sample digits have smaller size. This implies that
we only need to scale our library samples by the ratio r = ROWinput

ROWlibrary
, and then

compare the normalized library map to the input sample map. It should be clear
that because the two maps may have different number of columns, the number of
total black pixels of the input sample map may be different from the one of the
library sample map. Thus the distance D is more proper than single d.

We have stated the importance of the template library. And our current library is
constructed from 10 digit image files respecting digits from “0” to “9”. Each image
contains 15 samples for a digit with different fonts. We demonstrate the digit “0”
library image in Figure 4. The template library then consists of 10 template files
storing {0, 1} maps for each digit extracting from the 10 library images.

Figure 4 is marked with the fonts. We use five font families (i.e. Arial, Arial
Narrow, Century Gothic, Times and Verdana) with respect to the columns, and use
three font types (i.e. regular, italic, and bold) with respect to the rows. The library
construction is very regulated consisting 10 × 15 = 150 samples in total. In other
words, for each input sample, the classification program will do 150 comparisons



DIGITAL CLASSIFIER 5

Figure 4. Digit “0” library image with 15 samples

to find out the best result with minimum D. We consider our construction of the
template library fairly efficient for this project since the testing is limited with
certain fonts too. One thing is noticeable from implementation point of view that
the template matching NNC does have some significant delay at runtime compared
with the DTC. The template size (i.e. number of samples in the library) is then
critical and make 0 distance which is theoretically possible for nearest neighbor (i.e.
the input sample is contained in the template library) is thus impractical. Above
all, the question of how to choose the template samples is a hard one to be answered
here.

4. Testing Result and Discussion

The testing results are proposed with our testing samples. We further discuss
the testing results related with the features and the classifiers.

4.1. DTC Result and Discussion. We test the DTC with a testing sample set
consisting 15 digit images and one character image. 10 digit images containing 32
samples each are designated for single digits from “0” to “9”. Three digit images
are with mixed digits. Other two digit images are used for different fonts. The
testing set can be downloaded from [2]. We show the results from the DTC in
Table 2 and 3.

Digit # of Samples Correct Rate (%)
0 32 23 71.9
1 32 25 78.2
2 32 14 43.8
3 32 14 43.8
4 32 30 93.8
5 32 24 75.0
6 32 25 78.1
7 32 17 53.1
8 32 32 100.0
9 32 22 68.8

Table 2. DTC results on single digit images.



6 HENRY XIAO

Image Des. # of Samples Correct Rate (%)
mixed digit 1 40 28 70.0
mixed digit 2 40 25 62.5
mixed digit 3 32 20 62.5
mixed font 1 50 29 58.0
mixed font 2 50 32 64.0

character 16 0 0.0
Table 3. DTC results on various digit and character images.

From Table 2 on single digit images, we can see that digit “2” and “3”1 are
mainly misclassified. It is a predictable error from our DTC design. This reflects
the fundamental limitation of using the intuitive feature set. Table 3 further shows
the results on mixed digit images and character image. The main problem exposes
through the test is that the italic font changes the behaviors of some important
features such as “Hole/Area” and “Notch/Area”. The consequence is the misclas-
sifications between “0” and “4”, and between “1” and “7”. It has been cleared
that our training sample set does not contain enough italic font digits to gather the
statistics. One may argue that including sufficient italic font digits in the train-
ing phase to overcome the problem. However, this action shall reduce our useful
feature set such that some features like “Notch/Area” and “Width/Height” may
not be applicable in constructing the decision tree. We eventually conclude that
really few improvement can be done with the current features here, and the DTC
constructed can not give us an accurate digit recognizor. The DTC also can not
discriminate digits from characters since it is generally hard to set up the rejections
through the decision tree.

4.2. NNC result and Discussion. The same test that is done with the DTC is
performed under the NNC. The results are listed in Table 4 and Table 5.

Digit # of Samples Correct Rate (%)
0 32 28 87.5
1 32 32 100.0
2 32 31 96.9
3 32 26 81.3
4 32 32 100.0
5 32 32 100.0
6 32 29 90.6
7 32 32 100.0
8 32 29 90.6
9 32 32 100.0

Table 4. NNC results on single digit images.

The NNC yields some significant improvements over the DTC and is very accu-
rate in fact. This somehow proves the correctness of our distance measure using
Equation 3.2 by examples. The good classification results by our NNC and current

1we set the DTC to favor digit “5” when coming to classify “3” and “5”



DIGITAL CLASSIFIER 7

Image Des. # of Samples Correct Rate (%)
mixed digit 1 40 40 100.0
mixed digit 2 40 39 97.5
mixed digit 3 32 28 87.5
mixed font 1 50 44 88.0
mixed font 2 50 36 72.0
Table 5. NNC results on various digit images.

template library inspires us to do some “extreme” testing with some “wild” fonts.
Figure 5 shows two kinds of such fonts. Clearly, the DTC will fail on those fonts,
which are more of handwritten looking.

(a) Algerian font (b) Bernhard Fashion font

Figure 5. Wild font digit test samples.

Table 6 shows the results of applying the NNC to five different fonts. To our
surprise, the NNC still has a strong performance considering the template library
is unchanged, which contains no sample instance related with the testing samples.
The reason may be informally stated as that the distance measure of the agreed
black pixels preserves some shape information, and the shapes of a digit with various
fonts should mainly agree with each other since visually, we can recognize digits of
different fonts by shape.

Font Des. # of Samples Correct Rate (%)
Algerian 20 15 75

Berhard Fashion 20 9 45
French Script 20 16 80
Joker man 20 18 90
Viner Hand 20 8 40
Table 6. NNC results on various digit images.

Our motivation of designing the NNC with template matching comes from the
poor performance of the DTC with the feature set. And indeed, the NNC is much
better a digit recognizor than the DTC. The template library is a further subject



8 HENRY XIAO

which could be studied to improve the NNC’s performance. It may not a easy job
as mentioned above, however. As far as the character concerned, we can set up a
threshold for the distance D to reject some input samples. We experiment on the
threshold and find above 0.3 on D could be rejected in most of the cases. But still,
the NNC can not give a good way of discriminating the characters. It will fail in
cases like character “O” that is almost the same as digit “0”, or “q” which is very
much like digit “9”. Nevertheless, we conclude the NNC based on the template
matching is a very acceptable digit classifier, especially for typing digits which are
usually with regular fonts.

5. Summary

This typing digit classifier project is a good way of learning pattern recognition in
practice. We have developed some precious knowledge through designing the classi-
fiers. Despite the fact that pattern recognition is an intense research and practical
field, some fundamental principles still hold here. The experience of designing the
two classifiers gives us a vivid lesson of the well-known “Occam’s Razor” principle
as a complicated feature set may not work better than a simple measure.

Furthermore, the variations of the features really educate us. Recognizing typing
digit which seemed trivial in the first place is not a simple task. Extracting feature
for typing digits is far more complicated than getting features from visualization.
And coming out a highly accurate classifier is a even harder thing to do.

References

1. P. E. Hart R. O. Duda and D. G. Stork, Pattern classification, second ed., John Wiley & Sons,
Inc., 2001.

2. H. Xiao, Typing digit classifier web page: http://www.cs.queensu.ca/home/xiao/pr.html, Oc-
tober 2004.

CISC 859 Pattern Recognition 2004 Fall
E-mail address: xiao@cs.queensu.ca


