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Abstract

Range searching is a common type of database query where the user enquires about the elements that
lie within a certain geometric shape. Typically, a query shape is defined by a simple geometric object,
such as a rectangle, a disk, a triangle, a parametric curve, or a combination of them. In particular,
non-orthogonal range searching covers the most general cases of range searching since the query shape
is not constrained to be a rectangle parallel to the axis coordinates. We review the long history of non-
orthogonal range searching from its beginning to the present and show the latest advances in this area.
Most traditional scenarios of non-orthogonal range searching have been well studied and the available
algorithms are near-optimal. Latest results include heuristic algorithms, small improvements for higher
dimensions, and new problems on range searching with a variety of applications.

1 Introduction

A common type of database query consists of searching according to a range of key values. Such queries
are termed range queries, and the problem associated with this type of queries is known as range searching.
Ranges are often defined in multiple dimensions; for example, a range query could be phrased: “Report all
the people in the database who live no more than 1 km away from the market place, are between 40 and
60 years old, and whose names fall between John and Joseph in alphabetical order. This problem has a
long history, and has been widely studied by the Computational Geometry community. Range searching has
multiple applications on relational databases, Geographic Information Systems (GIS), Computer Graphics,
networks and communication, and other areas, including other problems in Computational Geometry itself.

Range queries can be easily carried out by fetching all the features in the database and reporting those
matching the search criterion. It is assumed at all times that checking whether an object is in a given range
can be done in constant time. This naive approach offers linear time complexity, which may be a prohibited
cost in large datasets, especially when many queries are executed in batches. Several data structures and
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algorithms have been developed to solve this problem more efficiently; the most relevant will be reviewed
during the course of this survey.

1.1 Notation and general definitions

The following are some terms and definitions that we will use throughout this paper:

• the prefix hyper : Refers to higher dimensional features which are analogous to their lower dimensional
homologues. For instance, hyperplanes are homologues of planes, but in dimensions 4 or higher.
Similarly we use hypercube, hyperpyramid, etc.

• halfplane: Half of the plane bounded by a straight line

• halfspace: Half of the space bounded by a hyperplane

• polylogarithm: Function bounded by O(logc n) for some constant c. It appears as “polylog n” in
mathematical expressions

The general setting for range searching is defined by a pair (P, R) which consists of a set of points
P = {pi ∈ Rd, i = 1..n}, and R a family of subsets of Rd called ranges. Examples of range families are the
set of all halfplanes in R2, and the set of volumes bounded by tetrahedrons in R3. By Rd, we mean the
d-dimensional real space, with distances according to the Euclidean metric. For range searching on other
metric spaces see the survey by Chávez et al. [38]. In the following, we refer to a pair (P,R) as a range
space.

We are concerned about the complexity of solving range searching problems. In particular, we are more
interested in Q(n, d), the query time, S(n, d), the space or size of the data structure, and P (n, d), the
preprocessing time or time it takes to build the corresponding data structure, although the latter is not
considered as relevant since it only affects the initial stage. Other important efficiency criteria, such as the
cost of updating the data structures and the number of accesses to secondary memory, will be included later
in this report.

1.2 Different variants of range searching

We will review geometric range searching in this survey. Geometric range searching, referred to as range
searching in the following, is a special case of range searching where the space dimension is relatively small,
say between 2 and 20, the input points are embedded in a continuous space (Rd as seen before), and the
ranges have a geometric shape. Probably the most well known problem, in that sense, is orthogonal range
searching. For orthogonal range searching the ranges consist of d-rectangles or the cross product of a set of
intervals in d dimensions. Other types of ranges include halfspaces, simplices1, and balls. Section 3.10, will
look at more general ranges.

1A simplex in Rd is a volume bounded by d + 1 hyperplanes of dimension d − 1 (e.g. triangles in R2, and tetrahedrons in
R3).
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A range query may attempt to answer different questions, for example, what is the set of points contained
in the query range (range reporting), what is the number of points in the range (range counting), does the
range contain any point (emptiness query), or which element has maximum weight of those contained in the
range (extremal queries). For the latter case the weights are given by a function in the input points.

Queries can be performed on-line or off-line. By on-line we mean that the set of queries is not known
in advance, not even the number of them. So, a data structure needs to be built on the basis of efficiently
answering any number of range queries of a given type. In this case, we assume that there will be an infinite
number of queries, so the preprocessing time is not as critical as the query time or the size of the data
structure. In the off-line case, all queries are known beforehand and the algorithms are tailored to answer
that specific set of queries.

The rest of this survey focuses on low-dimensional non-orthogonal on-line range searching primarily;
although we may present results from other types of range searching for comparison. Because of space
limitations we do not include approximate range searching or dynamic data structures in this survey.

1.3 About this survey

Excellent surveys have been written in the past by Matoušek [74], and Agarwal and Erickson [2]. However,
these surveys do not include newer results or applications of range searching that have originated in the last
8 years. This work is intended to include both older and newer aspects of range searching. We also intend
to explain range searching in simpler words and illustrate with figures what may seem complicated in words.
We have formally and informally defined basic concepts needed for the understanding of range searching and
made this survey a self-contained document.

The rest of this document is structured as follows: section 2 presents lower bounds for range searching
on different computational models, section 3 reviews classical range searching algorithms, section 4 offer a
view on data structures that may not be comparable in theoretical terms but have proved to perform well in
practise, and section 5 is an overview of newer variants of range searching and potential research directions,
with special attention to Wireless Sensor Networks. We finalize with some concluding remarks on the topics
covered.

2 Lower bounds

When designing data structures and algorithms to solve a given problem, it is crucial to know how efficiently
the problem can be solved. This is the purpose of lower bounds: they provide a bound on the minimum
number of operations or memory units needed to solve the problem. Usually a lower bound refers to the
worst case that one can encounter over all the possible inputs, or the average case under certain assumptions
on the expected input. A good lower bound is one that matches, or nearly matches (up to polylogarithmic
factor), the asymptotic complexity of the corresponding upper bounds. The upper bounds are provided by
known algorithms; in section 3, we will review several optimal or near optimal algorithms. To formally obtain
lower bounds, a formal definition of algorithm is required. For this purpose, several models of computation
have been developed.
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Range Problem Model Q(n,d) Source
simplex semigroup semigroup (d = 2) n√

m
[22]

simplex semigroup semigroup (d > 2) n
m1/d log n

[22]

simplex reporting pointer machine n1−ε

m1/d+k
[33]

halfspace semigroup semigroup ( n
log n )

d2+1
d2+d m−1/d [20]

halfspace semigroup integral semigroup ( n
log n )/m

d+1
d2+1 [11]

halfspace emptiness partition graph ( n
log n )

δ2+1
δ2+d m−1/δ, [47]

where d ≥ δ(δ + 3)/2

Table 1: Lower bounds for different versions of the static on-line range searching problem using O(m) storage.

One model of computation on which lower bounds first appeared is the decision tree model. This model
consists of a k-ary tree, whose nodes contain k children and a question about the input. Each child represents
one possible answer to the associated question. The computation in a decision tree starts from the root and
proceeds with the child node corresponding to the right answer at each step. When a leaf node is reached,
the answer to the problem is the value stored in it. There are several versions of decision trees. In the
standard decision tree, the question asked at the nodes is a simple comparison, usually with only two or
three possible answers, depending on whether equality is considered. For a survey on decision trees and
other models of computations, see Erickson’s PhD dissertation [46]. However, the decision tree models do
not provide a good lower bound for range searching problems. Lueker [67] showed how the (standard) linear
decision tree is not powerful enough to obtain tight lower bounds in a dimension higher than two.

Another well known model of computation is the random access machine (RAM) model. This model is
an abstraction of a real computer. Its memory is defined as an array of cells that can be accessed in constant
time. The cells can store integer values of up to log n bits (n being the size of the input), and arithmetic
operations and comparisons can be used. A more powerful version of RAM is the real RAM where infinite
precision is allowed. The RAM and real RAM models are precisely defined by Tarjan [7] and Aho et al. [80]
respectively. RAM models are too complicated to derive lower bounds proofs in a relatively easy way. These
models are better suited for describing algorithms and upper bounds.

In the following, we will examine the models of computation that have been used to obtain nontrivial
lower bounds for range searching. Table 1 summarizes the best known lower bounds for different variations
of non-orthogonal range searching problems. Many of the following results for the non-orthogonal case have
their orthogonal counterparts [53, 23, 24] as well.

2.1 The arithmetic model

In the arithmetic model of computation, the points are assigned weights from a commutative semigroup
(W,⊕)2 according to a weight function w : w(p) ∈ W,∀p ∈ P . The result of a range query q is then
expressed as the total weight of the points in the range (w(P ∩ q)). This is a generalization for many types

2A semigroup (W,⊕) is a set W with an associative addition operator ⊕ : W ×W → W . A semigroup is commutative if
x⊕ y = y ⊕ x for all x, y ∈ W .
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of range queries. For instance, consider the semigroup (2P ,∪). If each point p is assigned a weight that
consist of the point itself (w(p) = p), the cumulative weight of the points that satisfy a given range query
corresponds to the answer of the reporting case (w(P ∩ q) = P ∩ q). Similarly, it is easily seen that for
semigroups (R,+), ({0, 1},∨), and (R,max) there are weight functions such that the cumulative weights
correspond to the answers of range counting, emptiness queries, and extremal queries respectively.

In this model, given a range query, we only account for the number of sums required to compute the total
weight of the answer to a given range query, which is a lower bound for Q(n, d). However, many sums can be
precomputed and stored in advance. When a query is performed, the stored values are used to compute the
answer in a shorter time. Thus, S(n, d) and P (n, d) will be bounded by the number of precomputed sums
stored in memory. The sets for which sums have been computed in advance are usually called canonical sets
or clusters whereas the linear forms or precomputed sums are called generators.

Fredman [53] was the first to use the arithmetic model to obtain lower bounds for the general range
searching problem. He proved that queries, insertions, and deletions take Ω(n1/3) average time on any data
structure that stores semigroup weights [54]. This is applicable to halfspace range searching and other types
of ranges. His results are based on the relationship between the set of generators used for answering a query
and the set of generators that are during updates. Because weights cannot be subtracted in semigroups,
deletions are especially critical as the affected generators have to be reset (set as φ).

These results on the dynamic case are later strengthened by Chazelle [22], and Brönnimann et al. [20],
who prove that Fredman’s results hold even without taking deletions into account (i.e. for sequences of
insert and query operations). Furthermore, Brönnimann et al. improved this bound and extended it to Rd.
In Rd, a conveniently chosen sequence of n insertions followed by n queries takes n2−O(1/d), in particular,
Ω(n11/9/polylog (n)) for dimension two.

The extensions for the dynamic case are derived from the following results which define space-time
tradeoffs for the static scenario. In this case, the model is restricted to a faithful semigroup3.

Theorem 1 (Chazelle) [22]: Simplex range searching on n points requires Ω(n/
√

m) query time in two
dimensions and Ω((n/ log n)/m1/d) query time in any dimension d ≥ 3, where m denotes the amount of
storage available. These bounds hold for a random point set, and therefore are valid in the worst case as well
as on average.

For the proof, the author uses, instead of simplices, the space between two parallel hyperplanes, namely
slabs. However, such simplification does not extend to halfspaces since slabs are constrained to have a
positive width. Later on, Brönnimann et al. overcame this issue and stated the following, somehow weaker
(non-optimal), theorem for a lower bound on halfspace range searching.

Theorem 2 (Brönnimann et al.) [20]: Halfspace range searching on n points, using m units of storage,
requires a query time bounded by

3A semigroup (W,⊕) is faithful if two linear forms (sums of variables) on W are identically equal only if the sets of variables
involved are also equal. For example, ({0, 1}, xor), where xor stands for exclusive or, is not faithful since x xor x = y xor y for
x = 0, y = 1. All the semigroups considered for range searching problems mentioned earlier are faithful. More details are given
by Chazelle [22], who uses this restriction for the first time to prove lower bounds on range searching.
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Ω(( n
log n )

d2+1
d2+d /m1/d)

The idea behind the proof of these theorems is based on the characteristic graph of the pair (P, R) of
point set and range set considered. The characteristic graph is defined as G = (V, X,E), where V is a set
of variables, X is a set of generators that answer all possible queries, and E is the set of edges connecting
variables to the generators where they appear. Each point has an associated variable where its weight is
stored. The faithfulness of the underlying semigroup constrains the set of generators involved in the answer
to a given query to contain exactly the set of variables associated to the points that match the query. The
complexity of the range searching can be seen as the number of complete bipartite subgraphs in G combined
with the size of these subgraphs. Intuitively, it is good to have generators for as large sets of variables as
possible which, at the same time, answer as many queries as possible. The size of such complete bipartite
subgraphs is bounded by the area of the smallest convex hull of random (under uniform distribution) points
in [0, 1]d. This is also related to a problem known as Heilbronn’s problem4.

Recently Arya, Malamatos, and Mount [11] have developed tighter lower bounds for halfspace range
searching when the semigroup is integral. A semigroup (W,⊕) is integral if x ⊕ x ⊕ . . . ⊕ x 6= x, for all
x ∈ W , with at least one application of ⊕. In contraposition to integral, there are idempotent semigroups.
An idempotent semigroup is such that x ⊕ x = x, for all x ∈ W . For example, (R \ {0}, +) is integral
and (2P ,∪) is idempotent. There are semigroups such as (C,×) which are neither integral nor idempotent.
Obviously, for integral semigroups, the clusters that answer a query must be disjoint. This was used by Arya
et al. to obtain slightly better lower bounds on range searching problems. One extra constraint they used
was convex clusters (i.e. the convex hulls of the clusters do not contain any other point that is not part of the
cluster). This restriction does not apply to all the data structures, for example, the optimal data structures
proposed by Matoušek [73]. However, it can be adapted to other quasi-optimal data structures such as the
one proposed by Chazelle, Sharir, and Welzl [36]. Arya et al. conjecture that the convex clusters constraint
could be avoided. Their main result for exact halfspace range searching is given in the following theorem.

Theorem 3 (Arya et al.) [11]: Halfspace range searching on n points with weights over an integral semi-
group, using m units of storage, requires

Ω(( n
log n )/m

d+1
d2+1 )

for n sufficiently large.

Arya et al. [11] presented other important lower bounds on the arithmetic model that make distinctions
on the type of semigroup as well.

2.2 The group model

This model is closely related to the arithmetic model except for the underlying semigroup which is, in fact,
a group. This means that subtractions are allowed for the computation of the cumulative weight, making

4This classical problem of Heilbronn’s [77] on a set P of n points in the unit square [0, 1]2, ask for the asymptotic behavior
of the supreme, over all possible point configurations, of the smallest area of a triangle with vertices in P .
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the model far more powerful. Although most known algorithms for range searching follow the arithmetic
model, there are problems for which subtractions allow more efficient solutions. One such example, as given
by Chazelle and Rosenberg [32], is the problem of computing partial sums of weights associated to points
contained in a given d-rectangle.

However, proving lower bounds under the group model seems to be a hard problem. One first step in
this direction -and the only one we have knowledge of- has been presented by Chazelle [26] for the off-line
case in two dimensions. He proved that for a set of n points, summing up the weight of those lying within
n halfplanes takes Ω(n log n) additions and subtractions. It seems this result can be further improved since
the best know algorithm for this problem has time complexity close to O(n4/3) [73].

2.3 The pointer machine model

The pointer machine model was defined by Tarjan [85]. Basically, a pointer machine consists of a finite
(unbounded) memory, which is divided into units called registers. Each register may store a data value or
a pointer. A data structure in the pointer machine is a collection of records with identical sets of labelled
fields. Each field is stored in a data register or a pointer register, depending on the type of the field. An
algorithm in the pointer machine is described as a finite set of labelled instructions. The instructions allowed
are basically assignments among registers, arithmetic operations on data registers, and conditional jumps of
the control to specific instructions.

Note that no pointer arithmetic is allowed in this model, which makes it simpler than the RAM model.
So, to access a record in the data structure it is required that at least another record with a pointer containing
its location has been previously visited. This defines a data structure as a directed graph with a root record
which has in-degree equal to zero. Thus the space complexity of range searching on a pointer machine can
be bounded by the minimum number of records needed in the data structure, and the time complexity, by
the required number of visited records while answering a query. Under these assumptions, it has been shown
that it is sufficient to consider only data structures that are rooted binary trees [23].

Chazelle and Rosenberg [33] derived lower bounds on this model for simplex range reporting using the
principle of filtering search [21]. Filtering search is a way of amortizing the query time with the size of
the query answer. In this case, it means that it is not necessary to locate the set of points to be reported
very quickly if the size of the answer is large and the reporting process itself is slow. This basic idea allows
smaller data structures and better space time tradeoffs than those previously presented in the arithmetic
model. The following theorem formally states a suitable lower bound for simplex range reporting.

Theorem 4 (Chazelle and Rosenberg) [33]: Simplex range reporting on a pointer machine requires Ω( n1−ε

m1/d )
time for any fixed ε > 0, where n is the number of points and m is the space used by the data structure.

This bound allows query time O((log n)b + r) with space Ω(nd−ε) for any fixed ε > 0. The authors
conjectured that this polylogarithmic time bound could be also extended to halfspace range reporting with
Ω(nbd/2c−ε) space.
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2.4 The partition graph model

The partition graph model is a generalization of the idea behind the existing data structures for range
searching. It defines a recursive decomposition of the primal and dual5 spaces as an acyclic directed multi-
graph (partition graph) whose vertices define the nodes and leaves of a data structure. One node that has
no incoming edges is distinguished as the root and serves as the starting point for range query algorithms.
Associated to each node and leaf there is a region of the space and a bounded number of generators as in
the semigroup model. Thus, the partition graph model inherits the properties of the arithmetic model, and
combines it with the complexity of data structures (in a way similar to the pointer machine model) in order
to obtain better lower bounds.

Erickson [47] presented this model as a tool for proving new lower bounds on hyperplane and halfspace
queries. The main result from Erickson’s paper is stated in the following theorem.

Theorem 5 (Erickson) [47]: Halfspace emptiness on the partition graph model, with regions of bounded
complexity, requires

Ω(( n
log n )

δ2+1
δ2+δ /m1/δ)

query time, where d ≥ δ(δ + 3)/2, n is the number of points and m is the space used by the data structure.

The similarity between this result and the lower bound for halfspace range searching as in Theorem 2 is
not a coincidence: the former has been derived from the latter. The derivation of this bound is based on three
main elements. First, a partition graph that supports hyperplane emptiness queries allows the construction of
a generator scheme that answers halfspace queries in the arithmetic model with the same complexity. So, the
bound derived in Theorem 2 automatically becomes a bound for the hyperplane emptiness problem. Second,
a hyperplane emptiness problem can be transformed into a halfspace emptiness one in a higher-dimensional
space. This is done by converting points and hyperplanes in Rd expressed in homogeneous coordinates into
points and hyperplanes in Rd(d+3)/2 also in homogeneous coordinates using the transformation

σd(x0, x1, . . . , xd) = (x2
0, x

2
1, . . . , x

2
d,
√

2x0x1,
√

2x0x2, . . . ,
√

2xd−1xd),

with the property of preserving point hyperplane incidences, except that when a point p is not on a hyperplane
h, no matter whether it is above or below h, σ(p) always appears above σ(h). Finally, given a partition
graph with regions of bounded complexity in Rd(d+3)/2 that answers halfspace emptiness queries, another
partition graph, also with regions of bounded complexity in Rd, can be constructed for halfspace emptiness.

The previous bound is the first nontrivial one for halfspace emptiness. However, the existing gap between
this bound and the best known algorithm -as it will be shown in section 3- suggests that it can be further
improved. One possible improvement may come as consequence of better lower bounds for halfspace range
searching on the arithmetic model. Another possibility is finding a better transformation to convert a
halfspace emptiness problem into a hyperplane emptiness problem, hopefully σ : Rd → R2d.

5A definition of dual space appears in section 3.1 under Duality. The reader is also referred to [79] (section 6.5) for a more
extensive definition.
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Range Problem Space Query time Source
halfspace general m n

m1/d [73]
halfspace reporting, d = 2 n log n + k [37]
halfspace reporting, d = 3 n log n log n + k [6]
halfspace reporting, d > 3 n log log n n1−1/bd/2cpolylog n + k [73]
halfspace emptiness, d = 2 n log n [80]
halfspace emptiness, d = 3 n log n [43]
halfspace emptiness, d > 3 n log log n n1−1/bd/2c2c log∗ n [73]
simplex general, d = 2 n n1/2 log n [34]
simplex general, d = 3 n log n n2/3 log2 n [34]
simplex general, d ≥ 2 m n

m1/d logd+1 m
n [73]

Table 2: Upper bounds for different versions of on-line range searching problem.

2.5 Open problems

In most variants of non-orthogonal range searching there are still at least polylogarithmic gaps between
the lower bounds and the complexity of available algorithms, take simplex range searching for example.
Therefore, a whole family of open problems consists in closing the polylogarithmic gaps. The following is a
summary of other open problems, some of which have already been mentioned above.

• Can the lower bounds for halfspace range searching on the arithmetic model be improved such that it
becomes closer to the lower bound for simplex range searching?

• Can better lower bounds for dynamic data structures be found? These bounds should include the
complexity of update operations as well as space, query time, and preprocessing time complexities.

• Can better lower bounds on the group model be found?

• Generalize the bounds on the integral semigroup to ranges that are not necessarily convex.

• Bridge the existing gap between lower bounds and algorithms for halfspace emptiness searching.

3 Range searching algorithms and data structures

As shown before in terms of lower bounds, it is very unlikely -not possible under the computational models
considered- that a data structure of linear size can answer non-orthogonal range queries in polylogarithmic
time. Therefore, the available data structures usually appear classified into two main classes: those that
aim to answer queries in polylogarithmic time using superlinear storage, and those that rely on a linear size
data structure yet allowing queries in sublinear time. We will review the most significant of them as well as
other solutions that encompass the whole spectrum of data structures in between. Most of the best results
to date are summarized on table 2.
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3.1 Geometric preliminaries

Here we define some terms that will be used during the presentation of different range searching data
structures. The reader might want to skip this section and come back here whenever new terms come along.
Note that, for the sake of simplicity, we have not been rigorous in the description of ranges or regions since
we do not refer to them as open or closed sets. The reader should also assume that the input data contain
no degeneracies. Although most degeneracies can be handled in a systematic way, they require special
treatment that may obscure the explanation of the reviewed results. Thus, constraints imposed on the input
data include general position6.

• Duality: Duality is one of the most largely used tools in Computational Geometry. It defines mapping
between points and hyperplanes in Rd. A duality mapping function uniquely transforms point coordi-
nates into hyperplane parameters and vice versa. One such example is D : (p1, p2, . . . , pd) ⇔ pd +xd =
p1x1 + p2x2 + . . . + pd−1xd−1. This mapping has the properties of preserving incidence and relative
position, that is, given a point p and a hyperplane h, if p is on, above, or below h, then the point h′,
dual of h, will be on, above, or below the hyperplane p′, dual of p, respectively. See Figure 6 for a
2-dimensional example.

• Ham-sandwich theorem: Using a single straight cut, any ham sandwich can be cut into two halves such
that each half contains the same amount of ham, cheese and bread. A discrete version of this theorem
states that d finite sets of points in Rd can be all simultaneously bisected by a single hyperplane.
Edelsbrunner [44](§4.2) formally states the ham-sandwich theorem including a proof and other related
results.

• VC-dimension: Consider the range space (P, R), Q ⊆ P , and the set ΠR(Q) = {Q ∩ r|r ∈ R}. We say
that R shatters Q if ΠR(Q) is equal to the power set of Q (the set of all subsets of Q). The Vapnik-
Chervonenkis-dimension (VC-dimension) of (P, R) is the size of the largest Q that is shattered by R.
For example, the range spaces of the form (Rd, Hd), where Hd is the set of d-dimensional halfspaces
has VC-dimension d + 1. In particular, for (R2,H2), we can easily check that there are no 4 points for
which all subsets can be obtained as the intersection with a halfplane; however, this is possible for 3
points. Therefore, the VC-dimension of (R2,H2) is 3. If the size of the subset Q that can be shattered
by R is unbounded then we say that the VC-dimension is infinite. The concept of VC-dimension was
first introduced by the authors that give it its name [86].

• ε-net: Consider the range space (P,R), and 0 < ε < 1 a constant. An ε-net of P (with respect to R) is
a sample set N ⊆ P such that for any Q ∈ {P ∩ r, r ∈ R}, if Q is relatively large (|Q|/|P | ≥ ε), then
it contains at least one element of N . For example, let (C,H2) be a range space where C is a set of
points on a circle and H2 the set of all halfplanes. A (1/4)-net is realized by the points in positions 0,
dn/4e, dn/2e, and d3n/4e following a circular order of the points around the center of the circle. It is
obvious that every halfplane that contains more than dn/4e points will contain at least one from the
(1/4)-net. The concept of ε-nets was introduced by Haussler and Welzl [61] and presently has many
applications in Computational Geometry.

6We say that a set of points in Rd is in general position if no more than k points lie on the same k − 1-dimensional
hyperplane, for 1 ≤ k ≤ d. For example, in a 3-dimensional space, a set of points is in general position if no 4 points lie on
the same plane, no 3 points are on the same line, and no 2 points coincide. We also restrict the set to no 5 points on the
same (3-dimensional) sphere, no 4 points on the same 2-dimensional sphere (circle), or, in general, no k + 2 points on the same
k-dimensional hypersphere, for k as described above. Note that the latter restriction can be neglected in some cases. Besides,
a set of d− 1-hyperplanes is in general position if its dual set of points is in general position, no two hyperplanes are parallel,
and no one is vertical (parallel to axis coordinate d of the space).
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• ε-cutting: Let H be a set of m hyperplanes in Rd, and 0 < ε < 1 a constant. An ε-cutting for H
is a partition of Rd into simplices, such that every simplex is intersected by at most εm hyperplanes
of H. A weighted version of ε-cuttings is defined over a set of weighted hyperplanes, according to
certain function w : H → R. Thus, in the weighted version we say that a simplicial partition of Rd is
an ε-cutting if the total weight of the hyperplanes intersecting each simplex is at most εw(H), where
w(H) is the sum of all hyperplane weights. Chazelle, Friedman, and Matoušek [28, 69] used early
versions of ε-cuttings, but the concept was later formalized by Matoušek [70].

3.2 Deterministic partition trees

There are simple linear-size data structures that allow sublinear time orthogonal range searching. Two
examples are quad trees [52], and K-d trees [16]. A generalization of these was first developed by Willard [88]
for halfplane range searching. A data structure that follows Willard’s description, is known as a partition
tree. He proved that a set of J lines (and semilines7), not necessarily parallel to the axis coordinates, exists
such that it partitions the plane into 2J regions, each region contains the same number of points of P , and at
most J +1 regions can be intersected by any halfplane. The recursive application of this partitioning scheme
leads to a partition tree. This is applied until each region contains a small constant number of points. A
node v of the tree is created for each region and the total weight wv (in the semigroup sense) of the elements
in the corresponding region is stored in it. The root of the tree is associated to the entire space. Every
non-leaf node, with region Reg, has as children the nodes that contain the regions resulting from partitioning
Reg. To answer a query based on this type of partition trees, and other variants that will be seen later on,
the following algorithm is applied.

1. Initialize the variable ANS (for the answer) as null and make v equal to the root of the tree.

2. If the region Reg associated to v is a subset of the query range r, then make ANS = ANS + wv;
otherwise, if Reg ∩ r = ∅, leave ANS unchanged, otherwise, repeat this step for v = v1, v2, . . . , vk,
where each vi is a child of v, i = 1, . . . , k.

Following the algorithm just described, the query time on Willard’s partition trees is minimum when
J = 3 (O(n0.774)). An example for J = 3 appears in Figure 1.

A generalization to this partitioning idea when J = 2 is the ham-sandwich cut theorem in two dimensions.
Based on this theorem, Edelsbrunner and Welzl [45] developed a similar version of partition tree with a more
efficient partitioning scheme. In this case, two adjacent regions at level l − 1 are divided into four regions
at level l, that contain the same number of points, as shown in figure 2. This partitioning scheme leads to
O(n0.695) query time. The construction of the partition tree can be done in O(n log n) using an algorithm
by Lo, Matoušek, and Steiger [68] that finds a ham-sandwich cut in linear time.

In R3 a similar partition scheme exists: a set of points can be partitioned into 8 equal parts by 3 planes.
Yao et al. [91] proposed a partition tree based on this partition scheme. An appropriate grouping of the
regions in the partitioning scheme leads to a data structure with query time O(n0.899). It would be desirable
to further extend this idea of partitioning a set of points P in Rd into 2d equal parts using d hyperplanes. This

7We refer to a semiline as a line that is infinite in only one direction.
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Figure 1: Two levels of a partition tree as defined by Willard [88] with J = 3.

Figure 2: In this partition scheme, 2 adjacent regions in one level are bisected by one line such that 4 new
regions are formed with similar number of points. We show partitioning lines at different levels in the tree
with different thickness and styles.

question is open for R4 and unfortunately, not possible for d ≥ 5, as shown by Willard [88]. However, Yao
and Yao [90] derived a partitioning scheme in Rd with possibly more than d hyperplanes or half-hyperplanes
that share a common (center) point and have the property of partitioning P into 2d equal parts such that
at most 2d − 1 of them are intersected by a query hyperplane. Figure 3 shows an example of this partition
scheme for d = 3. This scheme allows O(nlog2(2

d−1)/d) query time, which is still a small improvement over
linear search.

3.3 Randomized preprocessing

An important event in Computational Geometry was the adoption of randomized algorithms in the middle
of the 80’s. Seminal papers by Haussler and Welzl, and by Clarkson introduced random samplings as a
technique to construct data structures for range searching. Clarkson’s results [40] will be reviewed later in
section 3.8 as we see efficient data structures for halfspace reporting queries.

Haussler and Welzl [61] introduced the idea of epsilon-nets and showed how to use them on range spaces
of finite VC-dimension for the construction of partition trees. They proved that a sufficiently large random
sample of the input points P is an ε-net with high probability. The size of the ε-net is solely determined
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Figure 3: Example of the partitioning approach by Yao and Yao [90] for d = 3. The partition is realized by
different pairs of halfplanes on each side of plane h. A query hyperplane will intersect at most 7 out of 8
regions.

by the VC-dimension and not input the. Every combination of d of these points determines a hyperplane
in d dimensions, and the arrangement realized by all such hyperplanes can be used as a partition of the
space. They also proved that by using this partitioning scheme, the number of points contained in the
regions intersected by any query hyperplane is at most εn. Thus, applying this scheme recursively leads to
a partition tree with O(n

d(d−1)
d(d−1)+1+γ) query time, where γ > 0 is a parameter that determines the value of ε

and therefore the (constant) size of the ε-net. For d ≥ 2 this value substantially improves the query times
seen above for deterministic partition trees.

Matoušek and Agarwal [69, 1] were the first to provide deterministic algorithms to obtain ε-nets in R2

that leads to the construction of a partition tree in O(n log n) time like in the randomized approach. A
generalization of ε-nets when the sample set is not a subset of the input points is known as a weak ε-net.
There are also algorithms for constructing weak ε-nets, some of them for more general ranges spaces, such
as (Rd, C) where C is the set of all convex ranges (with infinite VC-dimension). Matoušek and Wagner [76]
provide an algorithm (and consequently upper bounds) for weak ε-nets on convex ranges. Aronov et al. [10],
and Babazadeh and Zarrabi-Zadeh [12] provide bounds on ε for weak ε-nets of small constant size. These
bounds, in turn, provide bounds for the constants involved in the complexity of range searching schemes
based on weak ε-nets.
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3.4 Spanning trees

A more efficient type of partition trees introduced by Welzl [87] allows the regions in the partition scheme to
overlap. This idea is better seen on spanning trees on the input points. In order to explain the relationship
between spanning trees and partition trees, we should first introduce some definitions.

Given a range space (P, R), we say r ∈ R crosses the edge defined by p0, p1 ∈ P if |r ∩ {p0, p1}| = 1.
The crossing number of r in a spanning tree T is the number of edges of T crossed by r. Then, the crossing
number of T (σ(T ))is the maximum crossing number over all r ∈ R. An optimal spanning tree of P is one
that minimizes the crossing number. The maximum number of visited nodes in a partition tree to answer
any query range is defined as visiting number.

We can now see how the visiting number of a partition tree T is bounded by the crossing number of a
corresponding spanning tree. In fact, for any spanning tree T there is a spanning path P on the same set of
points with σ(P) ∈ Θ(σ(T )). Such a spanning path can be built as the sequence of points along a preorder
traversal of the spanning tree. Figure 4 (a) shows a spanning tree and the corresponding spanning path
for a sample set of points. A lemma by Welzl establishes the relationship between the visiting number of a
partition tree and the crossing number of a corresponding spanning path.

Lemma 6 (Welzl) [87]: Let (P,R) be a range space and N a set of n points in P .

(i) if T is a partition tree of N , then there exists a spanning path P of N such that σ(P) is at most
twice the visiting number of T .

(ii) if P is a spanning path of N , then there exists a partition tree T of N such that the visiting number
of T is at most 2 · σ(P)dlog ne+ 1.

Figure 4: (Adapted from [27](Figure 5.8)). Left: spanning tree for a set of points in the plane (dashed lines),
associated spanning path (solid lines), and query line h that defines a query halfplane. Right: corresponding
partition tree. The nodes coloured in black are those visited while answering the query for the halfplane
below h.

As a consequence of lemma 6, an upper bound on the crossing number for an optimal spanning tree of a
set of n points also provides an upper bound on the visiting number of an optimal partition tree. An upper
bound proved by Welzl states that σ(P) ∈ O(n1−1/δ log n), where δ is a constant that only depends on the
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dimension of the space, and the shape of the ranges. More specifically, the number of cells in an arrangement
defined by m ranges from R is O(mδ). The value δ is related to the VC-dimension and coincides with d for
R the set of halfspaces and balls in Rd. An improvement to the previous bound was derived by Chazelle and
Welzl [34]: they proved that σ(P) ∈ O(n1−1/d).

It follows that spanning paths with low crossing number define nice data structures for range searching.
If one is provided with an efficient algorithm to determine the edges crossed by a query range, then the
query is reduced to a set of one-dimensional range queries. This is possible because the points are sorted
along the spanning path. Each one of these one-dimensional problems is equivalent to a partial sum problem
which has a known efficient solution. According to Yao’s results [89], the latter can be done in O(α(n)) time,
where α(n) is the inverse of Ackermann’s function8. So, in the overall, the query time complexity would
be O(n1−1/δα(n)). However, the problem remains for determining the set of crossed edges. This can be
done efficiently in dimensions 2 and 3, but does not generalize to higher dimensions. For example, Chazelle
[27](§5.3) shows how to answer triangle range searching in the plane in O(

√
n log n) time using O(n) space.

Note that this algorithm is quasi-optimal compared to the lower bound given in Theorem 1.

3.5 Simplicial partitions

A generalization of spanning trees with low crossing number was given by Matoušek [71]. He considers
partitioning schemes where the regions are also not necessarily disjoint; however, in his approach the number
of regions is not bounded by a constant. Previously, Alon et al. [8] had proved that for some range space
there is no efficient partition tree with a constant-bounded number of regions. Matoušek’s approach is based
on simplicial partitions. A simplicial partition on a set of points P in Rd is a collection of pairs of simplices
and subsets of P (Π = {(P1, ∆1), . . . , (Pm,∆m)}), such that the sets Pi (classes) form a partition of P and
each ∆i is a simplex in Rd containing Pi (see Figure 5).

Figure 5: (Adapted from [74](Figure 3)) Simplicial partition in R2. Different symbols are used for points in
different classes.

We say that a hyperplane crosses a simplex if the interior of the simplex intersects the hyperplane. So,
we can define the crossing number of a simplicial partition similar to the crossing number of a spanning tree,

8Ackermann’s function is a recursive function that grows extremely fast with respect to n. Therefore, its inverse (α(n))
grows very slowly, even slower than logarithmic functions.
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that is, the maximum number of simplices stabbed by a hyperplane. We are interested in finding a simplicial
partition Π with low crossing number. The construction of Π is based on the weighted version of ε-cuttings.
Let r be a parameter, 1 < r ≤ n/2, whose value will be better specified later on. Π is constructed in a way
that satisfies n/r ≤ |Pi| ≤ 2n/r. The first step of the algorithm is to find a set of sample hyperplanes H
(test set) of size at most r that bounds the crossing number of any simplicial partition as described above,
for hyperplanes in general. H can be constructed using duality and ε-cuttings9. Provided such a test set,
the second step is to construct the simplices of Π one at a time. Thus, at time i the simplices ∆1 . . . ∆i have
already been built and the hyperplanes of H are assigned weights depending on the number of intersections
with respect to ∆1 . . . ∆i. Then, we find a εi-cutting (Ξi) for the weighted hyperplanes of H such that one
of the simplices in Ξi contains enough points to be selected as ∆i+1 on the simplicial partition. The value
of εi depends on the number of remaining points to be covered by Π. This construction proves the following
theorem.

Theorem 7 (Matoušek) [74]: Let P and r be as defined above. Then, there exist a simplicial partition for
P with O(r) classes, such that n/r ≤ |Pi| ≤ 2n/r for every class Pi, with crossing number O(r1−1/d).

A partition tree built upon simplicial partitions supports halfspace and simplex range queries in time
T (n) = O(r) + O(r1−1/d)T (2n/r). Now we should give an appropriate value for r. For r = n1−1/d, a data
structure of linear size can be constructed in O(n log n) time, allowing query times O(n1−1/d logO(1) n). This
solution is optimal up to a polylogarithmic factor if compared to the corresponding lower bound. However,
it is possible to get rid of the logO(1) n factor in the query time. This was achieved by Matoušek [73], using
Chazelle’s hierarchical cuttings10 [25] (see Theorem 8).

3.6 Polylogarithmic query time

All the data structures seen above use O(n) space and allow sublinear query time. We will now examine
other data structures that make use of larger space in order to reduce query times to polylogarithmic. One
way to achieve this goal is to precompute all possible answers for the range space of interest and build an
index on the answers such that they can be efficiently located.

For halfspace range searching, one can compute all the possible answers using duality. Suppose we are
only interested in halfspaces that lie above the defining query hyperplanes -for halfspaces below the defining
hyperplanes we can procede symmetrically. Let (P,H+) be such range space. Using the duality mapping
D : (p1, p2, . . . , pd) ⇔ pd + xd = p1x1 + p2x2 + . . . + pd−1xd−1, a point p is above a hyperplane h, if and
only if its dual hyperplane p′ falls below the dual point h′ (see Figure 6). P ′ denotes the set of hyperplanes
dual to the points in P . The answer to a range h+ ∈ H+ (with bounding hyperplane h) consist of the
subset of P ′ below h′ in the dual space. One can use arrangements for this purpose. The arrangement of
hyperplanes A(P ′) divides the dual space into convex cells, such that every cell realizes a set of points with
identical answer. Thus, in order to answer the original query we only need to precompute the subset of
P ′ lying below each cell and use point location techniques to efficiently find the cell in which h′ lies. The
preprocessing can be done in O(nd+1) time using a naive approach (testing each hyperplane against each

9One such test set H is given by the dual of the set of vertices of a (1/r)-cutting for the set of hyperplanes dual of the input
set of points.

10A hierarchical cutting is an ε-cutting that is built globally for all resolutions of the application of the partitioning scheme.
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cell). This can be improved to O(nd) as presented by Edelsbrunner [44]. The second step, point location, can
be done efficiently in 2 dimensions for any convex cell subdivision using monotone subdivisions, for instance.
In higher dimensions, efficient point location on arrangements of hyperplanes can be achieved due to data
structures based on ε-cuttings. Here “efficient” means O(log n) query time and O(nd) space. An even more
efficient technique to solve halfspace range searching uses the following result on hierarchical cuttings.

p1
p2

p3

p4p5

p6

h
p1’

p2’ p3’

p4’

p5’

p6’

h’

Figure 6: Left: primal space. Right: dual space. The thick line polygon depicts the boundary of the cell
that contains h′ in the dual space.

Theorem 8 (Chazelle) [25]: Let H be a set of n hyperplanes, r ≤ n a parameter, and k = dlog2 re. There
exist Ξ1, . . . , Ξk, where Ξi is a (1/2i)-cutting of size O(2id), each simplex of Ξi is contained in a simplex of
Ξi−1, and each simplex of Ξi−1 contains a constant number of simplices of Ξi. Moreover, Ξ1, . . . , Ξk can be
computed in time O(nrd−1).

This theorem can be directly applied to the construction of a hierarchical data structure for divide-and-
conquer on the set of dual hyperplanes. Matoušek [73] proved that this data structure can be built with
O((n/ log n)d) space allowing O(log n) query time.

For simplex range searching, however, precomputing all possible answers is very expensive in terms of
storage. There are O(nd(d+1)) possible answers for simplex range searching in Rd, which leads to Ω(nd(d+1))
storage using this approach. Cole and Yap [42] gave a solution to the planar problem based on a partitioning
scheme that decomposes the original query triangle into smaller ones. They proved that their algorithm is
near-optimal, with O(log n log log n) query time and O(n2/ log n) space. Later on, Chazelle et al. [36] gave
a quasi-optimal solution for general dimension d with O(nd+ε) space and O(log n) query time. His approach
relies on a multilevel data structure that is based on halfspace range searching techniques (see section 3.9).
Matoušek [73] shows how the space bound can be improved to O(nd) at the expense of an increase on the
query time bound to O(logd+1 n).

3.7 Space-time tradeoffs

So far we have reviewed linear size data structures that allow range searching in sublinear time (sections 3.2
through 3.5), as well as larger data structures that allow logarithmic query time (section 3.6); however, we
may be interested in an intermediate solution that better fits the problem and the computational resources
available (computer memory, processing speed, etc.). In other words, we need a tradeoff between space and
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query time. This can be easily done by combining two types of hierarchical data structures: one of linear
size, and one of logarithmic query time. Agarwal and Erickson [2] explain how to accomplish this. The
rationale of the construction is explained in the following (see Figure 7).

Let D1(P ) and D2(P ) be two hierarchical range searching data structures on the set of points P for some
given range space, where D1(P ) allows logarithmic query time and D2 is of linear size, both efficient. We
start the construction of a new data structure D by pruning the subtrees of D1(P ) on all nodes representing
clusters of relatively small size -small compared to certain parameter τ that depends on the space dimension,
the input size, and the desired size of the data structure. Then, for each node i, with corresponding cluster
Ni we attach a data structure D2(Ni) as a child of i. It has been proved that by doing so, the data structure
continues to be efficient and the storage can be limited to a size m, as desired. In other words, given a target
size m for the data structure, we compute τ to decide on what nodes of D1(P ) to prune and proceed as
explained above to obtain D. D will answer range searching as efficiently as possible. For halfspace range
searching, for instance, the queries can be answered in time O(n/m1/d + log(m/n)), which is near-optimal
compared to the lower bounds presented in Theorem 1. The technique just presented can be applied to more
general data structures D1(P ) and D2(P ). Agarwal and Erickson give more details about this [2].

...

i
j

D (P)

D

D (N ) D (N )
i j

1

2 2

Figure 7: (Adapted from [2](Figure 7)). Left: A data structure of type D1. Right: Final data structure D
consisting of a pruned version of D1(P ) with trees D2(Ni) and D2(Nj) attached to nodes i and j of D1(P ).

3.8 Special cases

One of the most surprising results in non-orthogonal range searching is related to halfspace reporting queries.
A halfspace reporting query, where the answer has size k, can be answered in O(log n+k) time using linear size
data structures for 2 dimensions and near-linear size data structures for 3 dimensions, as shown by Chazelle
et al. [37] and Chazelle and Preparata [31], respectively. The 3-dimensional case was later improved by
Aggarwal et al. [6]. This may, at first, seem contradictory compared to the lower bounds obtained for
halfspace range searching in the semigroup model. However, it can be understood in the context of filtering
search. As informally presented in section 2.3, filtering search describes a way of amortizing the query time
by using the size of the output, given that a large answer requires a slow reporting phase, thus, need no
optimal seek time. Extensions to higher dimensions and small improvements for the 3-dimensional case
were provided by Clarkson [41] based on combinatorial results on j-sets11. It is of combinatorial interest
to know the total number of j-set for any input set of points. In the data structures presented by Chazelle
and Preparata [31], and Clarkson [41], the total number of i-sets, for all i ≤ j is what is accounted for.

11Given a set of points P , a j-set J is a subset of P of size j such that J = P ∩ h for some halfspace h. In simple words, a
j-set is a possible output for a range reporting query.
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Clarkson’s data structure allows O(log n + k) query time, takes O(nbd/2c+ε) space, and can be built in
O(nbd/2c+ε) expected time using a randomized approach. Matoušek [72] presented another data structure
for this problem based on cuttings resulting in O(n log log n) space and O(n1−1/bd/2c logO(1) n + k) query
time. Clarkson’s and Matoušek’s techniques combined provide slightly better space-time tradeoffs.

Halfspace emptiness is related to halfspace range reporting: a halfspace emptiness query can be an-
swered using a range reporting data structure just by excluding the output reporting step (O(k)). How-
ever, some of these data structures can be tailored for halfspace emptiness queries with better results.
An efficient data structure for dimension 3 has been presented by Dobkin et al. [43] with O(log n) query
time using O(n) space. For higher dimensions, a variant of Matoušek’s data structure answers emptiness
queries in O(n1−1/bd/2c2O(1) log∗ n) time and O(n) space, at the expense of more preprocessing. Another
data structure for halfspace emptiness by Matoušek and Schwarzkopf [75] is comparable to Clarkson’s, with
O(nbd/2c logO(1) n) space and O(log n) query time.

3.9 Multilevel data structures

For certain applications, one may want to perform range queries defined by more complex range shapes. This
can be done in a non-trivial way through multilevel data structures whenever the query shape can be defined
in terms of simpler shapes. Notice that for a query shape defined as the union of simpler query shapes,
one perform a range query for each simpler query shape and then combine all the solutions. Therefore,
multilevel data structures are meant for a query shape q that is the intersection of q1, . . . , qk simpler ranges,
provided that there exists a data structure to answer each of the qi. Thus, by conveniently combining the
data structures for all qi, we obtain a multilevel data structure that can answer q efficiently. This technique
was first used by Bentley [17, 18] in a data structure called range trees. Range trees were designed for
orthogonal range searching, however, they generalize to other types of range spaces. We will now proceed
with a review of range trees.

Let (P,R) be a range space, P ⊆ R, R = R1×R2, where R1 and R2 are intervals in R. BSTd(N) denotes
a binary search tree on N ⊆ P , where the points in N are sorted according to the d-coordinate (d ∈ {1, 2}).
Clearly, an instance of BST1(P ) can solve 1-dimensional range queries on the first coordinate, provided
that each node i of the tree contains the generator (partial sum) corresponding to the set of points (Ni) of
the spanned interval. We can also store a binary search tree BST2(Ni) on each node i such that another
1-dimensional range search can be performed on the subset Ni according to the second coordinate. The
resulting data structure T will allow answering orthogonal range queries as follows. Given a query rectangle
R = R1×R2, we locate all the nodes of T associated to the clusters that realize the answer of R1 in O(log n)
time. Then, we can perform a range query according to R2 on those nodes in O(log n) time per node. So,
with overall O(log2 n) time, orthogonal queries can be answered in 2 dimensions using O(n log n) space. In
this case, the query time can be reduced to O(log n) using fractional cascading12.

As mentioned above, the idea of combining hierarchical data structures for searching according to multiple
criteria can be generalized to any type of search in a similar way: a node of the data hierarchy at level l
contains a level l + 1 data structure for its associated cluster (subset of points). The description of the

12Fractional cascading is a technique used to speedup searches at the cost of a small increase of the data structures size.
This is achieved by linking different parts of the data structure as a postprocessing step, such that searching in one part makes
easier subsequent searches on other parts. A general framework for fractional cascading was provided by Chazelle and Guibas
[29, 30]. They provide several examples and applications.
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ranges must be finite so, the number of nesting levels is bounded by a constant. For instance, simplex range
searching can be decomposed as a set of halfspace searches (one per bounding hyperplanes). In general,
multilevel data structures, multiply the query time and space by a factor of O(nε) (ε > 0)per level. Thus, for
the case of simplex range searching, data structures that are directly based on a simplex partitioning scheme
are more efficient. For example, it is better to use the simplicial partitions seen earlier [73] rather than a
multilevel data structure resulting from the combination of halfspace range searching data structures.

3.10 Semialgebraic ranges

So far we have reviewed range searching with relatively simple range shapes (halfspaces and simplices).
However, at the beginning of this paper we saw an example that involved ball range searching. We will now
see how to deal with range searching in the presence of balls, or more general, range shapes. We consider
ranges defined as Tarski cells. A Tarski cell is a region of Rd delimited by a polynomial of bounded degree
in d variates. The intersection of a bounded number of Tarski cells is also a Tarski cell. Thus, Tarski cells
are more general ranges of bounded complexity. This more general setting is known as semialgebraic range
searching.

Yao and Yao [90] showed how a range space (Rd, T ) can be transformed into another range space (Rδ,Hδ)
preserving containment relationships, where T is a set of polynomial inequalities, δ > d, and Hδ is the set
of halfspaces in Rδ. This technique is known as linearization. Consequently, range searching on Tarski cell
ranges can be answered by means of halfspace range searching in higher dimensions. Tarski cells delimited
by the intersection of more than one polynomial can be handled by multilevel data structures as explained
in section 3.9. A direct application of the method proposed by Yao and Yao does not give the smallest value
of δ, which is indeed desirable. Agarwal and Matoušek [3] give an algorithm to determine the transformation
that leads to the smallest δ value.

The following is an example of how disk range searching in 2 dimensions can be optimally transformed
into a 3-dimensional halfspace range searching. Let (x1 − a1)2 + (x2 − a2)2 ≤ a3 be a disk with center
(a1, a2) and radius a3. The transformation consists of lifting the points of the form (x1, x2) onto the 3-
dimensional parabolloid (x1, x2, x1

2 + x1
2), and transforming the query disk defined by (a1, a2, a3) to the

halfspace {y ∈ R3 : a3
2 − a1

2 − a2
2 + 2a1y1 + 2a2y2 − y3 ≥ 0}. Similarly ball range searching in Rd can be

transformed into halfspace range searching in Rd+1.

Even for the smallest values of δ, linearization increases the space dimension. Thus, several attempts
have been made to deal directly with the original problem on algebraic range shapes. A first question in that
direction is concerned with the complexity of arrangements of algebraic surfaces in d-dimensional space. In
contrast with the hyperplane case, it is not known whether the complexity of this problem is O(nd). Chazelle
et al. [35] proved that this is the case for dimensions 2 and 3 and gave a first non-trivial upper bound for
higher dimensions. This was later improved by Koltun [65] who proved O(n2d−4+ε) as an upper bound,
which is quasi-optimal for d = 4. The problem of range emptiness with bounded algebraic range shapes is
apparently simpler; however, no algorithms have appeared as improvements over the general range searching
case. The only exception that we are aware of is a recent algorithm for balls in R3 presented by Sharir and
Shaul [81].
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3.11 Open problems

Here, similar to open problems regarding lower bounds, most of the problems that remain open consist in
closing the polylogarithmic gap between algorithms and their corresponding lower bounds. The following
list includes the most relevant of these and other problems.

• Can a simplex range searching query be answered in O(log n) time using O(nd) space?

• Can a halfspace range reporting query be answered in O(n1−b1/dc + k) using linear space?

• What is the complexity of arrangements of algebraic surfaces for dimensions 4 and higher?

• Are there other data structures simpler than simplicial partitions based on hierarchical cuttings for
simplex range searching that offer similar space and query time complexities?

4 Practical data structures

Many of the data structures we have reviewed earlier in this survey do not perform very well in practice even
when they provide nice theoretical results. All the data structures we have seen so far do not consider the
overhead that may be introduced by accessing secondary memory, some of them involve very large constants,
or are very difficult to implement, or disregard how the associated complexities get worse as the dimension
increases, even polylogarithmic overheads are sometimes a too-high cost to pay when dealing with availability
of resources. In the following, we will see some ways to overcome these problems.

4.1 Secondary memory data structures

When the data base in question is too large to fit in main memory, the data must be stored in secondary
memory, and then uploaded to or downloaded from main memory by blocks (of constant size B), as required.
Unfortunately, this process is very expensive: a single secondary memory access may take as much time as
millions of arithmetic operations. Thus, multiple efforts have been directed to constructing data structures
that minimize the number of required memory accesses. This issue has been largely explored for orthogonal
range searching. A classic example is the family of R-Tree as originally presented by Guttman [59], and
subsequent versions (R+-tree, R*-tree). What makes an R-tree a suitable data structure to work with
secondary memory is the underlying balanced tree with nodes of size B, namely B-trees.

One may think that a good solution to non-orthogonal range searching would be to perform orthogonal
range searching as a first step using the d-rectangle r bounding the original query range q and then filtering
the output elements to obtain only those that in fact are in q. This can be considered as a heuristic, but not
a good general solution since it would require reporting all elements in r as a the first step. Besides, q can be
much smaller than r in some cases -as well as the number of elements contained in it. However, the orthogonal
case provides a lower bound to simplex range searching. Subramanian and Ramaswamy [83] obtained lower
bounds for orthogonal range reporting in 2 dimensions using secondary memory. They proved that in order
to answer such queries with only O(logO(1)

B n+k/B) disk accesses, Ω((n/B log(n/B))/ log logB n) space must
be used, where k is the output size.
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Dimension Query I/Os Space
2 O(logB n + k) O(n)
3 O(logB n + k) O(n log2 n)

O(nε + k) O(n logB n)
d O(n1−1/bd/2c+ε + k) O(n logB n)

O(n1−1/d+ε + k) O(n)

Table 3: Upper bounds for halfspace range searching in external memory.

Another way to minimize the number of accesses to secondary memory on non-orthogonal range searching
is through the direct application of B-trees as an underlying data structure. Günter [60] considered this
approach in the so-called cell-trees. Although the nodes of the cell-tree are partitioned using a generic binary
partition scheme13, they can be constrained to follow the partitioning scheme used on the J-way partition
tree of Willard’s as presented in section 3.2. In this case, J should be proportional to the block size B instead
of the optimum value 3 as we saw before for range searching in main memory (see Figure 1). Agarwal et al.
[4] provide an optimal solution to halfspace range searching in dimension 2 and also improve previous results
for this problem in higher dimensions by adaption of Matoušek’s partition trees to secondary memory (see
table 3 for a summary of their results). Note an interesting fact: in 2 dimensions, the space complexity of
halfspace range searching is smaller than the lower bound provided above for orthogonal range searching,
and consequently for simplex range searching, while the query times are similar. This differs from the results
on data structures for internal memory when accounting for general operations, instead of number of access
to disk.

4.2 Reduction to lower dimensions

We have seen earlier in this survey how the dimension number often appears as an exponent in the com-
plexities associated to range searching. This clearly means that query times and space requirements increase
exponentially with the dimension. Thus, a technique that has been explored in order to overcome this issue
is to map a higher-dimensional problem to a lower dimensional one. We have already seen a similar idea as
used in algorithms based on spanning paths (section 3.4). Spanning paths define a complete 1-dimensional
order on the set of input points P , which makes possible their storage as B-trees.

A heuristic approach to range searching related to spanning paths is the use of space filling curves (SFC)14

(see Figure 8 for examples). As P is not necessarily a set of lattice points, we need to divide the space into a
grid of buckets containing the points. Then we can apply the SFC of choice on the grid cells. These curves
realize fairly good distance-preserving maps, that is, points that are close together in Rd will be mapped to
nearby locations along the 1-dimensional curve. Consequently, similar points are likely to be stored in the
same disk block. This application of SFC was introduced by Faloutsos [48]. See Aref et al. [9] for an analysis
of different types of SPF. Many heuristics based on SFC have appeared since Faloutsos’. A recent example

13A binary partition scheme is also used on BSPs (Binary Space Partition). A BSP defines a recursive binary subdivision of
the d-dimensional space where each non-leaf region is split by a d− 1-dimensional hyperplane.

14The discrete version of a space filling curve is defined as a 1-dimensional curve that passes exactly once through every single
vertex of a lattice set in [0, 1]d. Furthermore, these curves usually present regularities such that the curve follows the same
behavior at different resolutions.
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on nearest-neighbor15 queries has been presented by Chen and Chang [39]. However, a shortcoming to using
SFC in general is that the performance of the data structures is subject to the distribution of the points in
space.

Figure 8: Space filling curves on a planar square grid. Left: Peano (Z). Right: Hilbert.

Other techniques used to reduce the dimension number are based on hashing, in particular, locality-
preserving hashing functions. Locality preserving hashing functions [62] have been seen as an alternative to
1-dimensional ordering and B-trees. The reason for this is that B-trees may store pointers to objects instead
of objects themselves. In our case, this is less of a problem since we are dealing with low-dimensional points
and it is preferable to store the points directly on the B-tree nodes at the expense of a small increment of
the tree height. Nevertheless, there are hashing-like solutions that address non-orthogonal range searching
problems effectively. Several solutions of this type have appeared for the related k-nearest neighbour problem
[78, 66, 92], based on the pyramid technique. The pyramid technique, introduced by Berchtold et al. [19],
consists in partitioning the d-dimensional space [0, 1]d (unit hypercube) into 2d hyperpyramids with tops
at (0.5, 0.5, . . . , 0.5) and bases on each of the 2d faces of the unit hypercube (see Figure 9). Each point is
assigned a hash value equal to the number corresponding to the hyperpyramid it lies in plus the distance
from the point to the top of the hyperpyramid. The points are then stored according to their hash values
and stored in a B+-tree for optimal querying.
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Figure 9: (Adapted from [78]) Pyramid technique. Left: labeled pyramids associated to the 2-dimensional
unit square. Right: B+-tree containing the points (at the leaves).

15The problem of nearest-neighbor queries is closely related to ball range searching. For instance, the answer to a nearest-
neighbor query trivially leads to the answer to a ball emptiness query.
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5 Newer problems on range searching

In this chapter we will present other scenarios where range searching has been (more recently) studied. In
some of these scenarios, only results on orthogonal range searching have been published. Therefore, this
section entails a new set of open problems on non-orthogonal range searching on its own.

5.1 Parallel and distributed search

One way to approach range searching is parallel computation. In order to parallelize range searching, the
dataset is distributed among multiple memory devices (disks) such that multiple processing units (processors)
can access data simultaneously. A logical way to distribute the data consists in placing similar points (in
terms of coordinates) in different disks. This way a range query targeting a specific area produces a fair load
balance among processors. This strategy has been termed as declustering. Early studies on declustering for
parallel range searching date back to the beginning of the 90’s [56, 64, 49]. However, newer declustering
techniques have been found and there has been plenty of recent attention to this topic. Ferhatosmanoğlu and
other authors [50, 51], for instance, have presented techniques for declustering with small amounts of data
replication, and integrated solutions for inter-disk declustering based on hyperpyramidal partitions, together
with intra-disk clustering. They have shown empirical evidence of the advantages on using their techniques.

5.2 Moving points

There are scenarios in which the objects (points) are allowed to move. Given a query range r A typical query
on moving points can be expressed as: “Report the points that will lie inside of r one minute from now”.
Early solutions to this problem [82] considered data structures that allowed frequent updates efficiently, so,
the motion is simulated by periodic updates. In general, this solution is not the best one can hope for
because of the large number of updates required. More recent solutions tend to store functions that describe
the movement of the points over time instead of static coordinates.

The trajectory of the points can be approximated by a polygonal path composed of straight line segments
on which the points move with constant direction and velocity. At each vertex of the polygonal trajectory
of a point, the data structure is updated to adapt to the new movement description. This considerably
reduces the number of updates compared to the previous solution. This idea was introduced by Basch et al.
[15] who provide a framework for the creation of kinetic data structures, query types, etc. -although they
allow more flexibility towards the description of the motion. Agarwal et al. [5] present efficient schemes for
a 2-dimensional scenario as described above that allows to answer recent-past, near-future, and small time
interval queries. They consider orthogonal and approximate nearest-neighbour queries.

5.3 Data streams

There are some situations in which the amount of data is too large compared to the available memory -
including main, secondary, and all types of memory. It can also be the case that there is data constantly
generated, by sensing for instance. In either case, it is assumed that the dataset can only be read once by
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the processing unit as a data stream but it can not be stored. So, the data needs to be summarized so only
a small amount of information is stored for answering subsequent queries. This restriction can be slightly
relaxed such that the data can be read a bounded number of times. There are several techniques that can be
used for this purpose, for example, extracting the histogram of the dataset, computing aggregate functions,
randomly sampling data, or considering only the data within certain sliding window. See the survey by
Babcock et al. [13] for these and other techniques, as well as multiple applications of algorithms on data
streams.

Range searching on data streams can not be computed exactly since at least O(n) space would be required
for it. A lower bound on the data structure size has been provided by Bagchi et al. [14]. They proved that
to ε-approximate an orthogonal (2-sided) range counting, the space needed is Ω(n/ε2), where n is the size
of the stream. By ε-approximate we mean that an approximate answer x satisfies x∗ · ε ≤ x ≤ x∗/ε, where
x∗ is the exact answer (0 < ε < 1). Suri et al. [84] give deterministic and randomized ways of sampling
the dataset for computing approximate orthogonal and halfspace range counting. They also show how the
space required can be reduced by doing more than one pass, in particular, for a number of passes equal to
the dimension of the space.

5.4 Wireless sensor networks

A wireless sensor networks (WSN), as the names indicates, consists of a set of sensors (nodes) which are
spread over a geographic area and communicate with each other through a wireless network. The objective
of a WSN is to keep track of certain events that occur in the sensing area. WSNs provide easy-to-deploy
and low cost smart environments that can be applied in multiple fields such as weather analysis, detection of
forest fires, studies of animal populations, and all sorts of studies on remote areas, among others. However,
the flexibility and versatility of WSNs comes along a set of different problems. The reader is referred to the
book by Zhao and Guibas, [93] for a survey on multiple topics related to WSN.

The reason we pay special attention to WSNs is that all the issues previously presented in this chapter,
apply to WSN scenarios: in a WSN computations occur in parallel and in a distributed way, objects and
sensors may be in motion, and the capacity of storage is very limited for which sometimes the data can be
only treated as a stream. Other issues that make range searching on WSN different from more traditional
scenarios are failures, costs and delays associated to communication, and measurement errors. Thus, we need
to consider some other performance metrics associated with range searching algorithms in this scenario: these
include accuracy, resource usage, and fault tolerance. Also, in order to support the dynamics of WSN, the
types of queries can be enriched with a new classification according to the four following classes: historical
queries (queries about the past), snapshot queries (queries about the present), near-future queries, and long-
running queries (queries that span an interval of time where a reporting periodicity is sometimes specified).
In the following, we look at aspects of range searching data structures in relation with these issues.

As seen earlier in this survey, an ideal data structure for range searching has the topology of a partition
tree with a single root node. This can not be directly applied to WSN because of the high load the root
node would be subject to: on one hand the root becomes a communication hot spot, on the other hand, if it
fails, the entire data structure becomes useless. A naive approach to answering queries on a WSN consists
in flooding the whole network starting from the querying point and collecting all the responses coming back
from the involved areas of the network. However, this is too expensive in terms of communication resources.
There are some approaches that allow range querying more efficiently. One idea is to use geographic hashing
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which allows setting geographically localizable rendezvous points where event notifications and queries meet.
In particular locality preserving geographic hashing [63] is very efficient because similar data (events) is
stored in nearby sensors.

The volume of data generated may exceed the network storage capability -here we consider storage on
the sensors, not on a centralized warehouse. Thus, some sort of aggregation or summarization is needed
similarly to dealing with data streams. The aggregation can be done in a hierarchical way. This is the
approach considered in DIFS (Distributed Index for Features in Sensor networks) as proposed by Greenstein
et al. [57]. DIFS consists of a data structure similar to a quadtree but with multiple “roots”, and children
with multiple parents, in order to avoid hot spots. DIFS has been used as a data structure for answering
orthogonal range queries.

A more general approach to introducing higher connectivity and redundancy on a data structure in order
to reduce hot spots and provide certain degree of fault tolerance, is fractional cascading [55] (see section
3.9 for a definition). Fractional cascading defines a way to interconnect sensors such that every sensor has
information about the entire space in a way that fractionally decreases with the distance, but keeping the
overall amount of redundancy small (O(log n) per sensor, where n is the number of sensors).

For halfplane queries in particular, Guibas [58] proposed a heuristic based on a
√

n × √n square grid
partition of the plane (see Figure 10). Every cell in the partition stores two values corresponding to the
partial sums of the values associated to the cells on the left and the cells on the right along its row. The
boundary of any query halfplane intersects at most 2

√
n cells. So, a query can be answered in O(

√
n)

expected time by a walk along the query line, summing up the precomputed values stored at the cells in each
row immediately below (above) the boundary line, together with the weights of points below (above) the line
in the crossed cells. This algorithm is the only one known specifically for non-orthogonal range searching
in WSN. This suggests the possibility of improvement of non-orthogonal range searching in WSN scenarios.
One possible direction to look at is to take advantage of data structures that have originally been design
with multiple roots and partitioning schemes, such as those presented by Chazelle et al. [36] and Matoušek
[73].

6 Conclusions

Non-orthogonal range searching in sublinear time is a hard problem. Memory requirements for query-time-
efficient solutions are overwhelmingly large compared to memory requirements of its relative, orthogonal
range searching. This has been proved by means of lower bounds on several computational models. However,
sophisticated data structures allow a whole spectrum of solutions from sublinear query time with linear
space to logarithmic query time with space bounded by a polynomial of degree equal to the dimension of the
space. Deterministic and randomized constructions of optimal data structures have been explored. Other
data structures have proved to be very efficient in practice, especially under the consideration of secondary
memory. Heuristics have also been presented, for example, reducing the problems to a one dimensional
equivalent has shown positive results, which has been supported by convincing experimental results. Other
problems on range searching have arisen in the areas of wireless sensor networks where several challenges have
increased the complexity of more traditional range searching. This field offers a new set of open problems
and potential research, especially related to non-orthogonal range searching.
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h

Figure 10: Adapted from [58] Grid used to compute halfspace range searching on WSN and sample query
halfplane h.
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