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Henk Meijer1, Yurai Núñez-Rodŕıguez2, and David Rappaport2 ?

1 Roosevelt Academy, Middelburg, The Netherlands
h.meijer@roac.nl

2 Queen’s University, Kingston, ON Canada
{yurai,daver}@cs.queensu.ca

Abstract. Duplication of information allows distributed systems to re-
cover from data errors, or faults. If faults occur spontaneously, without
notification, and disguised incorrect data blends in with correct data,
their detection becomes non-trivial. Known solutions for fault recovery
use monitoring mechanisms that compare the data in multiple nodes to
infer the occurrence of faults. To this end, we propose a localized ge-
ometric approach to fault recovery in wireless networks. We compare
our approach with a more traditional combinatorial approach that uses
a majority rule. Our experiments show that our geometric approach is
an improvement over the majority rule in some cases, whereas in the
other cases a hybrid method that combines the best of both strategies is
superior to each individual method.
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1 Introduction

We consider fault recovery in networks consisting of disambiguating two-state
variables at the nodes. This can be achieved by using information duplicates
stored across the network. Our results easily generalize to multiple-state vari-
ables if applied independently to their constituent bits. We examine a geometric
technique that provides autonomous detection and recovery of faults. We com-
pare our technique with an existing non-geometric approach and demonstrate
its effectiveness. The geometric method we propose may not be the only effec-
tive one; so, with this work we hope to open the discussion and make progress
towards the best localized fault recovery strategy.

In what follows we refer to faulty and healthy nodes as red and blue, without
defining which colour is assigned to which state. Colouring the nodes will simplify
our presentation and will put our work in the same context as previous work.
Thus, the change of status of a node (from faulty to healthy, or vice versa) is
called a recolouring.

The rest of this document is organized as follows. Section 2 reviews previous
work on fault recovery techniques for distributed systems and the origins of a
? Supported by an NSERC of Canada Discovery Grant



technique we propose for fault recovery, namely, geometric recolouring. Section 3
presents the details of fault recovery using our geometric approach. In Section 4
we present our experimental results and demonstrate the suitability of geometric
recolouring for fault recovery. Finally, we identify a set of open problems derived
from our work.

2 Previous Work

We first survey previous work on fault recovery in distributed systems. Then
we introduce the fundaments of a geometric recolouring technique as used for a
related problem, the red-blue separation problem.

Several studies on fault recovery have focused on distributed systems with
regular topology. For example, Floccini et al. [2] consider fault recovery on
toroidal meshes and Luccio, Pagli, and Sanossian [5] study this problem on
butterfly networks. Their work focuses on finding monopolies, that is, configu-
rations of faulty nodes that can cause the entire network to fail. As will be seen
later on, we are more concerned with the length of recolouring sequences. The
underlying goal of both efforts remains to study systems that can autonomously
recover from faults through localized algorithms.

It is often assumed that faults occur as a consequence of manufacturing de-
fects or other random, spontaneous causes. This is the case considered by Krish-
namachari and Iyengar [4]. To our knowledge, no previous work has considered
the occurrence of failures in correlation with the geometric location of the nodes.

It is widely accepted that the data collected by the nodes of a network, in the
case of sensor networks for instance, is correlated to their geographic location (see
[11, 1] for example); thus, there is no reason not to believe that errors induced
on the network by the influence of the environment are also correlated to their
spatial distribution. Notice also that considering faulty areas is a generalization
to considering isolated errors. The latter can be seen as independent faults on
areas that are small enough to contain a single node.

It is assumed that a node does not know whether it is faulty or not just by
reading its data. It can however, compare its colour (state) with its neighbours’
colours. All the previously cited approaches to fault recovery and other studies
(see the survey by Peleg [8]) use a majority voting rule. The majority voting
rule recolours a node if it has more neighbours of the opposite colour. This
strategy can obviously turn healthy nodes to faulty as much as healing faulty
ones. However, based on the fact that faulty nodes should be a “non-dominant
minority”, we expect that the cooperative effort makes progress towards healing
the faulty nodes. On the other hand, we argue that the majority rule is not the
best approach if applied to geometric graphs involving areas of faulty nodes. We
propose a geometric recolouring approach to this end.

Geometric recolouring, as introduced by Reinbacher et al. [10], has been used
for assisting geographic data classification. Given a planar set of red and blue
points, their goal is to separate the red from the blue by polygonal curves with
small perimeter. A reclassification method is performed as a preprocessing step
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to correct misclassified points, as the input is assumed to possibly contain errors.
This reclassification technique is termed recolouring, which we call geometric re-
colouring for reasons that will become evident in what follows. Their experiments
show that the use of recolouring yields separating curves with smaller perimeters.

Reinbacher et al. use a Delaunay triangulation of the point set as the un-
derlying structure for recolouring, specifying a neighbour relation among the
points. They then define a point, p, as surrounded when there is a contiguous
set of oppositely coloured neighbours of p, in the triangulation, that span a
radial angle greater than 180◦ (see Figure 1). Points that are surrounded are
iteratively recoloured, in no particular order, until no point remains surrounded.
This strategy raises an interesting question concerning the finiteness of recolour-
ing sequences. It turns out that if one chooses the threshold angle to consider
a point as surrounded as any value smaller than 180◦, there may exist trivial
infinite recolouring sequences [10]. The problem is far less trivial for thresholds
greater than 180◦.

p p

Fig. 1. Recolouring surrounded point p.

Using properties of the triangulation, Reinbacher et al. show that these re-
colouring sequences are finite and guaranteed to terminate in at most 2n − 1
iterations. They also show an example triangulation that yields O(n2) recolour-
ings. In a previous work [6], we proved that any triangulation can have at most
O(n2) recolourings, closing the gap between the lower and the upper bound.
Moreover, we extended our results to other geometric graphs and proved a set of
bounds for the length of recolouring sequences, ranging from linear for trees to
infinite for planar graphs. In the following section we use one of our polynomial
bounds for a convenient construction, the NIC graph.

3 Fault Recovery in Wireless Networks

Before presenting our geometric approach to fault recovery we propose a general
framework for recolouring in wireless networks. We review a more traditional
combinatorial approach to recolouring. Then we present the challenges of our
geometric approach, along with proposed solutions. Finally, we include a hybrid
method that combines the combinatorial and geometric approaches.

A node can be considered as surrounded or dominated by neighbours of the
opposite colour according to different criteria. For now, we assume that we are
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provided with a general function Surrounded that returns TRUE for a node
surrounded by neighbours of the opposite colour, or FALSE otherwise. Different
versions of Surrounded will be studied in what follows.

As pointed out earlier, a recolouring does not necessarily mean that a faulty
node is being fixed; on the contrary, sometimes a healthy node can become faulty
by the same mechanism. However, our experiments demonstrate that whenever
the cause of the fault affects a relatively small area, the number of nodes that are
recovered from faults is substantially larger than the number of nodes that turn
faulty. In fact, in many cases all faulty nodes are able to recover (see Section 4
for more details).

The fault recovery algorithm simply consists of the Recolouring Protocol,
as defined next, to be executed at all nodes. The protocol defines successive
recolourings of a node, according to the function Surrounded, and a mechanism
to notify its neighbours whenever a change of colour occurs.

Algorithm 1: Recolouring Algorithm
input : Network G = (N, L) with bi-chromatic nodes.
output: Network G = (N, L) with a different node colouring such that no more

nodes can be recoloured.

Recolouring Protocol

Step 1. Broadcast a COLOUR message to all neighbours, with the node’s colour
information.

Step 2. If there is a COLOUR message in the node’s queue, the new colour of the
corresponding neighbour is considered for updating the node’s colour according
to the function Surrounded .

Step 2.1. If the node is recoloured, broadcast a message to all neighbours with the
new colour information.

Step 3. If there is no COLOUR message in the queue and no COLOUR message has
been received for T time units, go to Step 1.

Step 4. Go to Step 2.

Step 3 of the recolouring protocol ensures that if a node becomes faulty, the
neighbours are informed of its colour change. The parameter T can be adjusted
for an optimal tradeoff between fast response to faults and low network traffic.
The algorithm cycles idly (or terminates temporarily) once no more nodes can be
recoloured. However, it restarts itself after T time units of inactivity, to recover
from possible new faults.

Notice that the nodes do not necessarily wait until they know the colour
of all neighbours. The protocol is presented in a way that no synchronization
is required. In fact, asynchrony is one key aspect for the termination of the
algorithm.

On the other hand, if rounds of recolourings occur synchronously for all
surrounded nodes, the process may not terminate. Goles and Olivos [3] explain
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the behaviour of such systems and how they may fall into configurations that
oscillate infinitely.

We have used the concepts of synchrony and rounds in an intuitive, infor-
mal way; the reader is referred to Peleg’s book [9] for formal definitions. In the
following we define other matters of time and synchrony that are relevant to
our work. The recolouring time of a node p is the time it takes from the actual
recolouring, as defined by Step 2 of the algorithm, to the realization by its neigh-
bours that p has been recoloured. We define two recolourings to be simultaneous
if the corresponding recolouring times overlap. The sequential model is defined
as a hypothetical model in which no simultaneous recolourings occur, as if there
was a global scheduler controlling the network’s activity. Last, we define our
asynchronous model to be one in which the recolourings of nodes occur inde-
pendently from one another. Thus, simultaneous recolourings happen only as a
matter of chance. Next we establish that asynchronous systems behave like the
sequential model in the long run with high probability.

Lemma 1. Let G = (N, L) be a network in which nodes operate asynchronously.
The probability that any two nodes p, q ∈ N recolour simultaneously n times,
tends to zero as n tends to infinity.

Proof. As defined for our synchronous model, the chance that nodes p and q
are recoloured simultaneously for the i-th time has the associated probability
Pi(p, q) < 1. Without considering any particular probability distribution, we can
bound Pi(p, q) by P (p, q), the highest probability of simultaneous recolourings
of p and q over all colour configurations. Thus, Pi(p, q) ≤ P (p, q) < 1, ∀i. We can
conclude that the joint event consisting of an unbounded number of simultaneous
recolourings of p and q has infinitesimal probability, as stated in the following.

lim
n→∞

n∏

i=1

Pi(p, q) ≤ lim
n→∞

n∏

i=1

P (p, q) = 0

because P (p, q) < 1, which concludes our proof.

Note that the existence of P (p, q) < 1 is guaranteed by the perfect asynchrony
assumption. In practical scenarios, if the physical network implementation may
cause synchronized behaviour after certain colour configurations, random re-
sponse times can be introduced to further reinforce the network asynchrony.

The previous lemma proves that long sequences of simultaneous recolourings
are unlikely for two or more nodes. Thus, in the long run, a purely asynchronous
network behaves (with high probability) like the sequential model. This implies
that if the surrounded function of choice ensures finiteness for the recolouring
process in the sequential model, it also produces finite recolouring (with high
probability) for truly asynchronous environments. Therefore, in the sequel we
limit our study of recolouring strategies to the sequential model.

The Surrounded function can be implemented based on simple combinato-
rial properties of a node and its neighbours. In this case a majority rule is con-
sidered. Thus, we define a function Surrounded combinatorial that returns
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TRUE for nodes with more neighbours of the opposite colour than neighbours
of its colour and FALSE otherwise. The majority “voting” rule has been ap-
plied to a wide variety of dynamic systems, such as cellular automata and other
distributed computing systems [2, 4].

In order to prove that this simple strategy terminates, we extend our colour-
ing convention to colour the links of the network. The links connecting either
pairs of blue or red nodes are coloured blue or red, respectively. For a connected
pair of differently coloured nodes, we mix the colours to obtain a magenta link.

Theorem 1. Let G = (N, L) be a network with bi-chromatic node set N . In
the sequential model, the Recolouring Algorithm with parameter T and the Sur-
rounded combinatorial function terminates after O(|L|) recolourings from
the time of the last fault plus T .

Proof. We use a simple counting argument on the number of magenta links. The
number of magenta links is obviously at most |L|. After T units of time from the
last fault, any notification of colour change (i.e., COLOUR message) is a conse-
quence of a recolouring, as opposed to a delayed broadcast from a node that has
become faulty due to environmental factors. Then, with every recolouring, the
number of magenta links incident to the recoloured node decreases. Because no
other recolouring occur simultaneously, according to our definition of the sequen-
tial model, the overall number of magenta links decreases with every recolouring.
Thus, at most O(|L|) recolourings can occur, which proves the theorem.

We assume that each node knows all its neighbours and the angle each neigh-
bour is from it. With the angle information at hand, a new technique can be
developed for implementing the Surrounded function of Algorithm 1. The geo-
metric criterion we use for fault recovery is geometric recolouring as presented in
the previous section. That is, the function Surrounded geometric is defined
to return TRUE if the angle defined by the oppositely coloured neighbours of the
node in question is greater than 180◦, and FALSE otherwise. Also, nodes with
one neighbour are never considered surrounded, and nodes with all (2 or more)
neighbours of the opposite colour are always surrounded, as the surrounding
angle is considered 360◦.

In order to guarantee the termination of the geometric recolouring approach
to fault recovery, some preprocessing of the network is required. In what follows
we provide a set of preliminary results required to introduce the preprocessing
algorithm and the geometric approach to fault recovery.

It is known that a geometric recolouring process can be infinite for general
(non-planar) networks (see [6]). Thus, the recolouring strategy cannot be directly
applied to any network, because it is crucial that the fault recovery process
terminates. Instead, it can be applied to a network that approximates the original
network as well as possible and guarantees finite recolouring. To this end we use
NIC networks, as defined next.

Definition 1. (convex node and convex links) A convex node p of a net-
work is a node with two consecutive incident links, the convex links with respect
to p, that define an angle greater than 180◦.
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p q p q
Fig. 2. Two cases of adjacent convex nodes p and q sharing a convex link.

Theorem 2. Let G = (N, L) be a (not necessarily plane) network with set of
bi-chromatic nodes N and set of links L, such that every node p in G satisfies
one of the following three conditions:

– p has degree less than or equal to 1,
– p is not convex,
– p is convex and is adjacent to another convex node through a convex link

(i.e., p is not an isolated convex node).

The length of geometric recolouring sequences of G is O(|N ||L|).

This theorem is a generalization of our bound for geometric recolouring in
triangulations from [6]. The full proof can be found in [7].

We define a network that satisfies the conditions of Theorem 2 to be a NIC
network. One of the advantages of using NIC networks is that they can be de-
scribed using only local properties of the nodes and therefore, can be computed
in a localized manner.

Corollary 3 Let G = (N,L) be a NIC network with bi-chromatic node set N . In
the sequential model, the Recolouring Algorithm with parameter T and the Sur-
rounded geometric function terminates after O(|N ||L|) recolourings from the
time of the last fault plus T .

In what follows, we show how to compute a NIC network that represents, as
well as possible, the original structure of the network in a localized manner. The
idea is to start with the original network and either “add” or “remove” a small
number of links such that the resulting network is a NIC network. By adding
and removing links we mean that a node considers new nodes as neighbours or
disregards neighbours, only for recolouring purposes.

Through edge additions one could construct a NIC network or even a (non-
planar) superset of a triangulation, which is known to have at most a cubic
(O(N3)) number of recolourings (Theorem 13 [6]). However, adding links may
involve pairs of nodes that are multiple hops away from each other in the net-
work, which calls for non-localized algorithms and more communication intensive
distributed computation. The goal then is to remove the minimum number of
links so that the network satisfies the NIC conditions. This way the topology
of the original network is fairly well preserved. The next theorem states that
it is hard to find such optimal configuration, even if centralized computation is
allowed. We formally state the problem and the complexity of its decidability
version, which directly implies the hardness of its minimization version.
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Problem 1. Non-Isolated Convex (NIC)
Instance: (G, k), where G = (N, L) is a network with |N | = n and k is a numeric
constant.

Question: Is there a set of links L′ ⊂ L such that |L′| ≤ k and G′ = (V, L\L′)
satisfies the NIC conditions?

Theorem 4. The NIC problem (Problem 1) is NP-Complete.

We omit the proof of this theorem due to limited space. For details see [7].
Because the optimal solution is hard to find, we study heuristic algorithms

that eliminate a relatively small number of links. It is noteworthy that in the
worst case the optimal number of link removals may be linear in the number of
links and quadratic in the number of nodes. An example network that exhibits
this complexity consists of a complete bipartite network, where the nodes of each
partition lie on one of two parallel lines (see [7] for details).

The example we just described shows that optimal solutions, and heuristic
solutions alike, cannot always eliminate a small number of links in the worst
case. Therefore, we propose a simple heuristic algorithm that eliminates a small
number of links according to our experiments. The heuristic algorithm for con-
structing the NIC network, the NIC Algorithm (Algorithm 2), is described next.
The NIC Algorithm operates under the same assumptions as the geometric re-
colouring strategy: all nodes know their neighbours and the angle they define
with respect to them. The algorithm consists of a single protocol executed at all
nodes.

Link marks, as used in the protocol, are relative to the node, that is, a
link can be marked differently by each incident node. Notice that Step 3 of the
protocol assures that no isolated convex node will remain connected to a non-
convex node. The algorithm is guaranteed to terminate because links are always
removed and never replaced. Note that a network empty of links satisfies the
NIC conditions so, in the worst case the algorithm terminates when all the links
have been removed. Obviously, this is a very pessimistic analysis, as normally
only a small fraction of the links are removed (see Section 4). Furthermore, this
protocol does not fall into infinite loops because once a link is convex, it never
becomes non-convex.

We also propose a simple hybrid strategy that combines the combinatorial
and the geometric strategies and yields the best experimental results for certain
degrees of connectivity, as will be discussed in Section 4. The combination of
the combinatorial and geometric recolouring strategies requires some extra care;
otherwise the resulting strategy may not terminate, despite each separate strat-
egy does. For hybrid recolouring we define a Surrounded hybrid function that
uses the majority rule for the most part, except that when the number of neigh-
bours of the same and opposite colours are equal, the geometric (surrounding
angle) criterion is used to break the tie.

It is easy to see that this process yields a finite recolouring sequence if the
geometric component considers a NIC subnetwork: the number of magenta links
always decreases or remains the same (see the proof of Theorem 1). Also, while
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Algorithm 2: NIC Algorithm
input : Network G = (N, L) with bi-chromatic nodes.
output: Network G′ = (N, L′) such that L′ ⊆ L and G′ satisfies the NIC

conditions.

NIC Protocol (executed at node p)

Step 1. Mark all links incident to p as unknown.
Step 2. If there is no message in p’s message queue and there are still links marked

as unknown, then send a message to each neighbour. The type of the message
sent is either CONVEX or NON-CONVEX, depending on the convexity of the
link with respect to p.

Step 3. If there is a message in the node’s message queue, process the message
according to its type:

CONVEX: the link through which the message was received is marked as convex. If
the link was not marked as convex before, then a message is sent back to the
sender indicating the convexity with respect to p.

NON-CONVEX: the link through which the message was received, l, is marked as
non-convex. If l is convex with respect to p, and p is an isolated convex node,
then p removes l, sends a REMOVE message to the corresponding neighbour,
and sends CONVEX messages over any other link that may have become convex
after removing l.

REMOVE: the link through which the message was received, l, is removed.
Step 4. Go to Step 2.

recolourings that preserve the number of magenta links occur, geometric re-
colouring converges for the same reasons as Theorem 2. It then follows that the
number of recolourings is at most the multiplication of the maximum possible
number of recolourings for each method. This is stated in the following theorem.

Theorem 5. Let G = (N, L) be a network with bi-chromatic node set N . In
the sequential model, the Recolouring Algorithm with parameter T and the Sur-
rounded hybrid function terminates after O(|N ||L|2) recolourings from the
time of the last fault plus T .

4 Experiments

There are aspects of recolouring in networks that make an accurate probabilistic
analysis quite complicated; for example, small changes in the recolouring or-
der may produce completely different colour configurations. Thus, we turn to
experimentation for our analysis.

We coded our recolouring simulator using Java. The experimental test bed
consists of a set of connected networks generated at random with N = 100
nodes uniformly distributed over a 100 by 100 square grid with area A = 104.
Two nodes share a link if and only if the distance between them is at most
a certain unit ∆, to form what is known as a unit disk graph. We generate a

9



set of 1000 random connected networks with unit distance ∆ taking on values
15, 20, 25, and 30 times the width of a grid square. These distances have been
chosen so that the network is k-connected with high probability for values of k
ranging from 1 to 10: ∆ = 15 approximately corresponds to k = 1 and ∆ = 30 to
k = 10. The results plotted below are averaged over the 1000 randomly generated
networks. Notice that the network size (number of nodes) is not critical for our
results, as the phenomena we study affect only localized, relatively small areas
of the network. The density of the network, however, does play a crucial role.
For this reason, our experiments consider different degrees of connectivity, as
explained above.

We first present the experimental results for the NIC algorithm. The mean
ratio between number of links remaining and total number of links is plotted in
Figure 3 (left) for different transmission radii (∆). It is noticeable that the results
improve as ∆ and the network connectivity increase. Obviously, for higher values
of ∆ the convex nodes tend to appear only at the boundary of the grid. According
to the NIC Algorithm these are the only nodes from which incident links are
removed. Another measure of interest is the number of messages incurred while
computing the NIC network. This result is plotted in Figure 3 (right). The graph
shows a super-linear growth in the number of messages with respect to ∆. This
is expected, as the connectivity of the network increases, at a nearly quadratic
rate with respect to the transmission radius (∆), as presented by Wang and Yi
[12] (Theorem 2). Whether more efficient heuristics can be devised for locally
computing NIC networks remains an interesting question.
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Fig. 3. Results produced by the NIC Algorithm: (left) remaining links ratio, (right)
number of messages.

Next we present the results of the recolouring process for all the methods
described above. For our experiments we have induced faults on the nodes that
fall within a randomly chosen circular area within the grid. The circular area is
defined by radii E =10, 12, 14, 16, 18, and 20 times the width of a grid square,
and is placed such that it falls at least half its radius away from the border of
the grid area. The latter is meant to eliminate the “border effect”, that is, faulty
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nodes at the border are more difficult to recover because of the smaller number
and angle span of neighbours around them. The expected number of faulty nodes
is πE2N/A in our examples.

From our experiments we conclude that for sparse graphs, ∆ < 25, the com-
binatorial and hybrid methods outperform geometric recolouring, with slight
advantage to the hybrid method. This comes as no surprise, because on sparse
graphs there are not enough links, or angles defined by links, to perform an ac-
curate geometric recolouring. The most interesting results correspond to denser
networks, ∆ > 25 (see Figure 4 (left) corresponding to ∆ = 30). This graph
shows the mean ratio of nodes that remain (or become) faulty after the re-
colouring process terminates.
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Fig. 4. Results of the recolouring algorithm: (left) fraction of the nodes that remain
faulty, (right) number of recolouring and messages incurred.

It is not surprising that geometric recolouring gives better results as the
network gets denser and the size of the affected area increases. In such scenarios,
the faulty neighbours of a node can sometimes outnumber the healthy ones,
which makes the fault spread out of the affected region if using the combinatorial
or hybrid methods. On the other hand, as the affected region is convex (a disk in
the experiments presented above), no healthy node can be surrounded by faulty
ones. This confines the faults to the region initially affected, if not heals the region
altogether as it happens in most cases. Figure 4 (right) shows that, despite the
smaller number of nodes healed by the combinatorial method, the number of
recolourings (and broadcasts) is approximately the same for all methods. This
evidences that for large error sizes on dense networks the combinatorial criterion
spends many recolourings in turning healthy nodes into faulty, an obviously
undesirable effect.

We also conducted experiments where the induced error was defined by a
non-convex shape: we used the union of a pair of disks intersecting at a point
for our experiments. The results are remarkably similar to the results previously
presented for faults induced by single disks. Thus, we conclude that the effective-
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ness of geometric recolouring is not limited to convexly-shaped affected areas,
but also to areas that are partly convex, at the very least.

5 Open Problems

In the previous sections we have mentioned some open problems and conjectures.
We summarize a list of these and other problems of interest.

– Compute NIC networks as efficiently as possible, that is, using a small num-
ber of messages.

– Characterize networks that have finite geometric recolouring sequences through
local properties at the nodes, other than NIC networks.

– Find other recolouring strategies suitable for fault recovery.
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