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Abstract

Given a collection of points representing geographic
data we consider the task of delineating boundaries
based on the features of the points. Assuming that the
features are binary, for example, red or blue, this can be
viewed as determining red and blue regions, or states.
Due to regional anomalies or sampling error, we may
find that reclassifying, or recolouring, some points may
lead to a more rational delineation of boundaries. In
this note we study the maximal length of recolouring
sequences where recolouring rules are based on neigh-
bour relations and neighbours are defined by a geomet-
ric graph. We show that the difference in the maxi-
mal length of recolouring sequences is striking, as it can
range from a linear bound for all trees, to an infinite
sequence for some planar graphs.

1 Introduction

Given a set of planar points partitioned into red and
blue subsets, a red-blue separator is a boundary that
separates the red points from the blue ones. There has
been considerable investigation of methods for obtain-
ing such red-blue separating boundaries. In his PhD
thesis, Seara [8], examines various means for red-blue
separation. For the case of red-blue separation with the
minimum perimeter polygon the problem is known to
be NP-hard [3, 1]. A somewhat related topic is to ob-
tain a balanced subdivision of red and blue points, that
is, faces of the subdivision contain a prescribed ratio
of red and blue points. Kaneko and Kano [4] give a
comprehensive survey of results pertaining to red and
blue points in the plane, including results on balanced
subdivisions.

For some applications one is willing to reclassify
points by recolouring them so as to obtain a more rea-
sonable boundary. For example Chan [2] shows that
finding a red-blue separating line with the minimum
number of reclassified points takes O((n + k2) log k) ex-
pected time, where k is the number of recoloured points.

In Reinbacher et al. [7] a heuristic algorithm is pre-
sented for obtaining a better delineating boundary that
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recolours points. The input is a triangulated set of n
planar red-blue points. For a point p to be recoloured
it needs to be “surrounded” by points of the opposite
colour. Reinbacher et al. show experimental results on
delineating boundaries after recolouring.

A surrounded point is realized when there is a con-
tiguous set of oppositely coloured neighbours of p, in
the triangulation, that span a radial angle greater than
180◦. As the recolouring occurs in an iterative sequence
it is not clear that the process will ever come to an
end. However, Reinbacher et al. show that no se-
quence that iteratively recolours surrounded points will
ever visit the exact same colouring of the points more
than once. Thus the maximum number of recolourings
is bounded by the total number of possible colourings
which is 2n − 1. This bound was improved by Núñez-
Rodŕıguez and Rappaport [5] by proving that any re-
colouring sequence has O(n2) length. This bound is, in
fact, tight.

In this note, we present bounds on recolouring for
other types of geometric graphs. Our main results in-
clude bounds on the number of recolourings for graphs
of maximum degree 3, bounds on the number of re-
colourings of trees, and examples of infinite recolouring
sequences on planar and non-planar graphs.

In the next section we precisely describe the recolour-
ing problem. We follow, in the subsequent section, with
our new results on the length of recolouring sequences
of geometric graphs, such as planar graphs, non-planar
graphs, and trees. The last section discusses some ex-
tensions of our results. Most of our proofs have been
included in the Appendix.

2 Preliminaries

We are given as input a drawing of a graph, D = (S,E),
where S is a set of points in the plane partitioned into
blue points and red points and E ⊆ S × S is the set
of edges of the graph. The edges are represented by
straight line segments. An edge incident to points p
and q is denoted as pq. We assume throughout, for
simplicity of exposition, that the points are in general
position. We colour the edges of D red if its two incident
points are red, and blue if its two incident points are
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blue. If one of the incident points is red and the other
is blue we mix the colours to obtain a magenta edge.

Definition 1 Let the edges of D be coloured as above.
Then the magenta angle of a point p ∈ S is:

• 0◦, if p has at most one radially consecutive inci-
dent magenta edge,

• 360◦, if p has degree greater than one and is only
incident to magenta edges,

• the maximum angle between two or more radially
consecutive incident magenta edges, otherwise.

Notice that, according to the previous definition, a
point with only one neighbour in D has magenta angle
0◦ regardless of the colour of its neighbour (See Figure
1). A surrounded point is one with magenta angle larger
than 180◦. Therefore, a point of degree zero or one is
never surrounded nor recoloured. We say an edge is in
the magenta angle of a point if it is incident to the point
and falls within the span of the magenta angle.
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Figure 1: Examples of magenta angles α of point p.
Magenta angles larger than 0◦ are represented by arcs:
(a), (b) α = 0◦, (c) α = 360◦, (d), (e) 180◦ < α < 360◦.

The strategy of reclassification by recolouring, re-
colours a surrounded point p at a time. The sequence in
which surrounded points are recoloured can be driven
by a mixed criterion, such as recolouring the surrounded
point with the largest magenta angle, or with the largest
number of edges in the magenta angle. According to
Reinbacher et al. [7], there exist mixed criteria that
always produce recolouring sequences of linear size. In
the sequel, we assume surrounded points are recoloured
in an arbitrary manner, in order to find bounds for any,
and all, possible recolouring strategies. The recolour-
ing process stops when there are no more surrounded
points.

3 Bounded and Unbounded Recolouring Sequences

At all times the graphs are assumed to be connected
because, in general, each connected component can be
considered independently. We use the term drawing, to
refer to the drawing of a graph as defined in the pre-
vious section. There are families of drawings for which
every recolouring sequence is finite and others that allow

infinite recolouring sequences. We characterize some of
these families. A family of drawings with finite recolour-
ing sequence comes from graphs with maximum degree
3.

Theorem 1 Let D be a drawing with n bi-chromatic
points. If D has maximum point degree 3, then the
length of any recolouring sequence of D is O(n).

The proof of Theorem 1 (See Appendix) only relies on
the number of point neighbours. Thus, the result also
holds for non-planar and more general drawings with
maximum degree 3.

3.1 Planar Drawings

As opposed to triangulations, planar drawings may have
non-convex faces and points of degree one. One may
think of obtaining bounds for planar graphs based on
the fact that a planar graph is a subgraph of a triangu-
lation. However, this does not seem to help since there
are simple examples where a subgraph can have either a
larger or a smaller number of recolourings in the worst
case over all initial colourings.

In fact, a recolouring sequence of a planar graph can
be infinite. Figure 2 shows an example of a graph and a
colour configuration that lead to an infinite recolouring
sequence. Observe from Figure 2 that the initial colour-
ing repeats after a number of steps (recolourings). No-
tice that only certain recolouring sequences are infinite
in this example. The drawing in Figure 2 can be made
2-connected and the minimum point degree can be in-
creased by carefully adding more edges incidents to the
points of degree one, without affecting the recolouring
sequence.

3.2 Non-Planar Drawings

At this point, it is obvious that one can also construct
non-planar drawings with infinite recolouring sequences
since planar drawings allow so. Nevertheless, the exam-
ples shown for infinite recolouring sequences on planar
drawings include points that never change colour. We
show an example of a non-planar drawing with infinite
recolouring sequence where every point changes colour
infinitely many times (see Figure 3). If similar exam-
ples can be built for planar drawings, these have not yet
been found.

3.3 Trees

In this subsection we use the term tree drawing to re-
fer to a straight line drawing of a tree (not necessarily
planar). A trivial example of a tree drawing that has
O(n) recolouring sequence is a “jigsaw” path with points
alternately coloured. In such example, all blue points
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Figure 2: Planar drawing D with infinite recolouring
sequence. Points represented by smaller circles never
change colour. Top: initial colouring of D. Bottom:
D after 28 recolourings. The labels indicate the order
in which points are recoloured. Notice that the bottom
drawing is a rotation of the top drawing. This indicates
that the recolourings can repeat infinitely many times.
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Figure 3: Non-planar drawing D with infinite recolour-
ing sequence. Left: initial colouring of D. Right: D
after 4 recolourings. The labels indicate the order in
which points are recoloured. Notice that the right draw-
ing is a rotation of the left drawing. This indicates that
the recolourings can repeat infinitely many times.

can be coloured to red, leading to approximately n/2
recolourings.

It is not hard to prove that the number of recolourings
of tree drawings is O(n2) by the same arguments used

for triangulations (Theorem 9 [5]), with minor modifica-
tions. However, this bound is not tight. As a corollary
of Theorem 1 we have that binary tree drawings have
a linear number of recolourings. In the remainder of
this section we prove that the number of recolourings of
general tree drawings is also linear.

In order to prove a tight bound (Theorem 4) for the
recolouring of tree drawings, we define a partial order
on the recolourings involved in a recolouring sequence.
Then we bound the total number of recolourings based
on the number of minimal elements (sinks) of such par-
tial order. This idea is explained and formalized in what
follows.

We denote a recolouring event r, or simply a recolour-
ing, as the event of a certain point p changing colour.
Let R = (r1, . . . , rk) be a recolouring sequence where
ri denotes the recolouring at step i, 1 ≤ i ≤ k, k > 0.
We also denote p(r) as the point that changes colour at
recolouring r, and N(r) the number of times that p(r)
has changed colour in R prior to event r.

Definition 2 Let T be a tree drawing and let R be a
recolouring sequence of T . The history graph of R
is a directed graph H = (R, I), I ⊆ R × R such that
(rj , ri) ∈ I if and only if p(ri)p(rj) is in the magenta
angle associated to rj.

Observation 1 By the definition of history graph all
the edges are directed from later recolourings to earlier
ones. Therefore, a history graph is a directed acyclic
graph (DAG) and defines a partial order on the elements
of the recolouring sequence.

The following lemma formally states that for two con-
secutive recolourings of a point p to occur, it is required
that at least two neighbours of p change colour in be-
tween.

Lemma 2 Let T be a tree drawing with n bi-chromatic
points, let R be a recolouring sequence of T , and let H =
(R, I) be the history graph of R. Consider a recolouring
r ∈ R with N(r) > 0. Then the outdegree of r is at least
2. Moreover, there exist two distinct neighbours of p(r),
p1, p2 ∈ T , with recolourings s1, s2 ∈ R, respectively,
such that (r, s1) ∈ I and (r, s2) ∈ I.

Proof. Obviously, if a point is recoloured red (similarly
blue) and was recoloured earlier in the sequence, the
previous recolouring was to blue (red). The intersection
between the magenta angles at the time it is surrounded
by red (blue) and previously by blue (red) contains at
least two edges since the corresponding magenta angles
are greater than 180◦. Therefore, there are at least two
neighbours of p, p1, p2 ∈ T that are recoloured at least
once between two consecutive recolourings of p. ¤

In the light of Lemma 2, we can state the following
definition.
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Definition 3 Let R be a recolouring sequence of a tree
drawing T and H = (R, I) be the corresponding his-
tory graph. The binary history graph of R, BH =
(R, BI), BI ⊆ I, is a subgraph of the history graph
where nodes have outdegrees 2 or 0: nodes with outde-
gree 0 correspond to first time recolourings; nodes with
outdegree 2 correspond to subsequent recolourings. Con-
sider a node rk of degree 2 in the binary history tree.
From Lemma 2 we know that there are two distinct
neighbours of p(rk) that have been previously recoloured.
Thus we choose the two outgoing edges of rk (rk, ri),
(rk, rj), such that i and j are the largest indices smaller
than k for neighbours of rk in the history graph where
p(ri) 6= p(rj).

The motivation to define the binary history graph is
to obtain a cycle-free subgraph of the history graph that
involves all the recolourings. This is formalized in the
next lemma.

Lemma 3 Let T be a tree drawing, and R a recolouring
sequence of T with binary history graph BH. BH has
no directed or undirected cycles. Therefore, BH is a
forest of trees.

To obtain a bound on the size of binary history trees
we show that the number of nodes is linear in the size
of the corresponding tree drawing. This will lead us to
conclude the results of the following theorem.

Theorem 4 Let T be a tree drawing with n bi-
chromatic points. The length of any recolouring se-
quence of T is O(n).

4 Extensions

4.1 Surrounded Threshold Greater Than 180◦

Thus far we have assumed that a point is surrounded
when its magenta angle is any value greater than 180◦.
Reinbacher et al. [7] show that a threshold value smaller
than 180◦ allows for infinite recolouring sequences on
very simple graphs –trees included. Some of our results
hold for threshold values α > 180◦. Trees, for exam-
ple, have linear recolouring sequences for any threshold
180◦ < α < 360◦. Also Theorem 1 holds for any thresh-
old α > 0◦. Other results do not seem to hold for any
threshold value. For instance, it is not clear how large
the value of α can be such that infinite recolouring se-
quences exist on planar graphs.

4.2 More than two colours

Suppose that the points come in more than two colours.
We define the colour of an edge as the mixture of the
colours of its endpoints. In a multi-coloured scenario
we say that p is surrounded by a set of edges of a sin-
gle mixed colour if the edges define a continuous angle

greater than 180◦. As we may intuitively observe, in-
creasing the number of colours only lowers the chances
of a point being surrounded without changing the fun-
damental nature of the problem. In fact, inspection
shows that all of our previous results hold in a multi-
coloured scenario. Thus, our recolouring bounds for a
bi-chromatic set of points carry over to multi-coloured
point sets.

5 Conclusions

We have re-examined a point recolouring method useful
for reclassifying points to obtain reasonable subdividing
boundaries. We show tight (linear) bounds on trees and
graphs of maximum degree 3 for the longest possible
sequence of recolourings. Planar and non-planar graphs
have been shown to have infinitely many recolourings.

Some interesting questions remain open. First, can
planar drawings have sequences of recolourings where all
the points change colour infinitely many times? Also,
what is the complexity of point recolouring in planar
drawings and other geometric graphs when the thresh-
old to consider a point as surrounded is greater than
180◦?
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A Appendix (Proofs)

Theorem 1 Let D be a drawing with n bi-chromatic points. If D has maximum point degree 3, then the length of
any recolouring sequence of D is O(n).

Proof. The proof follows from an observation on how the number of magenta edges decreases with each recolouring.
Let p be a point that is being recoloured at a certain step along a recolouring sequence. By definition, at least two
edges incident to p need to be magenta. These edges change to a solid colour after the recolouring of p. Before p is
recoloured, at most one edge of solid colour can be incident to it given that deg(p) ≤ 3. This edge, if it exists, will
become magenta. Therefore, the number of magenta edges decreases by at least one with each recolouring. As the
initial number of magenta edges is O(n), the number of recolourings is also O(n). ¤

Lemma 3 Let T be a tree drawing, and R a recolouring sequence of T with binary history graph BH. BH has no
directed or undirected cycles. Therefore, BH is a forest of trees.

Proof. Since BH is a subgraph of the history graph of R, BH is also a DAG, by Observation 1. Therefore, there
are no directed cycles in BH. Any undirected cycle in BH would have at least one node r with two outgoing edges
and one node s with two incoming edges. For the sake of contradiction, we assume that there exists such a cycle, C,
in BH.

Consider the function f : R∗ → V (T )∗ such that f(r1, r2, . . . , rk) = p(r1), p(r2), . . . , p(rk), ri ∈ R, 1 ≤ i ≤ k. In
particular, f maps a path in BH to a path in T . Let P1 and P2 be the two undirected paths that connect r and s
in C. By the definition of binary history graph, the outgoing edges of r are incident to nodes t1 and t2 such that
p(t1) 6= p(t2). Thus, |C| > 2. Without loss of generality, let t1 be in P1 and t2 be in P2. Then paths f(P1) and f(P2)
are different at points p(t1) and p(t2). This implies that there are two different paths in T connecting p(r) and p(s).
Thus, we establish a contradiction. ¤

Theorem 4 Let T be a tree drawing with n bi-chromatic points. The length of any recolouring sequence of T is
O(n).

Proof. Let R be any recolouring sequence of T , and let BH be the binary history graph of R. In order to prove
this theorem we show that |V (BH)| = |R| is O(n). Let Vk(BH) denote the set of nodes of degree k in BH, and
Vk+(BH) be the set of nodes of degree at least k in BH. For accounting purposes, we split the nodes of BH into
four classes: V0(BH), V1(BH), V2(BH), and V3+(BH).

Nodes of degree 0 and 1 are all first-time recolourings (sinks) according to the definition of binary history graph,
since these have 0 outgoing edges. Also, nodes of degree 2 are either sinks or sources because internal nodes have
degree at least 3, that is, one or more incoming edges and two outgoing edges. The following transformation removes
the sources of BH such that, in the resulting graph, all nodes of degree 2 are guaranteed to be sinks.

Let H ′ be a copy of BH, except that every source r and outgoing edges (r, t1) and (r, t2) in BH are replaced by
the edge (t1, t2) in H ′. We already know, from Lemma 3, that there are no undirected cycles in BH. Therefore,
edges (t1, t2) or (t2, t1) could not have existed in BH. Notice that one edge is added in H ′ for each node removed.
Thus,

|V (BH)| ≤ |V (H ′)|+ |E(H ′)| ≤ 2|V (H ′)| −m, (1)

where m is the number of connected components of H ′, given that H ′ is a forest of trees. The degrees of all the
nodes remaining in H ′ is preserved. Therefore, V0(H ′) = V0(BH), V1(H ′) = V1(BH), and V2(H ′) only consist of
sink nodes. At most n nodes can be sinks since at worst all nodes are recoloured for the first time. Consequently,

|V0(H ′)|+ |V1(H ′)|+ |V2(H ′)| ≤ n. (2)

Thus, a linear bound on |V3+(H ′)| entails a linear bound on |V (H ′)|. We derive such bound in what follows. From
properties of graphs and, in particular, of forests of trees,

∑

r∈V (H′)

deg(r) = 2|E(H ′)| = 2|V (H ′)| − 2m = 2(|V0(H ′)|+ |V1(H ′)|+ |V2(H ′)|+ |V3+(H ′)|)− 2m. (3)
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According to the definitions of Vk and Vk+ ,
∑

r∈V (H′)

deg(r) ≥ |V1(H ′)|+ 2|V2(H ′)|+ 3|V3+(H ′)|. (4)

Equations (3) and (4) lead to

|V3+(H ′)| ≤ 2|V0(H ′)|+ |V1(H ′)| − 2m ≤ 2(|V0(H ′)|+ |V1(H ′)|) (5)

Combining this with (2) we obtain
|V3+(H ′)| ≤ 2n. (6)

Finally, from (1), (2), and (6) we have

|V (BH)| ≤ 2|V (H ′)| −m ≤ 2(|V0(H ′)|+ |V1(H ′)|+ |V2(H ′)|+ |V3+(H ′)|) ≤ 6n (7)
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