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Introduction

We have all heard numerous melodies, whether they come from commercial

jingles, jazz ballads, operatic aria, or any of a variety of different sources. How a

human detects similarities in melodies has been studied extensively (Martinez 2001;

Hofmann-Engl 2002; Müllensiefen 2004). There has also been some effort in

modeling melodies so that similarities can be detected algorithmically. Some results

in this fascinating study of musical perception and computation can be found in a
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collection edited by Hewlett and Selfridge-Field (Hewlett 1998).

Similarity measures for melodies find application in content-based retrieval

methods for large music databases such as query by humming (QBH) (Ghias 1995; Mo

1999) but also in other diverse applications such as helping prove music copyright

infringement (Cronin 1998). Previous formal mathematical approaches to rhythmic

and melodic similarity, such as the one taken in this paper, are based on methods

like one-dimensional edit distance computations (Toussaint 2004), approximate

string-matching algorithms (Bainbridge 1999; Lemström 2000), hierarchical

correlation functions (Lu 2001), two-dimensional augmented suffix trees (Chen

2000), transportation distances (Typke 2003; Lubiw 2004), and maximum segment

overlap (Ukkonen 2003). 

Ó Maidín  (Ó Maidín  1998) proposed a geometric measure of the difference

between two melodies, aM  and bM . The melodies are modelled as monotonic

pitch-duration rectilinear functions of time as depicted in Figure 1. This rectilinear

representation of a melody is equivalent to the triplet melody representation in (Lu

2001). Ó Maidín  measures the difference between the two melodies by the minimum

area between the two polygonal chains, allowing vertical translations. The area

between two polygonal chains is found by integrating the absolute value of the

vertical 1L  distance between aM  and bM  over the domain Θ . Arkin et al. (Arkin

1991) show that the minimum integral of any distance pL  (p≥1) between two

orthogonal cyclic chains, (allowing translations along Θ  and z) is a metric. 

In a more general setting such as music retrieval systems, we may consider

matching a short query melody against a larger stored melody. Furthermore, the

query may be presented in a different key (transposed in the vertical direction) and

in a different tempo (scaled linearly in the horizontal direction). Francu and Nevill-

Manning (Francu 2000) compute the minimum area between two such chains, taken

over all possible transpositions. They do this for a constant number of pitch values
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and scaling factors, and each chain is divided into m and n equal time-steps. They

claim (without describing in detail) that their algorithm takes O(nm) time, where n

and m are the number of unit time-steps in each query. This time bound can be

achieved with a brute-force approach. 

Figure 1: The first two measures of a well known melody are shown below our

representation using an orthogonal polygonal chain.

In some music domains such as Indian classical music, Balinese gamelan music

and African music, the melodies are cyclic, i.e. they repeat over and over. In Indian

music the rhythmic cycles (meter) are called talas (Morris 1998). If timbre is added to

the talas in the form of drum sounds we obtain what are called thekas, which may be

considered in effect as cyclic melodies (Clayton 2000). Such cyclic melodies are also

a fundamental component of African and Balinese music (Montfort 1985). Two such

monophonic melodies may be represented by orthogonal polygonal chains on the

surface of a cylinder, as shown in Figure 2. This is similar to Thomas Edison ’s

cylinder phonographs, where music is represented by indentations around the body
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of a tin foil cylinder.

Figure 2:  Two orthogonal periodic melodies.

This paper is an extension of the material presented in (Aloupis 2003). We

describe two algorithms to find the minimum area between two given orthogonal

melodies, aM  and bM  of size n and m respectively (n>m). The algorithms may be

used for cyclic melodies as well as in the context of retrieving short patterns from a

database (open planar orthogonal chains). Apart from minor details, there is no

difference between the cyclic and open cases. We have chosen to describe the

algorithms for the case where the melodies are cyclic. The first algorithm assumes

that the Θ  direction is fixed, and runs in O(n) time. The second algorithm finds the

minimum area when both the z and Θ  relative positions may be varied. We prove

that it runs in O(nmlogn) time. In each case, we assume that the edges defining aM

and bM  are given in the order in which they appear in the melodies. Finally we

discuss natural extensions, both for the polygonal description of melodies and for

the types of queries.

Minimization with Respect to z Direction

In the first algorithm, we will assume that both melodies are fixed in the Θ

direction. Without loss of generality, we will assume that melody aM  is fixed in

Computer Music Journal



Aloupis, G., and others 5

both directions, so all motions are relative to aM .

To see how the area between the two melodies changes as bM moves in the z

direction, consider a set of lines defined by all vertical edges of the melodies as

shown in Figure 3. This set of lines partitions the area between the melodies into

rectangles iC , i=1,…, k, each defined by two vertical lines and two horizontal edges,

one from each melody. Note that k is at most 
2
mn +

. The area between aM  and bM

is the sum of the areas of all iC . If bM  starts completely below aM  and moves in the

positive z direction, then for any given iC  the lower horizontal edge (from bM ) will

approach the upper fixed horizontal edge while the area of iC  decreases linearly.

This happens until the horizontal edges are coincident (and the area of iC  is zero).

Then the upper horizontal edge (now from bM ) will move away from the lower

fixed horizontal edge while the area of iC  increases linearly.

 

Figure 3:  Contribution of 4C to area calculation.

We will consider the vertical position of bM to be the z-coordinate of its first

edge. We define z=0 to be the position where this edge overlaps the first edge of

aM . Let )(zAi  denote the area of iC  as a function of z. Define iz  to be the coordinate

at which 0=iA . These k positions of bM  where some iA  becomes zero will be called

z-events. The slope of )(zAi  is determined by the length of the horizontal edges of

iC . The total area between aM  and bM  is given by )()(
1

zAzA k

i i∑ =
= . Note that since
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)(zA  is the sum of piecewise-linear convex functions, it too is piecewise-linear and

convex. Furthermore its minimum must occur at a z-event.

The function )(zA  is given by aibii zzwzA −= ∑)(  , where biz  is the vertical

coordinate of bM  in iC , aiz  corresponds to aM , and iw  is the weight (width) of iC ,

as shown in Figure 3. Let iα  denote the vertical offset of each horizontal edge in bM

from 1bz . Thus we have ibbi zz α+= 1 , and )()( 1 iaibi zzwzA α−−= ∑ . Finally, notice

that the term iaiz α−  is equal to iz . Thus we obtain 1)( bii zzwzA −= ∑  . This is a

weighted sum of distances from 1bz  to all the z-events. The minimum is the

weighted univariate median of all iz  and can be found in )(kO  time (Reiser 1978).

This median is the vertical coordinate that 1bz  must have so that )(zA  is minimized.

Once this is done, it is straightforward to compute the sum of areas in )(kO  time.

Recall that k is at most 
2
mn + . Therefore, a minimum for )(zA  can be computed in

)(nO  time.

Minimization with Respect to z and Θ Directions

If no vertical edges among aM  and bM  share the same Θ  coordinate, then bM

may be shifted in at least one of the two directions ± Θ  so that the sum of areas does

not increase. This means that in order to find the global minimum, the only Θ

coordinates that need to be considered are those where two vertical edges coincide.

Thus our first algorithm may be applied )(nmO  times to find the global minimum

in a total of )( 2mnO  time. We now propose a different approach to improve this time

complexity.

As described in the previous section, for a given Θ , the area minimization

resembles the computation of a weighted univariate median. When we shift bM  by

∆Θ , we are essentially changing the input weights to this median. Some iC  grow in
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width, some become narrower, and some stay the same width. As we keep shifting,

at Θ  coordinates where vertical edges coincide, we have the destruction of a iC  and

creation of another iC . An important observation is that all iC  grow (or shrink) at

the same rate.

Let us store the z-events and their weights in the leaves of a balanced binary

search tree. Each leaf represents one iC . The leaves are ordered by the value iz .

Each leaf also has a label to distinguish between the three types of iC ; those that are

growing, shrinking, or unaffected when bM  is shifted infinitesimally in the positive

Θ  direction. At every node with subtree T we store: (i) TW , the sum of weights of all

leaves in T, and (ii) D, the number of growing leaves minus the number of

shrinking leaves in T.

The weighted median of all iz  may be calculated by traversing the tree from root

to leaf, always choosing the path that balances the total weight on both sides of the

path. The time for this is )(logkO .

Suppose that we shift bM  by some offset ∆Θ , which is small enough such that

no vertical edges overlap during the shift. Each iw  belonging to a growing leaf must

be increased by ∆Θ , and each iw  belonging to a shrinking leaf must be decreased

by this amount. Instead of actually updating all our inputs, we just maintain a

global variable ∆Θ , representing the total offset in the Θ  direction. The total weight

of a subtree T is now ∆Θ+ DWT .

When we shift to a position where two vertical edges share the same Θ

coordinate, we potentially eliminate some iC , create a new iC , or change type of iC .

The number of such changes is constant for each pair of collinear vertical edges. The

weight given to a created leaf must equal ∆Θ− . Each of these changes involves

)(logkO  work to update the information stored in the ancestors of a newly

inserted/deleted/altered leaf. There are )(nmO  such instances where this must be

done and where the median must be recomputed, so the total time to compute all
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candidate positions of bM  is )log( nnmO .

At every Θ  coordinate where we recalculate the median, we also need to

calculate the integral of area between the two melodies. For a given median *z , the

area summation for those iC  for which izz >*  has the form )( * ii zzw∑ − .

This may be calculated in )(logkO  time if we know the value of this summation

for every subtree. In order to do this, we store some additional information at every

subtree T. Specifically, the area is given by 

         ∑ ∑∆Θ−−∆Θ+ iiiT IzzwDWz )()(* , 

where in the second summation I takes the values (+1, 0, -1) for growing,

unchanged and shrinking leaves respectively. These two summations are the

additional parameters that need to be stored, and they may be updated in )(logkO

time at every critical Θ  coordinate.

We must also perform a similar )(logkO  time calculation of )( *∑ − zzw ii , for all

*zzi > . No additional parameters are needed for this.

Thus at every critical Θ  position we can calculate the median and integral of

area in )(log)(log nOkO =  time. This implies that a relative placement such that the

area between the melodies is minimized can be computed in )log( nnmO  time.

The analysis above may be used to obtain the same result for the problem of

matching two planar orthogonal monotonic open chains. Clearly if we are only

interested in varying one direction, an optimal placement may be found in linear

time. If the direction of monotonicity is the x-axis, then this problem is more

interesting if one of the two chains has a shorter projection onto the x-axis. This

“shorter”  chain reminds us of a short motif that we might search for in a larger

database of music. For this problem, we measure area only within the common

domain of the two chains along the x-axis. Naturally, the projection of the shorter

chain must be entirely covered by the projection of the longer chain. 

Arkin et al. (Arkin 1991) showed that two polygonal shapes may be compared
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by parametrizing their boundary lengths and examining their orientation

differences. They showed that their measure, which is invariant to scaling, rotation

and translation, can be computed by finding the minimum integral of the vertical

distance between two orthogonal chains, which are constructed in a preprocessing

step. In fact some of their techniques are similar to those given in this section.

However, they chose to use the 2L  distance (as opposed to the 1L  distance used

here), for which the optimal z-position at any Θ  can be computed in )1(O  time. The

complexity of their algorithm is dominated by sorting the )(nmO  critical Θ  events.

They indicated that their algorithm offers no improvement over a )( 3nO  time brute-

force approach for the 1L  metric. 

Extensions

Higher Dimensions

Consider a simple orthogonal open chain which is monotone with respect to the

x-axis. Furthermore, at any particular x-coordinate suppose that the chain has at

most two edges (in the y- and/or z-directions). This is an extension of the melody

representation which we have seen so far. The x-axis still represents time, but

perhaps now the other axes might represent pitch, loudness, timbre, or chord

density. In the plane, the measurement made was an integral of the pitch (height)

difference taken over a domain in the x-axis. Here, we still wish to minimize an

integral of the distance between two chains over all common x-coordinates.

Whether this should be Euclidean distance or perhaps the 1L  distance is debatable.

The latter is definitely easier to compute. Suppose that we only allow motions of the

chains aM  and bM  in the y- and z-directions. Minimizing the sum of pair-wise

Euclidean distances is equivalent to the Weber problem, which involves finding a
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point with minimum sum of distances to points in a given set. It is not possible to

find an exact solution to the Weber problem (also known as the generalized Fermat-

Torricelli problem; see (Groß  1998)). Using the 1L  metric, the function to minimize

is )( aibiaibii yyzzw −+−∑ . This may be split into two terms,

∑∑ −+− aibiiaibii yyWzzw . Thus we just have to make two univariate median

computations to find the optimal (y, z) placement for a particular relative position of

the two chains in the x-direction. In dR  we can accomplish this task in )(dnO  time.

The decoupling of the two coordinates allows us to update each median separately

at every critical x coordinate. In 3R  there are still )(nmO  critical x coordinates and

)( mnO +  weights/leaves, so the time complexity is the same as for planar chains. If

we let n and m be the total number of edges parallel to the x-axis for two chains,

then in dR  the time complexity becomes )log( nnmdO , using )(dnO  space. Note that

only these edges are significant in any of the computations we have made so far.

Scaling

Here we consider the effect of scaling planar chains, either in the vertical or

horizontal directions.

If we shrink the shorter chain horizontally, the domain of the integral becomes

smaller, so the total area will tend to zero eventually. How should we deal with

this?  It seems reasonable to normalize by computing the total area over the domain

of the smaller chain. It is equivalent to fix the shorter chain at unit domain length

and modify the larger chain instead. Its domain would expand from unit length to

some value where its narrowest strip has unit width.

Let an x-value be an x-coordinate where there are vertical edges from both

chains. For a particular scaling value we know that the optimal placement of the

larger chain occurs when we have an x-value. This follows from the arguments
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given in section 2. Suppose that somehow we know the optimal scaling factor.

Assume that there is only one x-value and we know which two vertical edges are

aligned. Now we can keep scaling the large chain while using the x-value as an

“anchor”.  One of the two scaling directions will improve the area minimization, at

least until we obtain another x-value. Thus for the scaling method proposed above,

the optimal scaling of the larger chain occurs at a position where two or more x-

values occur.

This means that we have )( 22mnO  candidate configurations for the larger chain.

Thus a brute-force algorithm to find the optimal configuration (and vertical

position) would take )( 23mnO  time using )(nO  space. Our result also applies to

vertical scaling. In this case a brute-force algorithm would have a time complexity

of )log( 33 nmnO , since we would search along Θ  for every scaling factor that aligns

two pairs of horizontal edges.

Non-orthogonal Chains

In the preceding sections it is assumed that a melody may be divided into

intervals, and within each interval the pitch (or volume/timbre) remains constant.

In a more general setting, these features may vary within each interval. Non-

orthogonal chains are relevant in a variety of contexts. In many types of music it is

relevant to consider melody in a more general sense than the discrete, static pitches

of MIDI or common Western music notation. This is particularly true for example in

Flamenco music as well as Indian music, where performance expressiveness of the

voice plays an important role. A continuous change in pitch also reflects effects such

as glissandi in Western performance. In such applications continuous pitch

variation is important (Battey 2004). Furthermore, in other applications such as

signal-to-score music transcription, and pitch tracking in real-time interactive
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improvisation systems, the input is continuous (Kapanci 2005; Dobrian 2004).

A further step in this direction is to consider monotonic piecewise linear chains.

Consider two such planar chains. Let us divide the plane into strips, just as we had

for orthogonal chains. In this case, a vertical boundary is placed at every vertex, as

shown in Figure 4.

Figure 4:  Two monotone chains and their strips.

Thus within every strip we have two linear segments. Suppose we vary only the

relative pitch of the chains. As one chain is moved down from infinity, within a

given strip the area decreases linearly until the two segments touch inside the strip.

Then the area decreases quadratically until the midpoints of the segments intersect.

Of course, the reverse occurs as we keep moving the chain down. The overall area

function of each strip iC  is now a symmetric convex function, which is part linear

and part quadratic (around the symmetric point). The total area is a sum of n

functions, such as those shown in Figure 5.

The area function is convex and piecewise quadratic with )(nO  inflection points.

Specifically, in the aggregate function an inflection point will exist only at a

coordinate where some individual function changes from linear to quadratic. There

are two such points per individual function. Note that the minimum of the
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aggregate function need not occur at an inflection point, unlike the case of

orthogonal chains. Now, it is possible for the minimum to exist between two

consecutive inflection points. This would be the only region between two successive

inflection points where the function is not monotone.

Figure 5:  A set of area functions from the iC  strips.

To compute the minimum of the aggregate function, we give the following

algorithm: 

1. Let R be the set of individual area functions. Let F

be a single quadratic term, initialized at zero. 

2. Compute 1Q , the median of the x-coordinates of the

minima of all functions in R, as shown in Figure 6. 

3. Compute the value and gradient of the total area

function at 1Q , by querying F and all functions in R. If

not at the global minimum, assume without loss of

generality that the minimum is to the left of 1Q . 

4. For the subset of functions in R whose minima are to

the right of 1Q , compute the median 2Q  of their left
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inflection points. 2Q  splits the subset into the left

group and the right group. 

5. If 12 QQ ≥ , as shown in Figure 7, replace all

functions in the right group with a single linear term,

which is a summation of all individual left-hand linear

terms. Update F by adding this term to it. Remove the

right group from R. 

6. Else if 12 QQ < , as shown in Figure 8, compute the

gradient of the total function at 2Q . If the global

minimum is to the left of 2Q , follow the instructions of

step 5 on the right group. Otherwise if the minimum is

between 2Q  and 1Q , replace all functions in the left

group with a single quadratic term, which is a summation

of all individual quadratic terms. Then update F and

remove the left group from R. 

7. Go to step 2. 

Figure 6:  The median 1Q  of function minima.
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The algorithm does )(RO  work in each iteration, and a constant fraction of R is

removed each time. The total time is )(nO , by a simple geometric series summation,

given in (Cormen 2001). Thus in linear time we can compute the minimum area

between two x-monotone chains, found over all vertical translations.

Figure 7:  The median 2Q  of left inflection points.

Figure 8:  2Q  to the left of 1Q .

Updating the aggregate function as we shift one of the chains along the x-axis
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appears to be non-trivial. It is no longer true that the optimal position must occur

when vertices from each chain are aligned vertically. Also, when we make a small

shift along the x-axis, not only do the two linear parts of each individual function

change slope, but the center of symmetry of each function also may shift (Recall that

these are functions of the z-coordinate). These changes depend on the slopes of our

chains within each strip and are not difficult to compute on an individual basis.

However understanding their aggregate effect is a different matter. To rephrase,

each strip now has three “z- events” instead of one (the two boundaries between

linear and quadratic forms, plus the center of symmetry). To make things worse, the

z-events change position as a chain is shifted along Θ . So if a tree is used to

maintain the median, it will be necessary not only to insert/delete leaves but also to

rearrange the order of leaves (to say the least).

Integer Weights/Heights

Here we discuss the cases where only certain pitches (heights) and/or weights

are allowed.

If there are )1(O  height differences allowed, we can sort all critical points in

)log( nnmO , and sweep along each height difference horizontally, updating the area

function in )1(O  time per critical point (i.e. )(nmO  per height difference), so the time

complexity is dominated by the sorting step. Even in the simplest case, where we

just wish to compute the minimum area while keeping z fixed, we do not know how

to avoid sorting all critical positions.

If all weights are equal (i.e. we have evenly spaced sampling of melodies), then

each median computation takes )(mO  time and there are )(nO  critical positions.

Thus a brute force approach takes )(nmO  time. A direct implementation of our tree

algorithm would take )log( nnmO  time, since at each of the )(nO  critical positions
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we would have to update all )(mO  leaves of our tree. It is possible that this can be

greatly improved.

Conclusion

We have given efficient algorithms for computing the minimum area between

two polygonal chains, which is a known method of comparing melodies. Other

sweep-line algorithms for melodic similarity exist (for example, (Lubiw 2004;

Ukkonen 2003)), however ours is meant to handle a continuous spectrum of pitch

and time. We do not assume a fixed set of allowed pitch or time differences. On the

other hand, we do assume that the input melodies are monophonic. Extending these

methods to polyphonic melodies or arbitrarily complex pitch functions is an

interesting challenge for future study.
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