
Computing a Geometri Measure of the Similarity Between two MelodiesGreg Aloupis� Thomas Fevensy Stefan Langermanz Tomomi Matsuix Antonio Mesa{Yurai Nu~nez{ David Rappaportk Godfried Toussaint�AbstratConsider two orthogonal losed hains on a ylinder.The hains are monotone with respet to the angle �.We wish to rigidly move one hain so that the totalarea between the two hains is minimized. This is ageometri measure of similarity between two repeatingmelodies proposed by �O Maid��n. We present an O(n)time algorithm to ompute this measure if � is not al-lowed to vary, and an O(n2 logn) time algorithm forunrestrited rigid motions on the surfae of the ylin-der.1 IntrodutionWe have all heard numerous melodies, whether theyome from ommerial jingles, jazz ballads, operatiaria, or any of a variety of di�erent soures. How ahuman detets similarities in melodies has been studiedextensively [11, 7℄. There has also been some e�ort inmodeling melodies so that similarities an be detetedalgorithmially. Some results in this fasinating studyof musial pereption and omputation an be found ina olletion edited by Hewlett and Selfridge-Field [6℄.Similarity measures for melodies �nd appliationin ontent-based retrieval methods for large musidatabases suh as query by humming (QBH) [5, 12℄but also in other diverse appliations suh as helpingprove musi opyright infringement [3℄. Previous workon melodi similarity is based on methods like approxi-mate string-mathing algorithms [1, 8℄, hierarhial or-relation funtions [9℄ and two-dimensional augmentedsuÆx trees [2℄.�O Maid��n [10℄ proposed a geometri measure of the�Shool of Computer Siene, MGill University.fathens,godfriedg�uni.s.mgill.ayDepartment of Computer Siene, Conordia University.fevens�s.onordia.azCharg�e de Reherhes du FNRS, D�epartementd'Informatique, Universit�e de Bruxelles. Ste-fan.Langerman�ulb.a.bexDepartment of Mathematial Informatis, Graduate Shoolof Information Siene and Tehnology, University of Tokyo.tomomi�misojiro.t.u-tokyo.a.jp{Faultad de Matematia y Computaion, Universidad de laHabana. tonymesa�matom.uh.u , yurainr�yahoo.omkShool of Computing, Queen's University.daver�s.queensu.a

distane between two melodies, Ma and Mb. Themelodies are modelled as monotoni pith-duration re-tilinear funtions of time as depited in Figure 1. �OMaid��n measures the distane between the two melodiesby the area between the two polygonal hains. This re-tilinear representation of a melody is equivalent to thetriplet melody representation in [9℄.In a more general setting suh as musi retrieval sys-tems, we may onsider mathing a short query melodyagainst a larger stored melody. Furthermore, the querymay be presented in a di�erent key (transposed in thevertial diretion) and in a di�erent tempo (saled lin-early in the horizontal diretion). Franu and Nevill-Manning [4℄ ompute the minimum area between twosuh hains, taken over all possible transpositions. Theydo this for a onstant number of pith values and sal-ing fators, and eah hain is divided into m and nequal time-steps. They laim (without desribing in de-tail) that their algorithm takes O(nm) time, where nand m are the number of unit time-steps in eah query.This time bound an be ahieved with a brute-fore ap-proah. In this paper we solve a similar problem, in amore general setting.In some musi domains suh as Indian lassial musi,Balinese gamelan musi and Afrian musi, the melodiesare yli, i.e. they repeat over and over. In Indian mu-si these yli melodies are alled talas [13℄. Two suhmonophoni melodies may be represented by orthogo-nal polygonal hains on the surfae of a ylinder, asshown in Figure 2. This is similar to Thomas Edison'sylinder phonographs, where musi is represented by in-dentations around the body of a tin foil ylinder. Weonsider the problem of omputing the minimum areabetween two suh hains of size n, over all translationson the surfae of the ylinder.We present two algorithms to �nd the minimum areabetween two given orthogonal melodies with periods of2�. The �rst algorithm will assume that the � diretionis �xed. The seond algorithm will �nd the minimumarea when both the z and � relative positions may bevaried. We will assume that the verties de�ning Maand Mb are given in the order in whih they appear inthe melodies.1



Ma �zMb Figure 1: The area between two melodies, Ma and Mb.z �
MbMaFigure 2: Two orthogonal periodi melodies.2 Minimization with respet to z diretionIn the �rst algorithm, we will assume that both melodiesare �xed in the � diretion. Without loss of generality,we will assume that melody Ma is �xed in both dire-tions, so all motion is relative to Ma. In Figure 1 weshow the area between two melodies, and a small shiftof Mb in the z diretion.To see how the area between the two melodies hangesas Mb moves in the z diretion, onsider a set of linesde�ned by all vertial segments of the melodies as shownin Figure 3. This set of lines partitions the area betweenthe melodies into quadrangles Ci, i = 1; : : : ; k, eah de-�ned by two vertial lines and two horizontal segments,one from eah melody. Note that k is at most n. Thearea between Ma and Mb is the sum of the areas of allCi. If Mb starts ompletely below Ma and moves inthe positive z diretion, then for any given Ci the lowerhorizontal segment (from Mb) will approah the upper�xed horizontal segment while the area of Ci dereaseslinearly. This happens until the horizontal segments areoinident (and the area of Ci is zero). Then the upperhorizontal segment (now fromMb) will move away fromthe lower �xed horizontal segment while the area of Ciinreases linearly.We will onsider the vertial position of Mb to be thez-oordinate of its �rst edge. When this edge overlapsthe �rst edge of Ma, we have z = 0. Let Ai(z) denotethe area of Ci as a funtion of z. At zi, Ai(zi) = 0.These k positions of Mb where an Ai(z) is zero will bealled z-events. The slope of Ai(z) is determined by the

length of the horizontal segments of Ci. The total areabetween Ma and Mb is given by A(z) = Pki=1Ai(z).Note that sine A(z) is the sum of pieewise-linear on-vex funtions, it too is pieewise-linear and onvex. Fur-thermore its minimum must our at a z-event.Theorem 1. A minimum for A(z) an be omputed inO(n) time.Proof. The funtion A(z) is given by A(z) =Pwijzbi�zaij , where zbi is the vertial oordinate ofMb in Ci, zaiorresponds to Ma, and wi is the weight (width) of Ci,as shown in Figure 3. Let �i denote the vertial o�set ofeah horizontal segment in Mb from zb1. Thus we havezbi = zb1+�i, and A(z) =Pwijzb1�(zai��i)j. Finally,notie that the term zai � �i is equal to zi. Thus weobtain A(z) = Pwijzi � zb1j . This is a weighted sumof distanes from zb1 to all the z-events. The minimumis the weighted univariate median of all zi and an befound in O(n) time [14℄. This median is the vertialoordinate that zb1 must have so that A(z) is minimized.One this is done, it is straightforward to ompute thesum of areas in linear time.3 Minimization with respet to z and � diretionsIf no vertial segments among Ma and Mb share thesame � oordinate, then Mb may be shifted in at leastone of the two diretions �� so that the sum of areasdoes not inrease. This means that in order to �ndthe global minimum, the only � oordinates that needto be onsidered are those where two vertial segmentsoinide. Thus our �rst algorithmmay be applied O(n2)times to �nd the global minimum in a total of O(n3)time. We now propose a di�erent approah to improvethis time omplexity.As desribed in the previous setion, for a given �,the area minimization resembles the omputation of aweighted univariate median. When we shift Mb by ��,we are essentially hanging the input weights to thismedian. Some Ci grow in width, some beome narrower,and some stay the same width. As we keep shifting,at � oordinates where vertial segments oinide, wehave the destrution of a Ci and reation of another2



z
C4 �4
w4

zb4za4 MaMbz = 0z4 za4 � �4
Figure 3: Contribution of C4 to area alulation.Ci. An important observation is that the rate at whihthe hanging Ci grow or shrink is unique at any giveninstant.Let us store the z-events and their weights in theleaves of a balaned binary searh tree. Eah leaf rep-resents one Ci. The leaves are ordered by the value zi.Eah leaf also has a label to distinguish between Ci thatare growing, shrinking, or una�eted whenMb is shiftedin the positive � diretion. At every node with subtreeT we store:� GT : The number of leaves in T that represent grow-ing Ci.� W+T =Pwi : The sum of weights over growing Cileaves.� ST : The number of leaves in T that representshrinking Ci.� W�T = Pwi : The sum of weights over shrinkingCi leaves.� W 0T = Pwi : The sum of weights over una�etedCi leaves.This allows us to alulate the weighted median ofall zi, by traversing the tree from root to leaf, alwayshoosing the path that balanes the total weight on bothsides of the path. The time for this is O(log n).Suppose that we shift Mb by some o�set ��, whihis small enough suh that no vertial segments overlapduring the shift. Eah wi that ontributes to W+ mustbe inreased by ��, and eah wi that ontributes toW� must derease by this amount. Instead of atu-ally updating all our inputs, we just maintain a globalvariable representing the total o�set in the � diretion.The total weight of a subtree T is now given byW+T +GT��+W�T � ST��+W 0T .When we shift to a position where two vertial seg-ments share the same � oordinate, we potentially elim-inate some Ci, reate a new Ci, or hange type of Ci.The number of suh hanges is onstant for eah pair

of ollinear vertial segments. The weight given to areated leaf must equal ���. Eah of these hangesinvolves O(logn) work to update the information storedin the anestors of a newly inserted/deleted/altered leaf.There are O(n2) suh instanes where this must be doneand where the median must be reomputed, so the to-tal time to ompute all andidate positions of Mb isO(n2 logn).At every � oordinate where we realulate the me-dian, we also need to alulate the integral of area be-tween the two melodies. For a given median z�, the areasummation for those Ci for whih z� > zi has the formPwi(z� � zi).This may be alulated in O(logn) time if we knowthe value of this summation for every subtree. In orderto do this, we store some additional information at ev-ery node in our tree. Spei�ally, if we just onsider theontribution to this sum from leaves representing grow-ing Ci, we have P(wi + ��)(z� � zi). For a subtreeT , this beomes z�W+T +GT z����Pwizi���P zi.We see that the additional information that we muststore is Pwizi and P zi. To handle shrinking weights,we must also store these two summations taken over theshrinking Ci belonging to T . For una�eted weights, wejust need P zi. All of these stored values may be up-dated in O(logn) time when inserting/deleting leaves inthe tree. We must also perform a similar O(logn) timealulation ofPwi(zi�z�), for all z-events greater thanz�.Sine at every ritial � position we an alulate themedian and integral of area in O(logn) time, we obtainthe following theorem:Theorem 2. Given two orthogonal periodi melodiesof size n, a relative plaement suh that the area be-tween the melodies is minimized an be omputed inO(n2 logn) time.3
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