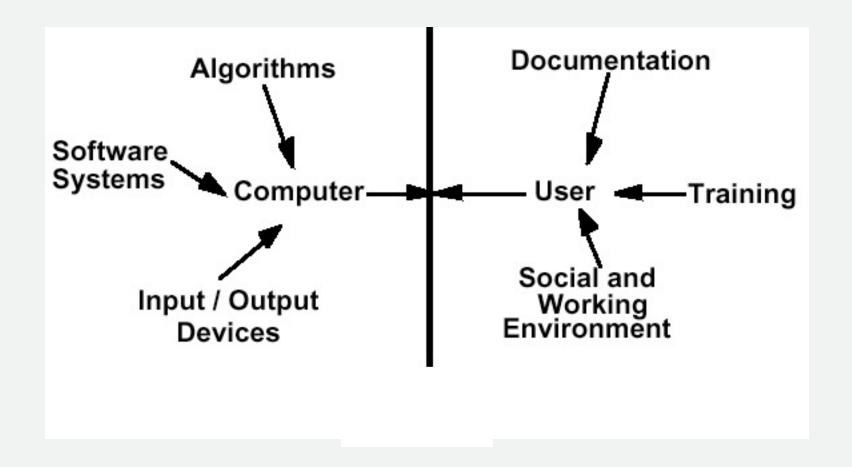
What is Human-Computer Interaction (HCI)?

- Study and development of computer-based interfaces with the express purpose of making them easier for humans to use
- HCl involves
 - —Study of humans using interfaces
 - Development of new applications for users
 - Development of new devices and tools for users

A Word of Caution



The following content is shared to give you a sense for what UX designers / researchers think about.

It is shared to help inform your future conversations – not to quiz you.

What is a User Interface?

Interfaces can be Hard to Learn

- Telephone on my desk
 - -E.g., buttons for "Ring Again", "Redial" ???
 - -Voice mail
 - •listen to message = 2
 - •delete message = 76
 - •save message = ???
 - incomplete prompts

Why are User Interfaces Poor?

- Inadequate training of people developing interfaces
- Diversity of knowledge required to design good interfaces
- Rapid technological advances
- Reluctance of companies to commit resources
- Poor management programmers do not speak with the user design team, and vice versa

Importance of Good User Interface Design

Motivating example: Breaking down Amazon's mega dropdown

Importance of Good User Interface Design

- Reduction in coding (labelling) costs
- High costs of interface problems
- Serious life-threatening errors
- Good interfaces sell products
- Increased productivity
- Prevention of work-related disorders

User Interface Code

- In a typical graphical user interface:
 - -Estimated 40-90 percent of code concerned with user interface
 - -Most estimates around 70 percent
 - -If done wrong, has to be redone
 - •If not fixed, cost passed on to users

User Interface Economics

- A good user interface may result in:
 - –Increased productivity
 - –Reduced training cost
 - —Preventable user errors
 - –Reduced employee turnover
 - –User satisfaction
 - –Higher quality products produced

Increased Productivity

	20 users
х	230 days
Х	100 screens per day
Х	10 sec per screen (savings)
=	1278 hours
	or 32 weeks

Reduced Training Costs

20	emp	loyees
----	-----	--------

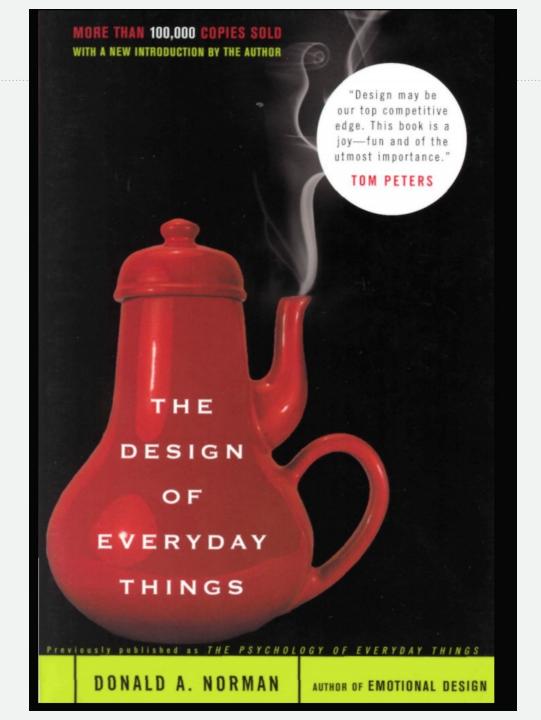
X 2 systems/applications per year

X 2 1/2 days per application

= 100 days or 20 weeks

Training and support often more costly than hardware and software

Preventable User Errors


X X	500 users 20 errors per year 15 minutes per error
=	2500 hours lost or 63 weeks

Serious Life-threatening Errors

- Airline crashed in 1996 into a mountain-side in Colombia killing all aboard.
 - –Pilot typed in "R" rather than full name of airport
 - -Guidance system took first airport in the list beginning with "R": wrong airport
 - —Plane ran into a mountain as result
- HCl can save lives.

Why Study User's Cognition?

- —A human-machine network can be regarded as a complex information-processing system
- —And users themselves are also complex information-processing systems
- —It is useful to know about users' information-processing capabilities, so that one can adapt information-processing capabilities of their tools to match!

USER EXPERIENCE DESIGN: Focus on the "I" in HCI

HCI: Underlying Disciplines

- FIF: Form Implements Function (Famous phrase: "Form follows function")
 - –Psychology, Sociology, Philosophy
- Function
 - —Physiology, Ergonomics
- Function & Form
 - -Industrial & Graphic Design, Sound Design, Cinema,
- Form & Function & Implementation
 - —Software Engineering
- Function & Implementation
 - -Electrical Engineering
 - Implementation

Schemas

There are three levels of control in schemas (Rasmussen, 1983):

-Skill-based

- Preprogrammed scripts that can be triggered
- •Routine tasks with automatic S/R,
- No execution feedback required

-Rule-based

- •General rules to be applied in different situations
- Task consists of repetitive skills, activated after rule selection
- •Stimuli are used in determining rule to trigger.

–Knowledge-based situations

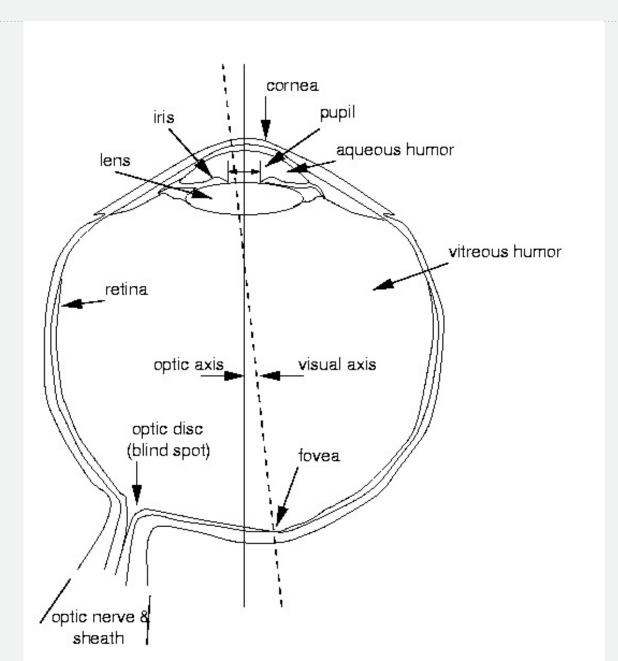
- No fixed rule exists
- Use of abstract knowledge to solve problem
- •Choose between alternative solutions and their consequences

Human Error

- What is an error?
 - –The failure of psychological functions
 - —In our context: such that it leads to not achieving our goals
- Due to
 - —The wrongful **selection** of a schema
 - -Or the wrongful execution of a schema
 - -Wrong design of system or organization

Two Types of Errors

Slips

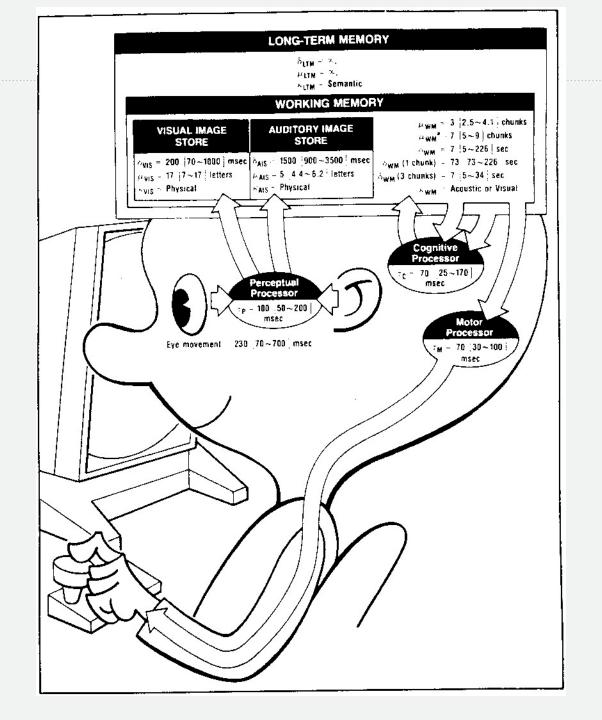

- —Errors in execution of a sub-schema that was correctly selected for execution
 - •E.g., hitting throttle instead of break
- -Skill-based, rule-based
- -Errors easily discovered

Mistakes

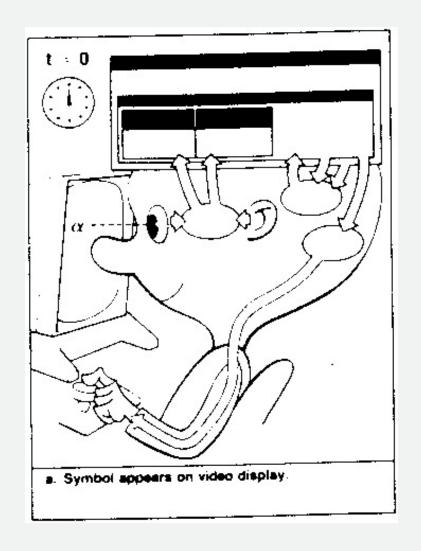
- -Triggering of the wrong rule, leading to execution of the wrong sub-schema
 - •E.g. Arrived to work and there is nobody there: it's a Bank Holiday!!!
- -Rule-based, knowledge-based
- -Errors only discovered when it is too late

The Eye

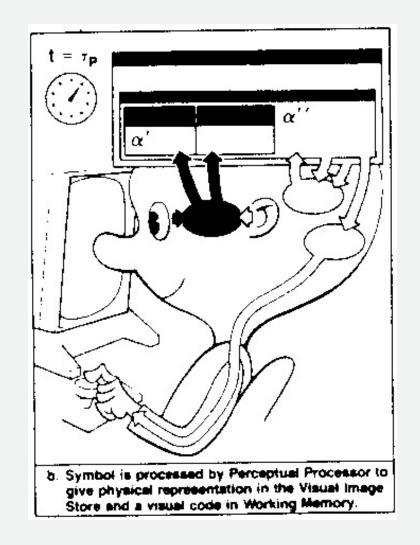
Acuity Requires Eye Movements

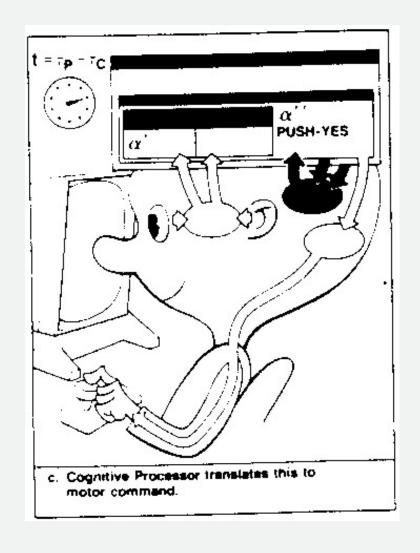

- Eye movements reposition the fovea
- Five main classes of eye movements
- Convergence/divergence: focus movements
- Smooth pursuit: smooth tracking movements
- Saccadic: ballistic movements
- Nystagmus: sawtooth movements while tracking
- Fixations (no movement)

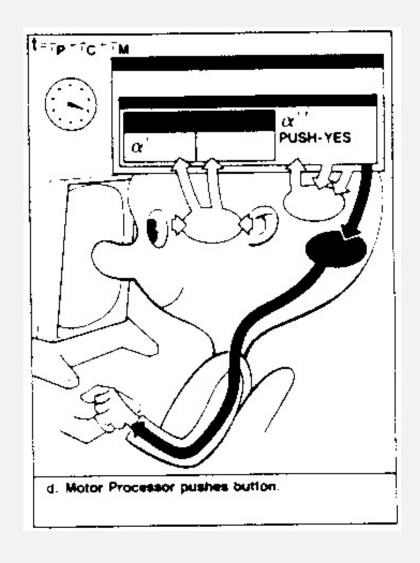
Weber's Law


- How Large Should a Quarter Be?
 - -Dime: 18 mm Nickel: 21 mm Quarter: 23.5 mm
 - -Difference between quarter and nickel big enough?
- Weber's law ΔS/S = k
 - -Just noticeable difference/size = constant

- Model Human
 Processor
- Card Moran & Newell (1983)







Three Basic Laws of HCI

- Power Law of Practice
- Hick's Law
- Fitts's Law

Power Law of Practice

- The time to perform a task on the nth trial follows a power law.
 - -People get better with practice, but will asymptote at a certain performance level.

Hick's Law

- Decision time increases with uncertainty about a decision to be made
 - Decision time increases logarithmically as number of choices increase

Fitts's Law

- Measurement of time to move something to a target (hand, mouse, head, ...)
 - A function of distance and target size
- Hick's Law explains this, to a degree:
 - -The further away/smaller the surface, the more decisions made
 - -The faster the feedback loop, the smaller time per decision

Summary

- Human-Computer Interaction
 - -It makes good economic sense
 - -It makes the user happier
 - -It makes a better product