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Structured Programming

On April 27, 2002, Ole-Johan Dahl formally received his share (along with Kristen Nygaard)
of the 2002 ACM Turing Award. Thirty years after the publication of the book Structured
Programming, we can finally say that all three of its authors are Turing Award laureates: Edsger
W. Dijkstra in 1972, C. A. R. Hoare in 1980, and Ole-Johan Dahl in 2002.

It is no exaggeration to say that Structured Programming was precisely what they were
awarded for (even though the book came out shortly after Dijkstra got his award): Dijkstra,
for being “one of the principal exponents of the science and art of programming languages in
general”; Hoare, for “his fundamental contributions to the definition and design of programming
languages”; and Dahl, for “ideas fundamental to the emergence of object oriented programming”.
In Chapter I, Dijkstra argues the case for program clarity through the use of good flow-control
constructs and step-wise refinement. In Chapter II, Hoare promotes advanced data types such
as records, unions, finite sets, and lists. In Chapter III, Hoare and Dahl together outline a
new, hierarchical way of structuring programs—which we now call object-oriented programming,
where “hierarchical” refers to class hierarchies.

Today all these are considered common sense by even first-year students, but you have to
understand that in 1972, when the like of FORTRAN and line-numbered BASIC ruled the minds
of programmers then, it took laborious exposition and eloquent argumentation to put forward
that there were better ways of structuring programs than GOTO, and richer ways of structuring
data than mere arrays. As always, it takes several giants to discover and point out something
obvious!

Faced with the immense difficulty of programming, Dijkstra was not completely pessimistic,
but instead found novel value in computers:

I would venture the opinion that as long as we regard them primarily as tools, we
might grossly underestimate their significance. Their influence as tools might turn
out to be but a ripple on the surface of our culture, whereas I expect them to have a
much more profound influence in their capacity of intellectual challenge!

And that explains why we have programming contests.
Enjoy.
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A Understanding Programs

If we want to understand a program, we can decompose it into a set of components, in which
each component performs a certain task. Dijkstra identified three types of decomposition: con-
catenation, selection, and repetition (see Figure A).
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S1; S2; ...; Sn

(a) Concatenation.

�?
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if ? then S1 else S2

(b) Selection.

?

S

while ? do S

(c) Repetition.

Figure 1: Three types of decomposition. Each component is enclosed with a dotted box.

Dijkstra writes, “These flowcharts also share the property of a single entry at the top and a
single exit at the bottom. They enable us to express that the action represented by the dotted
block is on closer inspection a time-succession of ‘a sufficient number’ of subactions of a certain
type.”

If a program is well-structured, such decomposition should be easy to do. Assuming you
are analyzing a big flowchart, and you have identified a number of components. You want to
enclose each component with a dotted box padded evenly with space. You can ignore the arrows
between flowchart elements by assuming that the dotted box will be large enough to enclose all
the arrows. Note that the boxes for the flowcharts above are not padded evenly with space, they
are for illustration only.

Input

The input starts with a line containing two numbers, n and g, which are the number of compo-
nents you want to enclose, and the padding length. Then n components follows. Each component
starts with a line containing the number r, which is the number of rectangles this component
has, followed by r lines. Each line has four numbers, xmin, ymin, xmax, ymax, indicating the
coordinates of the lower-left and upper-right corner of the rectangle. The sides of all rectangles
are parallel with either the x or y axis. All numbers are integers.

Output

For each component, output a line containing four numbers, indicating the coordinates of the
dotted box in the same way that rectangles are represented in the input.
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Sample Input

2 4
3
0 0 5 5
0 10 5 15
0 20 5 25
3
1 1 4 3
5 5 9 7
-2 10 4 12

Sample Output

-4 -4 9 29
-6 -3 13 16
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B Axioms for an Abstract Data Structure

An abstract data structure is called “abstract” because there is a line drawn, for the sake of
encapsulation, between the usage and the implementation; we call the line “interface” and “con-
tract”. The contract documents the operations provided, the parameter types and result types
of the operations, and above all, the external behaviour of the operations. If you use the data
structure, you do not need to know how it is implemented; you just assume it conforms to the
contract. If you implement the data structure, you do not need to know how it is used; you just
make sure it conforms to the contract. (If you work in solitude and do both sides, well, you go
multiple personalities.) In this way encapsulation is achieved.

The part about documenting external behaviour trips up many a programmer. This is what
makes it abstract, and at times unfamiliar. For example, in the contract for queues, you do not
say, “enqueuing x means creating a node to store x and putting it at the end of the linked list.”
The implementer may want to use a ring buffer instead; and even if it were a linked list, it would
not be externally accessible anyway. So what do you say? Well, a sensible data structure must
have some accessors, so you can say what is returned by an accessor in certain contexts, and that
is externally observable. For example, you can say,

• Right after enqueue x to an empty queue, head returns x.

• If a queue is empty, enqueue followed by dequeue will leave it empty again;

• otherwise, enqueue followed by dequeue is the same as dequeue followed by enqueue.

The latter two are relevant to external behaviour in this way: if you start with an empty queue,
then enqueue 1, then enqueue 2, then dequeue, then finally ask for head, the contract should
logically imply that 2 will be returned. Here is how: use the third rule to swap enqueue 2 and
dequeue, then use the second rule to cancel out enqueue 1 and dequeue, and now the first rule
says that 2 will be returned.

(Optional.) We can go one step further and replace natural language by mathematical
notation. The above rules may read:

q.isempty()⇒ q.enqueue(x).head() = x
q.isempty()⇒ q.enqueue(x).dequeue()= q
¬q.isempty()⇒ q.enqueue(x).dequeue() = q.dequeue().enqueue(x)

And the above logical deduction goes:

e.enqueue(1).enqueue(2).dequeue().head()

= e.enqueue(1).dequeue().enqueue(2).head()

= e.enqueue(2).head()

= 2

This demonstrates that contracts can be written and used algebraically.

The above rules do not specify erroneous situations such as when the queue is empty and you
read the head. Depending on the author of the contract, this may be handled either robustly
or in the garbage-in garbage-out manner. The robust approach adds another rule that says an
exception will be thrown. The garbage-in garbage-out way adds no rule, giving the implementer
complete freedom to do whatever he/she sees fit—garbage will be returned, programs will crash,
nations will fall, hit songs will be written, whole classes of students will be hypnotized, . . . You
are forewarned!1

This problem specifies the contract of a mysterious data structure T . You will implement it,
and we will test it. Here is the contract:

1UofT CS insider joke. Someone posted to the local newsgroup whining about difficult assignments, inadequate
teaching, etc., the usual whine. But it turned bizarre when he began to claim he was a prophet, he had caused
nations to fall, . . .
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• Operation P takes an integer parameter.

• Operation Q takes no parameter.

• Accessor G returns an integer.

(Being an accessor, it does not affect the data structure as far as the contract is concerned.
So for example “P 42 then G then Q” is the same as “P 42 then Q” apart from the act of
returning an integer in the middle.)

• P followed by Q is the same as doing nothing (apart from wasting time and draining my
laptop battery).

• Right after P n, G returns n.

(Optional.) Again the last two rules can be written algebraically:

t.P (n).Q() = t

t.P (n).G() = n

Input

The first line of the input is the number N ≤ 300 of operations and accessors you will read. The
next N lines are the operations and accessors, one per line.

Output

For each G in the input, output the return value. One per line.

Sample Input

10
P 42
P 24
G
Q
P 0
G
Q
G
G
Q

Sample Output

24
0
42
42
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C Grouping

You have just started a new job as a project manager. The previous project manager was very
strict, making all his (or her, you do not know) programmers follow a strict coding scheme
with lots of inline documentation. In particular, for each function, it was required to list at the
beginning the variables, types, and other functions it will use.

Now all your programmers have submitted their codes, and you want to merge all of them.
However, you do not know how to group them together, as one programmer’s code may depend
on the another programmer’s code. In other words, if code alpha needs code beta, you must put
beta ahead of alpha. Now the coding scheme comes in handy: you can use that information to
determine an ordering to merge all the codes.

Input

The input consists of pieces of code. Each piece takes one line of the input, started by a word
indicating the name of this piece. After the name there will be an integer p, followed by p words,
indicating the number of code pieces, and the names of the code pieces it needs. (Therefore a
code piece that does not depend on anything will have only its name followed by the number “0”.)
All number/words are separated by one space. The input ends when the first word is “END”.
No name will have more than 10 characters, and no code piece will have the name “END”.

Output

A correct output will be the names of the code pieces, one for each line, in the order of their
placement such that all dependencies can be satisfied. There will be no more than 10000 code
pieces. If there is more than one solution, output any solution. You may assume that the input
will have at least one possible solution.

Sample Input

tan 2 sin cos
cos 1 factorial
factorial 0
sin 1 factorial
log 0
END

Sample Output

log
factorial
sin
cos
tan
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D Type Check

A major advantage of high-level programming languages is the prevention of a large class of mis-
takes: type mismatches. For example, it is impossible to erroneously perform boolean operations
on strings, as the compiler would catch it. It is also impossible to absent-mindedly use integer
arithmetic instructions on floating-point numbers, as the compiler knows enough to choose the
right instructions when it produces machine code. In this problem, you will write a program to
catch the former kind of errors in a simple setting. You will be given simple expressions, and you
will determine if they are correct in terms of types.

The syntax of expressions is a prefix kind of notation—an operator and then its operands.
For example, instead of “1 + 2”, we write “+ 1 2”; and instead of “0 * (1 + 2)”, we write
“* 0 + 1 2”. Here is how you read the last one:

∗︸︷︷︸
operator

0︸︷︷︸
first

operand

+ 1 2︸ ︷︷ ︸
second
operand

As you can see, there is no complication resulting from precedence rules, parentheses, etc. Al-
though it is a bit harder for the human, it is a bit easier for the programmer, and it certainly
poses no problem to Master Yoda, so endure it you will!

Here is the syntax of expressions:

• Constants: true, false, non-negative integers such as 42, double-quoted things such as ""
and "hi" containing 0 or more letters and digits.

• Unary expressions: op e, where op is one of not, len, null; e is an expression.

• Binary expressions: op e f , where op is +, *, &&, ||, =, <=, ++; e and f are expressions.

• Ternary expression: op e f g, where op is one of cond, sub; e, f , and g are expressions.

Now you may wonder: doesn’t this syntax allow the nonsensical + 0 true, say? Yes, the
syntax specifies the kind of expressions you will read, and some of them will be nonsensical; it is
your job to determine which of them are nonsense. So here are the type rules:

• There are three types: booleans, numbers, strings.

• true and false are booleans.

• Non-negative integers are numbers.

• Double-quoted things are strings.

• not e is a boolean, but e must be a boolean.

• len e is a number, but e must be a string.

• null e is a boolean, but e must be a string.

• + e f is a number, but e and f must be numbers.

• * e f is a number, but e and f must be numbers.

• && e f is a boolean, but e and f must be booleans.

• || e f is a boolean, but e and f must be booleans.

• = e f is a boolean, and e and f can have any type, but they must have the same type.
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• <= e f is a boolean, but e and f must be numbers.

• ++ e f is a string, but e and f must be strings.

• cond e f g has the same type as f and g, but e must be a boolean, and f and g must have
the same type.

• sub e f g is a string, but e must be a string and both f and g must be numbers.

Input

The first line of the input is the number N ≤ 100 of expressions you will read. The next N lines
are the N expressions, one per line. Each expression takes at most 100 characters.

Output

For each expression, output a line yes if it satisfies the type rules; otherwise output a line no.

Sample Input

6
+ 0 * 1 2
+ 0 true
= + 0 1 * 1 2
= ++ "hello" "hi" sub "hellohi" 0 5
= ++ "hello" "hi" + 0 1
sub "hellohi" len "heya" cond && <= 0 1 not null "hi" + 0 1 * 0 1

Sample Output

yes
no
yes
yes
no
yes
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E Correctness II

In the practice problem, you contemplated the chance of getting a program to work in a simple
model, where correctness of components are mutually independent, and so you could just multiply
up all the probabilities. The reality is usually more complicated than that. If component Y uses
components X1 and X2 directly, perhaps Y does not work if X1 or X2 breaks, but Y has some
probability to work if both X1 and X2 work. It is fair to assume that we are given this probability,
denoted P (Y |X1 ∧ X2). Then the probability that Y works is given by:

P (Y ) = P (Y |X1 ∧ X2) × P (X1 ∧ X2)

Now P (X1 ∧ X2) is not always P (X1) × P (X2). Assume that X1 and X2 do not use each
other directly or indirectly. Let’s say X1 uses W1 and W2 directly, and X2 uses W ′

1 and W ′
2

directly. When W1, W2, W ′
1, W ′

2 all work, it is fair to say that X1 and X2 are independent in
this context. Using probability theory, this allows us to conclude:

P (X1 ∧ X2) = s × s′ × P (W1 ∧ W2 ∧ W ′
1 ∧ W ′

2)

where the first and second terms are given:

s = P (X|W1 ∧ W2)
s′ = P (X ′|W ′

1 ∧ W ′
2)

The third term can be computed by the same idea.
The foregoing can be generalized to X1 ∧ · · · ∧ Xn, W1 ∧ · · · ∧ Wm, etc.
You are to compute the probability that the main program works. The system is layered:

the main program alone is layer 0; components used by layer n constitute layer n + 1. Each
layer has at most 10 components. Component in the same layer do not use each other directly
or indirectly, so that a certain assumption above is satisfied.

Input

The input consists of up to 500 pieces of code. Each piece takes one line of the input, started by
a word indicating the name Y of this piece. After the name there will be an integer n, followed
by n words, indicating the number of code pieces, and the names Xi of the code pieces it uses
directly, followed by a floating-point number r = P (Y |X1 ∧ · · · ∧ Xn). (Therefore a code piece
that does not depend on anything will have only its name followed by the number “0” and then
the number r.) All number/words are separated by one space. The input ends when the first
word is “END”. No code piece will have the name “END”. There is a main program named
MAIN; it is not used by any other pieces.

Output

Output the probability that MAIN works.

Sample Input

tan 2 sin cos 0.9
cos 1 factorial 0.8
factorial 0 0.7
sin 1 factorial 0.85
log 0 0.95
MAIN 2 tan log 0.75
END

10



Sample Output

0.305235
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