
Predicting Change Propagation in Software Systems

Ahmed E. Hassan and Richard C. Holt
Software Architecture Group (SWAG)

School of Computer Science
University of Waterloo

Waterloo, Canada
{aeehassa,holt }@plg.uwaterloo.ca

ABSTRACT
Software systems contain entities, such as functions and vari-
ables, which are related to each other. As a software sys-
tem evolves to accommodate new features and repair bugs,
changes occur to these entities. Developers must ensure
that related entities are updated to be consistent with these
changes.

This paper addresses the question:How does a change in
one source code entity propagate to other entities?We pro-
pose several heuristics to predict change propagation. We
present a framework to measure the performance of our pro-
posed heuristics. We validate our results empirically using
data obtained by analyzing the development history for five
large open source software systems.

1 INTRODUCTION
Change propagation is a central aspect of software develop-
ment. As developers modify software entities such as func-
tions or variables to introduce new features or fix bugs, they
must ensure that other entities in the software system are up-
dated to be consistent with these new changes. For example,
if the interface for a function changes, its callers have to be
modified to reflect the new interface otherwise the source
code won’t compile nor link. This example of propagation is
easy to determine, but that is not always the case. Many hard
to find bugs are introduced by developers who did not no-
tice dependencies between entities, and failed to propagate
changes correctly.

The dangers associated with not fully propagating changes
have been noted and elaborated by many researchers. Parnas
tackled the issue of software aging and warned of the ill-
effects ofIgnorant Surgery, modifications done to the source
code by developers who are not sufficiently knowledgeable
of the code [25]. Brooks cautioned of the risk associated
with developers losing grasp of the system as it ages and
evolves [23]. Misunderstanding, lack of experience and un-
expected dependencies are some of the reasons for failing to
propagate changes throughout the development and mainte-
nance of source code.

Mis-propagated changes have a high tendency to introduce
hard to find bugs in software systems, as inconsistencies be-
tween entities (such as functions) increase. Researchers have

proposed various approaches to control the amount of change
propagation and to avoid hidden dependencies. These pro-
posals include, most notably, the ideas of information hid-
ing in designing systems by Parnas [24], the Object Oriented
(OO) paradigm which focuses on grouping related entities
in the same structure to ease modification and understand-
ing [29], and lately Aspect Oriented Programming (AOP)
which encapsulates concepts which crosscut the structures
defined by the OO paradigm [15].

Moreover, researchers have proposed tools and algorithms
to assist developers in understanding their software and de-
termining the extent of propagation for each change to the
source code. For example, dependency analysis algorithms
such as slicing [12] in association with entity dependency
browsers [17], software understanding tools and architec-
ture visualization tools [10] are used by developers and re-
searchers to maintain and evolve large complex long lived
industrial systems.

Program dependency relations, such ascall and use have
been proposed and used as indicators for change propaga-
tion. Thus if a functionA calls functionB, and B was
changed then functionA is likely to change as well. If func-
tion A were to change then all other functions that callA
may need to change as well. This ripple effect of change
progresses until no more changes are required to the source
code [33]. Given the central role of change propagation in
software development, a good understanding of the reasons
and drivers for change propagation is needed. Researchers
have focused mainly on their intuition and a limited number
of observational studies to understand the nature of change
propagation in software systems. Using their intuition, they
built several tool prototypes. Using small observational stud-
ies, they examined the performance of these tools [18, 31].

In this paper, we ask the question:

How does a change in one source code entity prop-
agate to other entities?

The answer to this question helps us understand the value of
software development tools in assisting developers by sug-
gesting entities where a particular change will likely propa-
gate during software development and maintenance. We val-



idate our approach empirically using a large data set which is
based on the development a history of five large open source
software systems, developed for a total of over 40 years by
hundreds of developers spread around the globe. We study
changes to these large code bases using data derived from
their source control repositories. Using this large data set,
we follow a two step approach. First we empirically study
several general heuristics that predict change propagation.
For example, we study the probability that change propa-
gates due to source code entities being in the same file, or
having changed in the past together. By studying these gen-
eral heuristics, we can measure the overall value of the data
used by these heuristics. Then we use our newly acquired
understanding to build enhanced heuristics and measure their
effectiveness in predicting change propagation.

Organization of Paper
The paper is organized as follows. In Section 2, we present
source control repositories along with a classification of the
data stored in these repositories. In Section 3, we give an
overview of the change propagation process and present the
steps taken by developers to propagate changes. Then in sec-
tion 4, we present a framework to study the performance of
heuristics that predict change propagation. Several general
heuristics for predicting change propagation are proposed in
Section 5. Then in Section 6 we empirically study the perfor-
mance of some of these heuristics. In Section 7, we survey
related work in software evolution, program extraction, im-
pact analysis and change propagation. Finally in Section 8
we summarize our work and propose future work directions
and challenges based on our results.

2 SOURCE CONTROL REPOSITORIES AND
CHANGE

To carry out our study of change propagation, we used data
stored in the source control repository. In this section we give
an overview of the type of data stored in these repositories.
We also present the processing we performed to conduct the
study presented herein.

Source control systems such as CVS and Perforce [26] are
used by large software projects. These control systems track
changes to the source code over time. This permits multiple
developers to work simultaneously on a large project with-
out worrying about their changes being lost. Most source
control systems reconcile changes made simultaneously by
developers working on the same file. Moreover, they keep
a full record of all changes to each file in the system. This
permits developers at any time to retrieve older versions of
the code. Older versions of the code can be studied to get
a clearer understanding of the current state of the system.
Also in some cases developers may choose to revert back to
one of these older versions as they discover that their cur-
rent version contains bugs or is too complex to maintain or
understand.

The data stored in the source repository presents a great op-

portunity to study the change propagation process for large
software systems over extended periods of time. The data
collection costs are minimal as the collection is done auto-
matically when changes are done to the source code. For
each file in the software system, the repository tracks its cre-
ation, and its initial content. In addition, it maintains a record
of each change done to a file. For each change, amodi-
fication recordstores the date of the change, the name of
the developer who performed it, the specific lines that were
changed (added or deleted), a detailed explanation message
entered by the developer giving the reason for the change,
and other files that were changed with it. For our purposes,
the level at which the modification record stores change in-
formation (at the file level) is too high. Thus we preprocess
and transform the content of the source control system into
an optimized and more appropriate representation. Instead
of changes being recorded at the file level we record them at
the source code entity level (function, variable, or data type
definition). Then we can track details such as:

• Addition, removal, or modification of a source code en-
tity. For example, adding or removing a function.

• Changes to dependencies between the modified entities
and other source code entities. For example, we can de-
termine that a function no longer uses a specific variable
or that a function now calls another function.

Source control systems, such as CVS, record changes to each
file in the software system and do not associate changes oc-
curring to various files as being part of the same modifica-
tion record. We developed techniques to rebuild this missing
association. Using our derived low level information about
changes to source code, we can generate dependency rela-
tions that reflect the state of the source code when a change
occurred. In short, for each change to the source code we can
associate other changes that occurred in other files. We also
know the dependencies between the source code entities at
that moment in time when a change occurred. Furthermore,
we have a record of entities which previously changed with
each entity.

3 THE CHANGE PROPAGATION PROCESS
Studies indicate that at least fifty percent of the life cycle
and budget of large software systems are spent on maintain-
ing it [38]. The maintenance phase lasts for many years
after the initial release. As new features are added, others
are enhanced, and bugs are fixed, developers are faced with
the challenge of determining appropriate propagation of their
changes in these large evolving code bases. In this section,
we examine the process of change propagation and give a
breakdown of the various steps it involves.

We definechange propagation as the changes required to
other entities of the software system to ensure the consis-
tency of assumptions in a software system after a particular
entity is changed. For example, a change to a function that
writes data to a file may require a change to propagate to the



function that reads data from file. This would ensure that
both functions have a consistent set of assumptions. In some
cases no change propagation may be required; for example
when a comment is updated, the indentation of the function
text is changed, the internal logic of a function is reworked,
a locally scoped variable is renamed to clarify its use, or lo-
cal optimizations are performed. Though developers have to
tackle the problem of change propagation and locate entities
to change in a software system to ensure its consistency on a
daily basis, this problem and its surrounding challenges are
not clearly understood.

Determine
Initial Entity
to Change

New Requirement,
Enhancement,

or Bug Fix

Change
Entity

Determine
Other

Entities
to Change

For Each Entity

Consult
Guru for
Advice

Suggested Entity

No
Entities

No More
Changes

Figure 1: Model of the Change Propagation Process

In Figure 1, we propose a model of the change propagation
process. Guided by a request for a new feature, a feature en-
hancement, or the need to fix a bug, a developer determines
the initial entity in the software system that must change.
Once the initial entity is changed, the developer then ana-
lyzes the source code to determine if there are other entities
to which the change must be propagated. Then she/he pro-
ceeds to change these other entities. For each entity to which
the change is propagated the propagation process is repeated.
When the developer cannot locate other entities to change,
she/he consults aGuru. If the Guru points out that an entity
was missed, then it is changed and the change propagation
process is repeated for that just changed entity. This contin-
ues until all appropriate entities have been changed. At the
end of this process, the developer has determined thechange
set for the new requirement at hand – Ideally all appropri-
ate entities should have been updated to ensure consistent
assumptions throughout the system.

The Guru can be a senior developer, a software development
tool, or even a suite of tests. Usually consulting the senior
developer is not a practical option, as the senior developer
has limited time to assist each developer. Nor is it a feasi-
ble option for long lived projects where no such all know-
ing developer exists. Therefore, developers find themselves
forced to use other forms of advice/information such as the
results of test suites or a development tool. Ideally devel-
opers would like to minimize their dependence on a guru.
They need software development tools that enable them to
confidently determine the need to propagate changes with-
out having to seek the assistance of gurus which are not as
accessible and may not even exist.

This propagation process is necessary because there arein-
terdependenciesamong the changed entities of a software

system. The goal of change propagation is to ensure the con-
sistency of assumptions among these interdependent entities.
In many cases these interdependencies are obvious to devel-
opers changing the code, based on their experience, domain
knowledge, and the output of development tools and code
browsers. In other cases, tools such as compilers or linkers
point out inconsistencies among interdependent entities by
means of error messages. Failure to update any of these inter-
dependent entities would cause the software system to have
inconsistencies in its assumptions. As a result new faults
may appear in the code.

Developers spend a considerable amount of time trying to
correctly propagate a change to other entities. This is a labor
intensive task that is error prone and not well understood.
We investigate if there are good indicators such as call graph
relations that could assist a developer in determining other
entities to change. By studying this process, we can mea-
sure the value of tools, such as dependency browsers that are
provided by modern software development environments.

4 MEASURING THE PERFORMANCE OF
CHANGE PROPAGATION HEURISTICS

In the following section, we propose several heuristics to
generate the set of entities that should be changed in response
to a changed entity – These correspond to the “Determine
Other Entities to Change” step in Figure 1. In this section
we present our approach to measuring the performance of
these change propagation heuristics.

In the ideal case, a heuristic would correctly suggest all the
entities that represent a change set without asking the Guru
for any advice. The worst case occurs when the Guru is con-
sulted to determine each entity in the change set. Referring
back to the change propagation model shown in Figure 1,
we would like to minimize the number of times the Guru is
consulted for an entity to change.

A Simple Example
Consider the following example, Dave is asked to introduce
a new feature into a large legacy system. He starts off by
changing initial entity A. After entity A is changed, one of
our heuristics suggests that entities B and X should change as
well as. Dave changes B, but then examines X and realizes
that it does not need to be changed. So Dave does not need
to perform any change propagation for X. He then asks the
heuristic to suggest another entity that should change if B
were changed. The heuristic suggests Y and W. Neither of
which need to change – therefore Dave will not perform any
change propagation for Y or W. Dave now consults Jenny,
the head architect of the project (the Guru). Jenny suggests
that Dave should change C as well. Dave changes C and
asks the heuristic for a suggestion for an entity to change
given that C was changed. The heuristic proposes D. Dave
changes D and asks the heuristics for new suggestions. The
heuristic does not return any entities. Dave asks Jenny who
suggests no entities as well. Dave is done propagating the



change throughout the software system.

Defining Recall and Precision
To measure the performance of a heuristic we use traditional
information retrieval concepts: recall and precision. For our
simple example, Figure 2 shows the entities and their inter-
relationships. Edges are drawn from A to B and from A to
X because the heuristic suggested that, given that the change
set contains A, it should contain B and X as well. For similar
reasons, edges are drawn from B to Y and W and from C
to D. We will make the simplifying assumption that a heuris-
tic providessymmetric predictions, meaning that if it predicts
entity F when given entity E, it will also predict E when given
F. We have illustrated this symmetry in Figure 2 by drawing
the edges as undirected edges.

A

B D

X

Y W

Change
Set

C

Figure 2: Change Propagation Graph for the Simple Exam-
ple - An edge between two entities indicates that a heuris-
tic suggested one when informed about changes to the other
one.

The total set of suggested entities will be called thePredicted
set; Predicted= {B, X, Y, W, D}. The set of entities that
needed to be predicted will be called theOccurredset;Oc-
curred = {B, C, D}. Note that this does not include the ini-
tially selected entity (A), which was selected by the devel-
oper (Dave) and thus does not need to be predicted. In other
words,Occurred= ChangeSet- {InitialEntity}.

We define the number of elements inPredictedasP (P =
5), and the number of elements inOccurredasO (O = 3).
We define the number of elements in the intersection ofPre-
dictedandOccurred(this intersection is{B, D}) asPO (PO
= 2). Based on these definitions, we define:

Recall =
PO

O

Precision =
PO

P

In our example,Recall = 2
3 = 66% andPrecision = 2

5 =
40%. The rest of this paper will use these definitions ofRe-
call andPrecision. If no elements are predicted (i.e. P and
PO are empty), then we definePrecision as 1, and if no
other elements are changed (i.e. O is empty, we define recall
as 1.

We will make another simplifying assumption, which is that
each prediction by a heuristic is based on a single entity

known to be in the change set. For example, a heuristic
may base a prediction on single element C known to be in
the change set, and not on a set of entities such as{A, C}
known to be in the change set. A further assumption is that
the developer (Dave) will query the heuristic for suggestions
based on every so far suggested entity (which is determined
to be in the change set) before querying the Guru (Jenny). An
implication of our simplifying assumptions is that the heuris-
tics may not do as well in making predictions as they would
without these assumptions.

Our simplifying assumptions imply thatthe ordering of se-
lections and queries to a heuristic are immaterial. For ex-
ample, Dave might initially select entity B or C or D instead
of A. Further, if Dave had a choice of queries to the heuristic
(say, to get suggestions based on either entity M or N), ei-
ther query could be given first. Regardless of the selections
and ordering, the values determined forPrecisionandRecall
would not be affected. The change records from the source
control system do not record the ordering of selections. So,
not only do our assumptions simplify our analysis, they avoid
the need for information that is not available from the change
records.

There is an interesting implication of our assumptions, as
we will now explain. In Figure 2, within the change set,
there are two connected components, namely{A, B} and{C,
D}. With an ideal heuristic, which could be used to predict
all entities in a change set without recourse to a Guru, there
would necessarily be exactly one connected component. If
there is more than one connected component, each of these,
beyond the initial one, implies a query to a Guru. In other
words, if CC is the number of connected components and G
is the number of queries to the Guru, then G = CC - 1. With
an ideal heuristic, CC = 1 and G = 0, while with the worst
heuristic, CC = N and G = N - 1, where N is the number of
entities in the change set. Based on our previous definition
of Recall, it can be proven that

Recall = 1 − (CC − 1)
(N − 1)

This is theRecall formula actually used in our analysis.

Average Performance
We have presented a framework to measure the recall and
precision of a heuristic for a particular change set. To mea-
sure the performance over time we sum up the recall and
precision for each change set and divide by the number of
change sets (M ) in the history of a studied project:

Average Recall =
1
M

∗
M∑
i=1

(
Recalli

)
Average Precision =

1
M

∗
M∑
i=1

(
Precisioni

)



5 HEURISTICS FOR PREDICTING CHANGE
PROPAGATION

In this section, we introduce several heuristics which could
be used to predict change propagation by suggesting enti-
ties that should change based on an entity that has changed.
These heuristics are based on our analysis of the modifica-
tion records, our intuition and previous research in software
engineering.

Each heuristic is characterized by two main aspects:

Heuristic Data Source – This determines the source of
data, such as call graph or historical co-change, used
by the heuristic algorithm to suggest other entities to
change.

Pruning Technique – The pruning technique defines the al-
gorithms used by heuristics to prune their suggested
change set. For example, a heuristic may choose to re-
turn the ten entities most recently changed in the past
with a specific entity instead of returning all entities that
ever changed with it. The pruning technique would as-
sist in improving the precision of a heuristic. When no
pruning technique is used, a heuristic maximizes recall
while sacrificing precision.

Heuristic Data Sources
There exist several sources of data that a heuristic can use to
predict the set of entities that should change. These heuris-
tics aim to reduce the number of predicted entities that are
not needed to change while ensuring all the entities that
should change are predicted. Some of the possible sources
of data are the following:

Entity Data
An Entity based heuristic proposes that the change propaga-
tion process is dependent on the particular changed entity.
For example, a change may propagate to other entities inter-
dependent on the changed entity according to relations such
as:

• A Historical Co-changerecords that one entity changed
at the same time as another entity. If entityA andB
changed together in previous change sets, then they are
related via a Historical co-change relation.

• A Code Structurerelation records static dependencies
between entities.Call, Use and Define relations are
some possible sub-relations:

– TheCall relation records that a function calls an-
other function or macro.

– The Use relation records that a function uses a
variable.

– TheDefinerelation records that a function defines
a variable or has a parameter that is of a particular
type. For exampleF DefineT , meansF defines a
variable of typeT .

• A Code Layoutrelation records the location of enti-
ties relative to classes, files or subsystems in the source

code. Containers such as files and classes are good indi-
cators of a relation between entities, and related entities
tend to change together.

Developer Data
A Developer based heuristic assumes that change propagates
to other entities changed recently or frequently by the same
developer. This heuristic is based on the observation that
over time developers gain expertise in specific areas of the
source code and are likely to modify the same entities in their
acquired areas of expertise.

Process Data
A Process based heuristic assumes that change propagation
depends on the process employed in the development. For
example a change to a particular entity tends to propagate
changes to other frequently or more recently changed enti-
ties independent of the specific entity that changed, as these
recently changed entities may be responsible for a specific
feature being modified throughout the software system.

Name Similarity Data
A Name Similarity heuristic assumes that change propagates
to entities with similar names, as the similarity in naming in-
dicates similarities in the role of the entities and their usage.
We don’t use this heuristic in our study, but work in [1] has
shown its value in improving automatic clustering of files.

Random Data
A heuristic which uses a random generator to produce the set
of suggested entities to change. Such a heuristic assumes that
change propagation is a random process that is chaotic and
unpredictable. Clearly such a heuristic is counter intuitive
and we don’t use it in our study instead we focus on the other
mentioned heuristics.

Other sources of data may exist. Also the aforementioned
data sources can be combined and extended in various ways.
For example, another possible heuristic is the co-call heuris-
tic, where A and B bothcall C. A and B may implement
similar functionality and a change to A may propagate to B.

Pruning Techniques
There are several techniques to reduce the set of suggested
entities by a heuristic. Some of the possible pruning tech-
niques are:

• Frequencytechniques return the most frequently related
entities up to some threshold. For example, the distribu-
tion of change frequency seems to follow azipf distri-
bution which indicates that a limited number of entities
tend to change frequently and a large number of entities
change very infrequently [37].

• Recencytechniques return entities that were related in
the recent past. These techniques support the intuition
that development tends to focus on related functionality
during particular time periods.

• Hybrid techniques combineFrequencyand Recency
techniques using counting or some type of exponential



decay function as done by [13] to predict faults in soft-
ware systems.

• Randomtechniques randomly pick a set of entities to
return up to some threshold such as a count. This tech-
nique might be used when there is no frequency or re-
cency data to prune the results.

• No pruningreturns the results without any deletions.

6 EMPIRICAL STUDIES
Using our definitions of recall and precision we could mea-
sure the performance of heuristics by monitoring the change
process and making developers use our heuristic tool to sug-
gest entities to change. Unfortunately, this is a time consum-
ing process and would require developers to adopt our tool
in their development process. Also it would prevent us from
experimenting with several heuristics as we could only test
one heuristic at a time. Instead we use the historical change
data stored in the source control repository to measure the
performance of our heuristics. We study each change set in
the history of the project and determine the performance of
the proposed heuristics.

We start this section by giving an overview of the software
systems and the modification records studied. We follow this
by selecting several change propagation heuristics and mea-
suring their performance using the historical data stored in
the source control system.

Studied Systems
We used five open software systems to validate our work.
The studied systems have been developed for the last 10
years and in total have over 40 years of historical modifi-
cation records stored in their source control system. Table 1
lists the type of the software system, the date of initial mod-
ification processed in the source control data, and the pro-
gramming language used. We chose to study systems with
a variety of development processes, features, project goals,
personnel, and domain of the studied software systems to
help ensure the generality of our results and their applicabil-
ity to different software systems.

Application Application Start Files Prog.
Name Type Date Lang.
NetBSD OS March 1993 15,986 C

FreeBSD OS June 1993 5,914 C

OpenBSD OS Oct 1995 7,509 C

Postgres DBMS July 1996 1,657 C

GCC C/C++ Compiler May 1991 1,550 C

Table 1: Characteristics of the Studied Systems

Studied Modification Records
In our empirical work, we studied change sets in several soft-
ware systems. Empirically, a change set is derived from the
modification records stored in a source control repository
for the projects. Using a lexical technique, similar to [21],

we studied the content of the detailed message attached to
each modification record throughout the history of a project.
We extracted and removed using this technique all General
Maintenance (GM) modifications which are mainly book-
keeping changes. They do not reflect the implementation
of a particular feature. These modifications are not consid-
ered in our analysis of the change propagation process. For
example, modifications to update the copyright notice at the
top of each source file are ignored. Modifications that are
re-indentation of the source code after being processed by a
code beautifier pretty-printer are ignored as well. We chose
not consider these GM modifications as they are rather gen-
eral and we do not expect any heuristics to predict the prop-
agation of changes in these modifications.

We classified the remaining modification records into two
types:

• Records where entities are added, such as the addition
of a function, and

• Records where no new entities are added.

We chose to study the change propagation process using only
modification records where no entities were added. This
choice enables us to compare different change propagation
heuristics fairly, as it is not feasible for any heuristic to
predict propagation to or from newly created entities. We
note that for our historical based heuristics we still use the
records where entities are added or removed to improve fu-
ture suggestions but we do not measure the performance of
any heuristic using these records.

Table 2 gives a breakdown of the different types of mod-
ification records in the software systems we studied. The
studied modification records represent on average 60% of all
the available records in the history of a project, after remov-
ing GM modifications and modifications where entities are
added. We believe that the studied modification records are
a representative sample of changes done to large software
projects throughout their lifetime.

In our analysis we make the assumption that each modifi-
cation records contains only related changes,i.e., that in-
volve a change propagation. In principle, It is possible that a
developer may check in several unrelated entities as part of
the same modification record. For our purposes, we assume
that this occurs rarely. We believe that this is a reasonable
assumption based on the development process employed by
the studied open source projects and discussions with open
source developers [4, 19, 32]. In most open source projects,
access to the source code repository is limited. Only a few
selected developers have permission to submit code changes
to the repository. Changes are analyzed and discussed over
newsgroups, email, and mailing lists before they are submit-
ted [9, 20, 34]. We believe that this review process reduces
the possibility of unrelated changes being submitted together
in a modification record. Moreover, the review process helps
ensure that changes have been propagated accurately in most



Application All GM New Entities Studied
Name Records Records Records Records
NetBSD 25,839 6,204 4,086 15,567

(100%) (24%) (16%) (60%)

FreeBSD 36,635 7,703 8070 20,862

(100%) (21%) (22%) (57%)

OpenBSD 13,653 2,741 2,743 8,169

(100%) (20%) (20%) (60%)

Postgres 6,199 1,461 1,514 3,224

(100%) (23%) (24%) (52%)

GCC 7,697 901 1114 5682

(100%) (12%) (14%) (74%)

Table 2: Classification of the Modification Records for the
Studied Systems

cases. Thus most change sets are likely to contain a com-
plete propagation of a change to all appropriate entities in
the software system.

Measuring the Performance of Change Propagation
Heuristics
Due to size limitations, we will not address all possible
heuristics presented in section 5. We chose to study the fol-
lowing heuristics:

1. Developer Based (DEV): This heuristic returns all enti-
ties that were previously changed by the same developer
who is performing the current change.

2. Entity Based Historical Co-change (HIS): This heuristic
returns all entities that previously changed with the just
changed entity.

3. Entity Based Code Structure using Call, Use, and De-
fine (CUD): This heuristic returns all entities that are
related to the just changed entity via aCall, Useor De-
finerelation.

4. Entity Based Code Structure using Code Layout (FIL):
This heuristic returns all entities that are defined in the
same file as the just changed entity.

As these heuristics do not employ any pruning techniques,
we expect their precision to be low in comparison with their
recall. We chose to present these unpruned heuristics to de-
termine themaximumpossible recall for heuristics that are
based on specific data sources. For example, we would know
the best possible recall for a heuristic which uses code struc-
ture information or developer information. We can later fo-
cus on improving the precision by experimenting with a va-
riety of pruning techniques for each general heuristic. More-
over, the maximum recall indicates as well the probability
that a change propagates due to a particular heuristic.

We study all the software systems using these basic heuris-
tics then we combine the best performing ones to build a hy-
brid heuristics with pruning techniques. The hybrid heuristic

will seek a middle ground by suggesting entities that are ex-
pected to change (high recall) and in the same time punning
incorrect suggestions (high precision). The performance re-
sults for the five studied systems are summarized in Table 3.

The results shown are derived by examining sequentially
through time all modification records that are not GM record
and where no entities were added. For each modification
record, the heuristics had to predict the change propagation
process outlined in section 4. Then the performance of the
heuristic is measured. To avoid penalizing heuristics based
on historical data as they work on building a historical record
of changes to give useful predictions, we did not measure the
performance of the heuristics for the first 250 modification
records for a software system.

Discussion of Results
Examining Table 3, we notice that DEV heuristic has a high
recall but low precision. This indicates that through the life-
time of a project, developers of the studied systems tend to
work on many entities that are not necessarily related. They
do not focus on a specific set of subsystems and entities.
Also the concept of code ownership is not strictly adhered
to [7]. The very low precision values discourage us from
pursuing this heuristic for the design of the hybrid heuristics
later in this section.

Again looking at Table 3, we conclude that the FIL heuristic
has the best balance of precision versus recall compared to
the other three heuristics. It has a high recall without consid-
erably sacrificing its precision. We consider this as empiri-
cal validation for our previous work that hypothesized that a
source code file represents a coherent conceptual grouping of
related items [14]. It would be interesting to compare these
results to an Object Oriented heuristic which would suggest
that change propagates to entities in the same object. Using
the FIL heuristic is not sufficient as it will only guide de-
veloper to examine entities in the current file. Thus entities
in other files for which changes have to be propagated will
never be suggested using this heuristic.

Further examination of the results in Table 3 reveals that the
code structure dependency relation (CUD) is not a good in-
dicator of change propagation in comparison to historical
records or code layout information (on average only42%
of entities for which a change should propagate are due to
CUD relations). This is an interesting finding; it suggests
that code and relation browsers are not particulary effective
at indicating which entities to propagate changes to. Soft-
ware development environments should offer more advanced
code and relation browsers that use other sources of data to
show the interdependencies between entities in a software
system. These new browsers could assist developers as they
maintain their evolving systems. For example, Table 3 shows
that the HIS heuristic outperforms the CUD heuristic. It has
the best recall and second best precision after the FIL heuris-
tic. These results suggest that the development history can



Application DEV HIS CUD FIL
Recall Precision Recall Precision Recall Precision Recall Precision

NetBSD 0.74 0.01 0.87 0.06 0.37 0.02 0.79 0.16
FreeBSD 0.68 0.02 0.87 0.06 0.40 0.02 0.82 0.11
OpenBSD 0.71 0.02 0.82 0.08 0.38 0.01 0.80 0.14
Postgres 0.78 0.01 0.86 0.05 0.47 0.02 0.77 0.12
GCC 0.79 0.01 0.94 0.03 0.46 0.02 0.96 0.06

Average 0.74 0.01 0.87 0.06 0.42 0.02 0.83 0.12

Table 3: Performance of the Change Propagation Heuristics for the Five Studied Software Systems

be of considerable value to maintainers of software systems.

Although, the systems used in our study represent several
types of software systems, they are all infrastructure software
systems with no graphical user interface. Other systems such
as those with graphical interface or which may implement
business logic such as banking and online purchasing sys-
tems may produce different results. By investigating other
types of software systems, we can determine the general-
ity of our findings. Nevertheless, the findings suggest that
historical information can assist developers in propagating
changes and that code structure (i.e. dependency browsers)
are not as helpful as historical information or code layout
(FIL) information.

Improving Precision With Hybrid Heuristics
The results shown in Table 3 indicate that the FIL and HIS
heuristic are the two best performing heuristics. Unfortu-
nately, the FIL heuristic can only suggest entities in the same
file, which is a limiting factor. We investigated pruning the
suggestions returned by the HIS heuristic to increase its pre-
cision. We then combined the results with suggestions from
the FIL heuristic. This lead to the development of a family
of hybrid heuristics (HYB). These heuristics are based on the
following intuition:

1. Entities that changed together in the past have a high
tendency to change together in the future as we ob-
served in the performance of the HIS heuristic.

2. Developers tend to group related entities in the same
file, as shown through the performance of the FIL
heuristic.

Based on this intuition, we define a family of heuristics
HYB(A,B) with parameters A and B. Given a changed en-
tity E, the HYB heuristics return:

1. Entities that have changed with E in the past at least
twice together and more that A% of the time. This
prunes entities from the HIS heuristic.

2. Entities defined in the same file as E that have changed
with E in the past at least twice together and more that
(A-B)% of the time. Thisrelaxesthe previous rule by
using the fact that the entities reside in the same file to
compensate for a lower percentage of co-change.

We developed this heuristic family through trial and error
using the Postgres historical development database. For ex-
ample, we attempted to use the recency of a co-change to
prune entities but the performance of such heuristics were
disappointing.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.45 0.55 0.65 0.75 0.85 0.95

HYB3(60,30)

HYB2(80,30)

HYB1(80,10)

Recall

Precision

Figure 3: Performance of the HYB Heuristic

To measure the performance of the HYB(A,B) heuristic fam-
ily, we re-ran our experiment on the five studied systems us-
ing values forA = {60, 70, 80}, andB = {10, 20, 30}. We
produced results for nine versions of the hybrid heuristic. In
Figure 3, we show only three of these results to make the
figure readable, namely, we show the best (HYB1), average
(HYB2), and worst (HYB3) performing heuristics of the nine
heuristics. The figure has recall as the x axis and precision as
the y axis. We would like to have high recall and high preci-
sion heuristics, therefore we prefer heuristics that have data
points in the upper right corner of the figure. For each of the
five studied system, we plot its precision and recall for each
of the three heuristics as a dot in the figure. Then for each
of the three heuristics (HYB1, HYB2, and HYB3), we draw
the best fitted curve for the five pairs of (recall, precision)
for that heuristic. At the end we get one curve per heuris-
tic as shown in Figure 3. The results for the best performing
heuristic are summarized in Table 4. The results indicate that
using HYB1, we are able on average to suggest to a devel-
oper half of all entities to which a change must be propagated



and that half of our suggestions are correct. We believe that
the precision may be improved as these heuristics currently
predict entities based on a change to a single entity and not
on a set of changed entities. Nevertheless, the results are
in par with typical information retrieval practical boundaries
where precision usually lies in the35%-40% range and recall
is around60% [5]

NetBSD FreeBSD OpenBSD Postgres GCC Average
Recall 0.52 0.50 0.50 0.48 0.54 0.51
Precision 0.50 0.49 0.49 0.48 0.48 0.49

Table 4: Performance of the HYB1 - the Best Performing
Hybrid Heuristic

The HYB1 heuristic is one of many possible heuristics that
can be created by combining a number of sources of data
and pruning techniques proposed in Section 5. Ideally, re-
searchers and tool developers can describe various other
heuristics and use the technique presented herein and the de-
velopment history of large software projects to measure the
value of such tools even before they proceed to implement
prototypes for such tools.

7 RELATED WORK
Arnold and Bohner give an overview of several formal mod-
els of change propagation [2, 6]. The models propose several
tools and techniques that are based on code dependencies and
algorithms such as slicing and transitive closure to assist in
code propagation. Rajlich proposes to model the change pro-
cess as a sequence of snapshots, where each snapshot repre-
sents one particular moment in the process, with some soft-
ware dependencies being consistent and others being incon-
sistent [27]. The model uses graph rewriting techniques to
express its formalism. Our change propagation model builds
on top of the intuition and ideas proposed in these mod-
els. It simplifies the change propagation process and empir-
ically measures the effectiveness of various sources of data
that could be used to assist developers as they maintain their
source code. In addition, we use an empirical approach sup-
ported by a large data set derived from open source projects
to design and validate change propagation heuristics.

Several researchers have proposed the use of historical data
related to a software system to assist developers gain a bet-
ter understanding of their software system and its evolution.
Cubranicet al. presented a tool that uses bug reports, news
articles, and mailing list posting to suggest pertinent soft-
ware development artifacts [9]. Our approach focuses on the
source code and its evolutionary history as a good source
of data for change propagation heuristics. Other types of
data sources such as bug reports and mailing list posting can
be used as data sources for heuristics as well. Once these
sources of data are integrated into our performance measure-
ment framework, we can determine their effectiveness in as-

sisting developers. Other possible source of data are design
rationale graphs such as presented in [3, 28]. Yet these later
approaches require a substantial amount of human interven-
tion to build the data needed to assist developers in conduct-
ing changes.

Chen et al. have shown that comments associated with
source code modifications provide rich indexing for source
code when developers need to locate source code lines as-
sociated with a particular feature [8]. We extend their ap-
proach and map changes at the source line level to changes
in the source code entities, such as functions and data struc-
tures. Furthermore, we map changes to the dependencies be-
tween the source code entities. We then measure the benefit
of these data sources. Our technique used to build the histor-
ical dependency graph is an extension of the work presented
in [22] and is similar to work presented in [36]. Concurrently
with our work, Zimmermannet al. have mined source con-
trol repositories using association rules to produce heuristics
for change propagation. They do not use static dependen-
cies, such as the CUD relations covered in our work, in their
heuristics. Briandet al. study the likelihood of two classes
being part of the same change due to an aggregate value that
is derived from object oriented coupling measures [16].

Work by Shirabad [30] which uses machine learning tech-
niques to build co-change relations can be integrated in our
heuristics and its performance measured in contrast to sev-
eral proposed heuristic in this paper. Work by Yinget al.
advocates the use of market basket analysis techniques on
the historical data in the source code to assist developers as
they maintain the source code [35]. Gall proposes the use of
visualization techniques to show the historical logical cou-
pling between entities in the source code [11].

8 CONCLUSIONS AND FUTURE WORK
In this paper we examined the change propagation process
in software development. We highlighted the importance of
having a good understanding of change propagation. We pre-
sented several change propagation heuristics. We proposed
an approach to study the performance of various change
propagation models and we studied the results empirically
using data derived from several open source projects that
have been developed for a total of 40 years.

Our results cast doubt on the effectiveness of code struc-
tures such as call graphs as good indicators for change prop-
agation. In addition, we have shown that the historical co-
change data can be used to develop heuristics to assist de-
velopers during the change propagation process with great
success.

We believe that the approach and results presented herein
should encourage researchers and tool developers to search
for different and more sophisticated change propagation
heuristics with better performance. These new heuristic and
ideas can be validated easily using data derived from the de-
velopment history of large software projects.



ACKNOWLEDGEMENTS
The authors gratefully acknowledge the significant contributions from the
members of the open source community who have given freely of their time
to produce large software systems with rich and detailed source code repos-
itories; and who assisted us in understanding and acquiring these valuable
repositories.

REFERENCES

[1] N. Anquetil and T. Lethbridge. Extracting concepts from file names: A
new file clustering criterion. InProceedings of the 25th International
Conference on Software Engineering (ICSE 1998), pages 84–93, Ky-
oto, Japan, Apr 1998.

[2] R. Arnold and S. Bohner. Impact analysis - toward a framework for
comparison. InIEEE International Conference Software Maintenance
(ICSM 1997), pages 292–301, Montral, Quebec, Canada, 1993.

[3] E. L. Baniassad, G. C. Murphy, and C. Schwanninger. Design Pattern
Rationale Graphs: Linking Design to Source. InIEEE 25th Interna-
tional Conference on Software Engineering, Portland, Oregon, USA,
May 2003.

[4] A. Bauer and M. Pizka. The contribution of free software to software
evolution. InIEEE International Workshop on Principles of Software
Evolution (IWPSE03), Helsinki, Finland, Sept. 2003.

[5] N. J. Belkin. The problem of matching in information retrieval. In
Theory and Application of Information Research, The Second Inter-
national Research Forum in Information Science, pages 187–197,
Copenhagen, Netherlands, 1977.

[6] S. Bohner and R. Arnold.Software Change Impact Analysis. IEEE
Computer Soc. Press, 1996.

[7] I. T. Bowman and R. C. Holt. Reconstructing Ownership Architec-
tures To Help Understand Software Systems. InIEEE 7th Interna-
tional Workshop on Program Comprehension, 1999.

[8] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, and
A. Michail. CVSSearch: Searching through source code using CVS
comments. InIEEE International Conference Software Maintenance
(ICSM 2001), pages 364–374, Florence, Italy, 2001.

[9] D. Cubranic and G. C. Murphy. Hipikat: Recommending pertinent
software development artifacts. InProceedings of the 25th Interna-
tional Conference on Software Engineering (ICSE 2000), pages 408–
419, Portland, Oregon, May 2003. ACM Press.

[10] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. A.
Müller, J. Mylopoulos, S. G. Perelgut, M. Stanley, and K. Wong. The
software bookshelf.IBM Systems Journal, 36(4):564–593, 1997.

[11] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling
based on product release history. InIEEE International Conference on
Software Maintenance (ICSM98), Bethesda, Washington D.C., Nov.
1998.

[12] K. B. Gallagher and J. R. Lyle. Using program slicing in soft-
ware maintenance. IEEE Transactions on Software Engineering,
17(8):751–761, 1991.

[13] T. L. Graves, A. F. Karr, J. S. Marron, and H. P. Siy. Predicting
fault incidence using software change history.Software Engineering,
26(7):653–661, 2000.

[14] A. E. Hassan and R. C. Holt. Studying the chaos of code development.
In Proceedings of WCRE 2003: Working Conference on Reverse En-
gineering, Victoria, British Columbia, Canada, Nov. 2003.

[15] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In
M. Akşit and S. Matsuoka, editors,Proceedings European Confer-
ence on Object-Oriented Programming, volume 1241, pages 220–242.
Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[16] L. C. Briand and J. Ẅust and H. Lounis. Using coupling measure-
ment for impact analysis in object-oriented systems. InProceedings of
the International Conference on Software Maintenance (ICSM), pages
475–482, Oxford, England, UK, Aug. 1999.

[17] E. H. S. Lee. Software Comprehension Across Levels of Abstraction.
Master’s thesis, University of Waterloo, 2000.

[18] T. C. Lethbridge and N. Anquetil. Architecture of a Source Code Ex-
ploration Tool: A Software Engineering Case Study. Tr-97-07, School
of Information Technology and Engineering, University of Ottawa,
1997.

[19] M. Mitchell. GCC 3.0 State of the Source. In4th Annual Linux Show-
case and Conference, Atlanta, Georgia, Oct. 2000.

[20] A. Mockus, R. T. Fielding, and J. D. Herbsleb. A case study of open
source software development: the apache server. InProceedings of the
22nd International Conference on Software Engineering (ICSE 2000),
pages 263–272, Limerick, Ireland, June 2000. ACM Press.

[21] A. Mockus and L. G. Votta. Identifying reasons for software change
using historic databases. InProceedings of the International Con-
ference on Software Maintenance (ICSM), pages 120–130, San Jose,
California, Oct. 2000.

[22] G. Murphy. Lightweight Structural Summarization as an Aid to Soft-
ware Evolution. PhD thesis, University of Washington, 1996.

[23] J. P. Brooks. The Mythical Man-Month: Essays on Software Engi-
neering. Addison Wesley Professional, 1995.

[24] D. Parnas. On the criteria to be used in decomposing systems into
modules.Communications of the ACM, 15(12):1053 – 1058, 1972.

[25] D. Parnas. Software aging. InProceedings of the 16th International
Conference on Software Engineering (ICSE 1994), pages 279 – 287,
Sorrento Italy, May 1994.

[26] Perforce - The Fastest Software Configuration Management System.
Available online at<http://www.perforce.com>

[27] V. Rajlich. A model for change propagation based on graph rewrit-
ing. In IEEE International Conference Software Maintenance (ICSM
1997), pages 84–91, Bari, Italy, 1997.

[28] M. P. Robillard and G. C. Murphy. Concern Graphs: Finding and
Describing Concerns Using Structural Program Dependencies. In
IEEE 24th International Conference on Software Engineering, Or-
lando, Florida, USA, May 2002.

[29] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice-Hall, Inc., Engle-
wood Cliffs, NJ., USA, 1991.

[30] J. S. Shirabad.Supporting Software Maintenance by Mining Software
Update Records. PhD thesis, University of Ottawa, 2003.

[31] A. von Mayrhauser and S. Lang. On the Role of Static Analysis during
Software Maintenance. InProceedings of International Workshop on
Program Comprehension, pages 170–177, Pittsburgh, Pennsylvania,
May 1999.

[32] Z. Weinberg. A Maintenance Programmer’s View of GCC. InFirst
Annual GCC Developers’ Summit, Ottawa, Canada, May 2003.

[33] S. Yau, R. Nicholl, J. Tsai, and S. Liu. An integrated life-cycle model
for software maintenance.IEEE Transactions on Software Engineer-
ing, 15(7):58–95, 1988.

[34] Y. Ye and K. Kishida. Toward an understanding of the motivation
of open source software developers. InProceedings of the 25th In-
ternational Conference on Software Engineering (ICSE 2003), pages
419–429, Portland, Oregon, May 2003. ACM Press.

[35] A. T. Ying, G. C. Murphy, R. T. Ng, and M. C. Chu-Carroll. Using
version information for concern inference and code-assist. InTool
Support for Aspect-Oriented Software Development Workshop, Seat-
tle, Washington, Nov 2002.

[36] T. Zimmermann, S. Diehl, and A. Zeller. How history justifies system
architecture (or not). InIEEE International Workshop on Principles
of Software Evolution (IWPSE03), Helsinki, Finland, Sept. 2003.

[37] G. K. Zipf. Human Behavior and the Principle of Least Effort.
Addison-Wesley, 1949.

[38] N. Zvegintzov. Nanotrends.Datamation, pages 106–116, Aug. 1983.


