
Studying The Evolution of Software Systems Using Evolutionary
Code Extractors

Ahmed E. Hassan and Richard C. Holt
Software Architecture Group (SWAG)

School of Computer Science
University of Waterloo

Waterloo, Canada
{aeehassa,holt }@plg.uwaterloo.ca

ABSTRACT
Software systems are continuously changing and adapting to
meet the needs of their users. Empirical studies are needed to
better understand the evolutionary process followed by soft-
ware systems. These studies need tools that can analyze and
report various details about the software system’s history.

In this paper, we propose evolutionary code extractors as a
type of tool to assist in empirical source code evolution re-
search. We present the design dimensions for such an ex-
tractor and discuss several of the challenges associated with
automatically recovering the evolution of source code.

1 INTRODUCTION
Software systems are continuously changing and adapting to
meet the needs of their users. A good understanding of the
evolution process followed by a software system is essential.
This would permit researchers to build better tools to assist
developers as they maintain and enhance these systems. Fur-
thermore, it will pave the way for the investigation of tech-
niques and approaches to monitor, plan and predict a suc-
cessful evolutionary paths for long lived software projects.

We could study the evolution of a number of facets of a soft-
ware project such as its requirements, its architecture, its
source code, its bugs reports, or the interactions and com-
munications among its developers. Each facet offers insight
on a variety of issues surrounding the evolution of a software
system. For example, studying the complexity of the source
code or the number of reported bugs over time may give us a
better understanding of how bugs are introduced in software
systems. It may also assist us in building models to predict
bugs and models to guide managers in allocating testing re-
sources where they are needed the most [6].

To perform such studies a good record of these facets
throughout the lifetime of a project is essential. For example,
a record of the requirements of a software system since its in-
ception till the current day is needed to study the evolution of
its requirements. For some facets such as the requirements
of a software system, such records rarely exist and if they do
exist they tend to be incomplete or too high level. For other
facets such as the features of a software system, they may
be well documented in release notes, but it may be challeng-
ing and time consuming to recover them. For example, An-

ton and Potts have manually traced the evolution of features
for telephony services [1]. Their study focused on telephony
services in a single city due to the long time and resources
required to distill and describe the evolution of features from
the phone books.

We should focus on facets for which most projects have good
historical records and which can be automatically analyzed
with minimal effort. An empirical approach permits us to
generalize our findings instead of associating them to pecu-
liarities of specific systems. Luckily, a large number of soft-
ware projects store artifacts generated throughout their life-
time in software repositories. For example, the source code
and changes to it are recorded in a source control repository.
The released versions are usually stored in release archives.
Other repositories archive the mailing lists and emails among
the project’s developers. Bug tracking systems record vari-
ous details regarding reported bugs and their fixes. These
repositories provide a great opportunity for researchers to ac-
quire empirical data to assist them in studying evolution.

To ensure that we can perform our studies on several soft-
ware systems, we need tools that automatically recover data
from these repositories and present the data in a standard for-
mat that is easier to process. This would permit researchers
to focus on analyzing the recovered data instead of spending
a large amount of time building tools to recover the data first.

The source code of a software project can be thought of con-
ceptually as the DNA of the software. The source code en-
codes the software system’s functionality. Studying changes
to the various characteristics of the source code will help
us understand the evolution of the software system. More-
over, there is a large body of research which demonstrates
approaches to recover characteristics of the source code us-
ing automated techniques. Hence the source code is a very
attractive facet of software project to study its evolution us-
ing automated techniques. In this paper, we argue the need
for tools that could process the source code history of a soft-
ware project and generate useful data automatically. We call
such software toolsevolutionary code extractors, as they ex-
tract the evolution of source code.

Organization Of Paper
The paper is organized as follows. Section 2 tackles the



issue of describing the evolution of source code. We dis-
cuss several ways to describe the same change to the source
code. We argue the need to choose descriptions which can
be recovered automatically. Section 3 overviews the dimen-
sions associated with studying and recovering the evolution
of source code. The choices made by researchers along these
dimensions influence the techniques used to build evolution-
ary code extractors. Section 4 highlights the challenges and
complications that arise based on the choices along the di-
mensions presented in Section 3. Section 5 describes prior
work which dealt with studying source code evolution. The
prior work is presented and the design choices used by
their extractors are explored using the dimensions presented
in this paper. Section 6 concludes the paper with parting
thoughts about evolutionary extractors and their benefits for
studying software systems and validating our understanding
of the evolution process followed by software systems.

2 DESCRIBING SOURCE CODE EVOLUTION
Describing the evolution of the source code boils down to
describing the changes that occur to it. The simplest way to
describe source code changes is by describing its effect on
the code size (the addition and removal of lines of code).

We are interested in ways to describe source code changes
that can be automatically recovered and which are richer than
simply describing the addition and removal of lines. For ex-
ample, even though terms such as perfective, corrective, and
adaptive are usually used to describe changes to the code;
it is not possible to confidently and accurately describe the
evolution of a software system in an automated fashion using
these terms. We would require a large number of heuristics,
human intervention, and intuition to rank changes to source
code accordingly. In short, we seek approaches that provide
a balance between the richness of the recovered descriptions
and the ease of automating the recovery process.

Consider a developer who is asked about her/his activities
in the last few days, a number of replies are possible. Each
reply describes the activities performed at a specific level of
detail and in respect to particular characteristics of the soft-
ware system. For example, the developer working on a text
editor software system may say: “I added support for saving
a text file, I also fixed a bug in the layout engine used by the
editor.” This reply describes change at the feature level.

Instead if we were to ask the developer to elaborate more
on her/his changes and their effect on the source code (i.e. to
describe her/his changes to the source code), we are bound to
get an even larger and more diverse number of replies which
describe the same exact change work from different perspec-
tives. The following is a list of possible replies.

1. I changed 5 lines in the source code.

2. I added 3 lines in file main.c. I also commented out 2 lines
from file layout.c.

3. I added 1 line in the main() function, 2 lines in the init()

function, and removed 2 lines from the refreshLayout()
function.

4. I got the main() function to call function init() and I added
a check in the init() function to make sure the filename is set
before I call refreshLayout(). Also in the refreshLayout()
function, I no longer check if the filename is set.

The first reply deals with changes to the size of the overall
system. The second reply is more specific, it specifies the lo-
cation (files) of these changes. The third reply is even more
specific than the second reply as it maps the changes to the
exact function (source code entity) where they occurred. Fi-
nally, the fourth reply describes the change using its effect
on the call dependencies between the code entities. Table 1
summarizes the developer’s replies.

Reply # Characteristic Level Of Detail

1 Size (LOC) System
2 Size (LOC) File
3 Size (LOC) Function
4 Structural (Call Dep.) Function

Table 1: Classifying Developer’s Replies About Code
Changes

3 THE DIMENSIONS OF CODE EVOLUTION
In the previous section, we showed that a simple change
could be described in a number of ways. Each way fo-
cuses on a particular characteristic of the source code at vary-
ing levels of details. Researchers studying the evolution of
source code need to build tools (evolutionary code extrac-
tors) to recover and describe this evolutionary process. We
believe that there are a number of design dimensions which
they should address before they embark on building these
tools. In this section we focus on these design dimensions
and list the choices associated with each dimension.

Snapshot Extractor

Snapshots
Difference Analysis

S0 S1
St St+1

Evolutionary
Extraction Results

Figure 1: Recovering the Evolution of Source Code

Frequency of Snapshots
The source code of a software is continuously changing. We
need to determine the frequency at which we should observe
the code. Consider Figure 1, conceptually to monitor the
evolution of the source code we need to decide on a number



of historical snapshots of the system’s source code. We then
need to define some characteristics of these snapshots and
study the differences between consecutive snapshots along
these characteristics. The frequency of observations/snap-
shots determines the number of snapshots and their moment
in time. Several methods exist to define snapshots:

• Event based: Source code progresses through different
events throughout the lifetime of a project. For event based
snapshots, we would use project events to determine the
snapshots. Examples of these events are:

– Change: A code change is simply the addition, removal or
modification of a single line to a software system. Using
a Change frequency would produce the largest number of
snapshots, due to the large number of changes that occur
throughout the lifetime of a software system.

– ChangeList: A changelist is the grouping of several code
changes to represent a more complete view of a change.
For example, a changelist may contain two changes – one
change is the addition of a function f2() and the other
change is the addition of a call of function f2() in function
f1(). These two changes might be required to implement a
specific feature or fix a particular bug.

– Build: A build represents the grouping of several features.
Builds are usually done to merge the various features that
have been developed by the team members. Builds may
be requested by the project lead as an indication of achiev-
ing development milestones or to track the progress of a
project towards the final release. Nightly builds, release
candidate builds, and feature-complete builds are examples
of builds.

– Release: A release represents the grouping of a large num-
ber of features. The release is sent to customers and users.

• Time based: Time based snapshots are independent of the
project and source code state. Instead they are done based
on calendar time, such as weekly, monthly, and quarterly
snapshots.

If we were to build an evolutionary extractor, we would con-
ceptually have to process each snapshot using asnapshot ex-
tractor. The snapshot extractor would determine the charac-
teristics of each snapshot. Then we would perform a snap-
shots difference analysis. This analysis would determine
changes in the studied characteristics between each pair of
consecutive snapshots (see Figure 1).

The choice of which snapshot frequency to use is dependant
on the type of analysis that will be performed on the recov-
ered data. If we were to study the average number of func-
tions that must be changed to implement a feature then a
changelist frequency may be the most appropriate choice.

The choice of the frequency of snapshots determines the
number of snapshots which will be studied. If release snap-
shots are used then we will have a smaller number of snap-
shots in comparison to using change snapshots. The number
of snapshots affects the performance of an evolutionary ex-

tractor. The larger the number of snapshots, the more time is
required to perform the analysis.

Data Source
When studying the evolution of living creatures throughout
time, we are usually limited by the availability of fossils of
these creatures. Or if we are able to monitor the creatures as
they evolve we are limited by how often we monitor them.
Whereas for studying the evolution of source code, we have
a much richer fossil history. Source code control systems,
which are available for many long-lived software systems,
store each change to the source code. Hence, we can track
the evolution of the source code at a very high frequency
(change frequency). If we were to draw a parallel to mon-
itoring the evolution of a living creature, the data stored in
the source control repository is equivalent to the creature in-
forming the researcher monitoring it each time it is about to
evolve/change. This is clearly not possible in living crea-
tures but luckily possible in source code due to the detailed
records kept by source control systems.

Alternatively, we can deploy tools to monitor and record
the developer activities during code development as done
by [12]. This later approach may be used when source con-
trol repositories are not accessible. Or it can be used when
additional details, not available in the source control reposi-
tory, are needed. Furthermore, project release archives which
store a copy of released software may be used to study the
evolution at the release frequency.

The Characteristics of Code
As we seek to describe the evolution of source code we need
to define a set of characteristics and techniques to measure
these characteristics. We can then describe the evolution of
the source code in terms of these characteristics and change
to them. For example, the size of the source code (i.e. the
lines of source code) is a characteristic which can be mea-
sured easily. We can then compare the evolution of the sys-
tem from one snapshot to the next.

In this subsection we cover a number of possible characteris-
tics. The choice of characteristics to monitor is dependant on
the research performed and the ease of recovering such char-
acteristics from the source code. For example, recovering the
number of lines of the source code is easier and less resource
intensive than recovering the current dependency structure
of the source code. We chose to focus on the static aspect
of the source code instead of its dynamic and behavioral as-
pects due to the complexity associated with recovering and
describing behavioral changes to source code.

We can describe the characteristics of source code using two
general approaches:

• Metric : Metric approaches define measures to describe the
current state of the source code. The simplest measures are
metrics such as the Lines Of Code (LOC) or the number of
defined functions. Other elaborate metrics such as complex-
ity metrics could be used as well. Using metric approaches



we can track changes in the value of the metrics (character-
istics) over time.

• Structural : Structural approaches describe the current
structure of the code. They could describe the dependency
structure of the code such as ‘function1 depends onfunc-
tion 2’, or they could describe the include dependencies
such as ‘file 1 includesfile 2’. Using structural approaches,
we could track changes in the structure of the source code,
such as the addition of new functionality and its effect on the
dependencies among the various parts of the source code.
For example, we would expect once a function is added,
other functions will be changed to call (depend on) it.

Some characteristics are cumulative, such as the number of
functions, in the sense that characteristic measures derived
based on a high frequency snapshots (such as change fre-
quency) could be combined to study the same characteristic
at the release level (i.e. the number of functions that exist
per release). This is usually not possible for a large num-
ber of characteristics such as complexity metrics. It may be
beneficial to recover the evolution of source code using the
most number of snapshots (change level) then to abstract the
data for less frequent snapshots (release level). Using this
approach the recovered evolutionary data could be used for
a variety of studies based on the desired level of frequency.

Level of Detail
The level of the detail of the characteristics for a snapshot
varies. Some snapshot extractors recover information at the
system level such as the number of lines of the whole system,
whereas other extractors can recover details at the function
level such as the number of lines of each function. Or for
structural characteristics some extractors recover the interac-
tion between source code files, such as ‘filex.c calls filex.h’.
Whereas other extractors report information at a lower more
detailed level, such as ‘functionf1 calls functionf2’. Also
some extractors detail information about the internals of a
function, such as ‘func1 for loop 1 calls functionf2’.

The level of details for a snapshot defines the level at which
the evolution of the source code can be described. It also
limits the type of analysis that could be performed on the re-
covered data. The more detailed the extracted data, the more
complex it becomes to develop a snapshot and an evolution-
ary extractor to generate this type of information, we believe
there are a number of detail levels:

• System Level: At the system level a single value is gen-
erated for each snapshot of the studied system such as the
total number of lines or the total number of files in the soft-
ware system. Developing snapshot extractor for this level is
usually easier than the other more detailed levels.

• Subsystem Level: At the subsystem level, the source code
is divided into a small number of subsystems. Metric values
for each subsystem or structural information about the inter-
action between these subsystems are generated by the snap-
shot extractor. For example, the source code of an operating
system may contain four subsystems: a Network Interface,

Memory Manager, Scheduler, and File System subsystems.
A metric approach may track the size of each of these four
subsystems. A structural approach may track the dependen-
cies between these four subsystems.

• File Level: At this level, the extractor reports changes at
the file level, such as the number of functions in a file or the
number of lines in it. For example, an evolutionary extractor
would detail information such as on Feb 2, 2004 filex.c had
10 lines changed in it: 5 lines added and another 5 removed.

• Code Entity Level: At the code entity level, the snapshot
extractor describes the snapshot based on code entities such
as functions, classes, macros, or data types. For example, it
could report the number of lines in a function, or the depen-
dencies between the function in the source code. This data
could be used during the snapshots difference analysis to re-
port the addition of a new call to a function or the removal
of a data dependency from another function. At this level of
detail, the concepts of a function and data type renaming are
possible. For example, it may be expected from an evolu-
tionary extractor to report that a function was renamed. We
believe that the detection of renaming of a source code en-
tity versus the addition and removal operation of two sper-
ate entities should be done as a post extraction step using
techniques such as the ones described in [13].

• Abstract Syntax Tree (AST) Level: The AST level repre-
sents the lowest level of detail for information produced by
an extractor. At this level, the snapshot extractor produces
the AST of the source code. The AST is studied during
the snapshots difference analysis (see Figure 1) to report
changes to the internals of entities such as the addition/re-
moval of new fields in a data structure, or if-branches and
case statements inside functions.

The level of detail in the extracted information limits the type
of analysis possible. It may also complicate the development
of the extractor, for example AST level evolutionary extrac-
tors are much harder to develop as they require the devel-
opment of snapshot extractors which can parse the source
code and produce very low level details about its character-
istics. In contrast, a system level evolutionary extractor is
much simpler to develop as it does not need to perform de-
tailed analysis of the source code snapshots.

4 CHALLENGES AND COMPLEXITY
In an ideal situation, we would develop extractors that would
describe the evolution of the source code at the most detailed
level, the AST level, and at the highest frequency (change
frequency). Unfortunately this is a rather hard problem and
developing such an extractor would be too complex and time
consuming.

As researchers approach the problem of building an evolu-
tionary extractor, they must decide on the choices along the
dimensions, discussed in the previous section. The benefits
and limitations of each decision are weighted using many
criteria. The most important criteria we found in our work
are the needs of the research for which the extractor is being



developed, the time allocated for the project, and the funding
at hand. We have developed several source code extractors
for many programming languages in the last few years and
we found that this engineering approach is paramount for the
success of such projects due to the unsurmountable effort and
challenges surrounding the development of the most suitable
and practical extractor [7]. We cover a few of the challenges
associated with developing evolutionary code extractors.

Robustness and Scalability
When studying the structural evolution of source code, we
need to develop an extractor that can analyze the source code
to determine structural dependencies among source code en-
tities. An approach which is based on a text book grammar
will fail to parse legacy systems, due to the variety of dialects
of programming languages and the multitude of proprietary
compilers extensions. This variety complicates building an
extractor. The developers of snapshot extractors could adopt
various approaches to deal with the complexity of parsing
legacy software systems. Some developers may choose to
have their extractors recover gracefully when such exten-
sions are processed, others may choose to specialize their
parsers for such peculiarities using a variety of parsing tech-
niques such as island grammars, robust parsing, and precise
parsing [11]. The choice of techniques to use is influenced
by the peculiarities of the studied software systems. An evo-
lutionary extractors should be robust and recover gracefully
with no user intervention to permit the analysis of several
snapshots in an automated fashion.

Furthermore, the scalability of an extractor is another hard
challenge, as extractors are expected to analyze large soft-
ware systems which may contain several million lines of
code. This is complicated more by the fact that this anal-
ysis must be performed for each snapshot of the code and
there could be thousands of snapshots. For example, exam-
ining a million line of source code at the change frequency
would conceptually require the extraction of the characteris-
tics associated with the source code after each change. This
may require that the analysis of a million lines of code is
repeated thousands of times, such an approach becomes in-
feasible and impractical. Instead developers of evolutionary
extractors must develop more elaborate techniques to deal
with this challenge.

An ideal goal for a snapshot extractors is to have the extrac-
tion process require no more time that the compilation time
of the software system. In contrast for evolutionary extrac-
tors, even meeting this goal would require too much time and
would make using an evolutionary extractor infeasible and
impractical to study long lived software projects. Incremen-
tal extraction techniques similar to incremental compilations
may assist in speeding up evolutionary extractors.

Accuracy
Ensuring the high accuracy of the extractor output is another
challenging task. Given the size of the software systems

extracted and the techniques used to recover from different
system peculiarities, extractors have the tendency to miss
some relations (false negatives), or in some cases add su-
perfluous ones (false positives). Accurate extractors require
rather complex language grammars and adopt several elabo-
rate techniques to recover from errors and correctly identify
information. [2] and [10] have shown empirically the dif-
ficulty faced by already well established extractors in ensur-
ing this accuracy. Evolutionary extractors would use similar
techniques, therefore we expect that they would have to face
similar challenges.

To make matters worse, when dealing with extraction over
an extended period of time, the adopted approaches have to
deal with unrelated entities having similar names appearing
and disappearing throughout time.

The Changing and Unstable Nature of Source Code
An evolutionary extractor conceptually performs its work by
analyzing each snapshot then comparing the generated in-
formation for each snapshot. As pointed out, this may be
too time consuming. Furthermore, this would require the
source code to be in some compilable stable state to permit
the snapshot extractor to process it. This is not possible for
example, when studying source code evolution at the change
frequency – a developer may add a call to a function be-
fore she/he defines the function. Therefore, intelligent ap-
proaches are needed to analyze un-compilable and incom-
plete source code. Alternatively, we may choose to use less
frequent snapshots that are more likely to be complete such
as nightly builds or code-complete builds. These builds are
less likely to cause the snapshot extractors to fail.

Development Time
Another challenge associated with evolutionary extractors is
the time needed to develop them. An ideal solution would
be to adopt a regular source code extractor and modify it. In
particular, for each change in the project we can rerun the
extractor and compare the output of the extractor run before
and after the change. Unfortunately, as highlighted in the
previous subsection this may not be the optimal solution as
the source code may not be compilable. Therefore evolution-
ary extractors must either be built from scratch or built by
adopting regular extractors and enhancing them to deal with
many of the aforementioned challenges. Clearly reusing al-
ready developed extractors would speed up the development
time but may limit the type of analysis and may negatively
affect the performance of the evolutionary extractor. On the
other hand, building an extractor from scratch may provide
the most flexible approach but would require a longer devel-
opment time.

5 PREVIOUS WORK
In this paper we advocate the use of evolutionary extractors.
We present several critical dimensions based on which such
extractors should be designed. A number of evolutionary
extractors have been built by many researchers studying the



Reference # Snapshot Frequency Data Source Characteristics of Code Level of Detail

[8] Release Release Archives Metric (LOC) System
[9] Release Release Archives Metric (LOC) System/Subsystem
[13] Release Release Archives Structural (Call/Data Dep.) File
[4] Changelist Source Control Structural (Co-Change) File
[14] Changelist Source Control Metric (Change) File

Table 2: Summary of Evolutionary Extractors Design Choices

evolution of software systems. Although the term evolution-
ary extractor was not used by these researchers, the type of
analysis performed by them fit well into our definition of an
evolutionary extractor. In this section, we overview their
work and present it using the design dimensions for evolu-
tionary extractors presented in this paper.

Work by Lehmanet al. [8] tracked the evolution of the size
of the source code, to perform such analysis evolutionary ex-
tractors that used code metrics at the system level monitored
changes to the size of each release. Godfrey and Qu [9] de-
veloped evolutionary extractors that use metrics at the sys-
tem and subsystem level to monitor the evolution for each
release of Linux. In addition, Qu and Godrefy [13] devel-
oped evolutionary extractors that track the structural depen-
dency changes at the file level for each release of gcc.

Gall et al. [4, 5] have developed evolutionary extractors that
track the co-change of files for each changelist in CVS. Zim-
mermannet al. [14] present an extractor which determines
the changed functions for each changelist. Table 2 summa-
rizes the design choices for each of the extractors developed
by other researchers.

Draheim and Lukasz present a software infrastructure to
study and visualize the output of evolutionary extractors, in
particular they focus on visualizing metric evolutionary ex-
tractors using graphs [3].

6 CONCLUSION
Software practitioners and researchers have recognized the
need to study the evolutionary process of software projects.
The source code is an ideal facet of a software project to
monitor and analyze as we can easily acquire various snap-
shots of it as it evolves. Furthermore, we can build tools –
evolutionary code extractors – to automatically recover this
evolutionary process. This recovered process could improve
our understanding of software development and assist devel-
opers maintaining large long lived software systems.

In this paper, we advocated the need for such evolution-
ary extractors. We presented the various dimensions along
which such extractors could be built. We discussed the chal-
lenges and complexities associated with the choices taken
along these dimensions. These challenges complicate the de-
velopment of such extractors, nevertheless we believe that
a number of common extractors could be developed and

reused within the research community to further empirical
based understanding of software evolutionary processes. We
also presented previous work which studies the evolution of
code and attempted to classify these published extractors us-
ing the dimensions and choices we presented herein.

REFERENCES
[1] A. I. Anton and C. Potts. Functional paleontology: System evolution

as the user sees it. InProceedings of the 25th International Conference
on Software Engineering (ICSE 2001), Toronto, Canada, May 2001.

[2] M. N. Armstrong and C. Trudeau. Evaluating architectural extractors.
In Working Conference on Reverse Engineering (WCRE98), pages 30–
39, Honolulu, HI, Oct. 1998.

[3] D. Draheim and L. Pekacki. Process-Centric Analytical Processing of
Version Control Data. InIEEE International Workshop on Principles
of Software Evolution (IWPSE03), Helsinki, Finland, Sept. 2003.

[4] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling
based on product release history. InIEEE International Conference on
Software Maintenance (ICSM98), Bethesda, Washington D.C., Nov.
1998.

[5] H. Gall, M. Jazayeri, and J. Krajewski. CVS Release History Data
for Detecting Logical Couplings. InIEEE International Workshop on
Principles of Software Evolution (IWPSE03), Helsinki, Finland, Sept.
2003.

[6] A. E. Hassan and R. C. Holt. The Top Ten List: Dynamic Fault Pre-
diction. Submitted for Publication.

[7] A. E. Hassan and R. C. Holt. Architecture Recovery of Web Applica-
tions. In IEEE 24th International Conference on Software Engineer-
ing, Orlando, Florida, USA, May 2002.

[8] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M.
Turski. Metrics and laws of software evolution the nineties view. In
Fourth International Software Metrics Symposium (Metrics97), Albu-
querque, NM, 1997.

[9] Michael W. Godfrey and Qiang Tu. Evolution in open source soft-
ware: A case study. InIEEE International Conference on Software
Maintenance (ICSM 2000), pages 131–142, San Jose, California, Oct.
2000.

[10] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan. An empirical
study of static call graph extractors.ACM Transactions on Software
Engineering and Methodology, 7(2):158–191, 1998.

[11] S. Klusener and R. L̈ammel. Deriving tolerant grammars from a base-
line grammar. InIEEE International Conference Software Mainte-
nance (ICSM 2003), Amsterdam, The Netherlands, 2003.

[12] J. S. Shirabad.Supporting Software Maintenance by Mining Software
Update Records. PhD thesis, University of Ottawa, 2003.

[13] Q. Tu and M. W. Godfrey. An integrated approach for studying ar-
chitectural evolution. In10th International Workshop on Program
Comprehension (IWPC’02), pages 127–136. IEEE Computer Society
Press, June 2002.

[14] T. Zimmermann, S. Diehl, and A. Zeller. How History Justifies System
Architecture (or not). InIEEE International Workshop on Principles
of Software Evolution (IWPSE03), Helsinki, Finland, Sept. 2003.


