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ABSTRACT
Studying the evolution of long lived processes such as the
development history of a software system or the publica-
tion history of a research community, requires the analysis
of a vast amount of data. Aggregation techniques and data
specific techniques are usually used to cope with the large
amount of data.

In this paper, we introduce a general technique to study
historical data derived from tracking the evolution of long
lived processes. We present a visualization approach (evo-
lution spectrographs) to assist in identifying interesting pat-
terns and events during evolutionary analysis of such histor-
ical data. We demonstrate the usefulness of spectrographs
through several case studies. The data for the case studies
are derived from the publication history of conferences in
the area of software engineering and from the source control
of several large open source projects. Our case studies reveal
interesting patterns such as the increase of collaboration over
time in the area of software engineering, and the emergence
of new research topics. The spectrographs give an overview
of the change activities for the subsystems in large software
projects.

1 INTRODUCTION
To study the evolution of a software system or a research
community, one is likely to measure a particularpropertyof
the studieddata entitiesat specifictime intervals. Table 1
shows examples of possible evolutionary studies. For exam-
ple, we can track the number of new authors in a research
community each year (example 1), track the number of files
changed in each release of a software system (example 2), or
measure the average number of functions that are changed
for each changed function on a release basis (example 3).

Example# Property Data Entities Time Interval

1 New Authors Yearly
2 Changed Files Release
3 Average co-changed Functions Release

Table 1: Examples of Evolutionary Studies

For large data such as the data generated from monitoring the
evolution of long lived projects or communities, researchers

tend to use techniques which could reduce the amount of data
at hand in order to ease the required analysis. Two aggrega-
tion techniques are usually used:

Coarser Time Granularity ( Fusing): Researchers
may study the major releases of a software system in-
stead of studying all its minor releases or nightly builds.
By fusing data for consecutive releases or time periods,
researchers need to analyze a smaller number of data
points which correspond to fewer time intervals or re-
leases.

Coarser System Granularity (Lifting ): Researchers are
likely to measure properties of high level entities. For
example, instead of studying the evolution of the size of
each function or file in a software system, researchers
are more likely to measure changes to the size of the
whole software system. By lifting data from low level
entities such as function to high level entities such as
subsystem or the overall system, researchers need to an-
alyze the evolution of a smaller number of entities. The
smaller number of entities permits the use of less so-
phisticated techniques such as simple metric plots (e.g.
[11]).

Unfortunately, both aggregation techniques have their short-
comings:

Coarser Time Granularity ( Fusing): The reduction of the
time granularity is likely to cause the appearance of arti-
ficial spikes in the evolution data. For example, the size
of a software system is likely to show large increases
from one release to the next if the data is studied at the
release level, due to the long time periods between re-
leases. Such sudden increases may not show up if the
data is studied on a monthly basis. Furthermore, the
reduction of the time granularity may cause the disap-
pearance of interesting events in the data, for example
the removal of a small subsystem (drop in size) and its
replacement with a much larger subsystem (increase in
size) would simply show up as a slight increase in the
size of the overall system and the disappearance of the
smaller subsystem would gone unnoticed.

Coarser System Granularity (Lifting): The lifting of the
data may hide interesting evolutionary details due to



the canceling out of low level patterns or details. Such
shortcoming was demonstrated by Gallet al. and God-
frey et al. Gall et al. studied the evolution of an indus-
trial telephony system and discovered that a number of
subsystems exhibited interesting evolutionary patterns
which were canceled out when the system was exam-
ined as a whole [7]. Similarly, Godfreyet al. examined
the evolution of the Linux operating system. He un-
covered at first that the system as a whole was growing
at a fast (likely unsustainable) rate; a deeper look (ex-
amining each subsystem) indicated that the fast growth
is occurring mainly in the hardware drivers subsystems
which are self contained entities which do not inter-
act [13].

Although aggregation techniques have their shortcomings,
they are still needed to cope with the complexities associ-
ated with studying and analyzing the evolution of large data
sets [14].

In this paper we are interested in striking a balance between
too much aggregation (fusing and lifting) and more detailed
analysis. We present a visualization approach (evolution
spectrographs) to study large historical data sets at a reason-
able granularity. The approach employs a special coloring
technique to ease the identification of interesting evolution-
ary patterns.

To showcase the applicability and the generality of our ap-
proach, we use spectrographs to examine the evolution of
several types of data, such as the publication records in soft-
ware engineering conferences and the change data stored in
source control systems for several open source projects. The
spectrographs reveal interesting information about the large
data such as:

1. The emergence of new research topics in the area of
software engineering.

2. The collaboration patterns between researchers and de-
velopers.

3. The shift of focus of software development teams work-
ing on large projects over time.

4. The emergence of hidden dependencies between sub-
systems over time.

Organization Of Paper
The paper is organized as follows. Section 2 describes the
data used in our evolutionary analysis case studies. Section 3
overviews our visualization technique (spectrographs) which
is used to analyze the aforementioned data. We discuss the
coloring technique employed to ease the identification of pat-
terns in large historical data. Section 4 presents our case
studies and reports on the main findings of each study. Sec-
tion 5 describes prior work which dealt with studying and
visualizing evolutionary patterns in large data sets. Section 6
concludes the paper with parting thoughts about the main
contributions of the presented work, results of the case stud-

ies, and an overview of some of the limitations and strength
of our approach.

2 Studying Evolution
Studying the evolutionary process usually consists of mea-
suringpropertiesof the studieddata entitiesat specifictime
intervals. In our evolutionary study, we used a variety of data
sets. To permit us to reuse our analysis techniques for the dif-
ferent types of data, we map each data set into a canonical
format and we perform our analysis on the canonical format
that is data independent. In this section, we present the stud-
ied data, along with the entities and properties we chose to
study. We also discuss our mapping to permit the reuse of
analysis across data sets.

Studied Data
We used two sources of historical data in our analysis:

1. Data derived from the publication records of re-
searchers in the area of software engineering.

2. Data recovered from the repositories of source control
systems for several large open source projects.

Both data sources are rather large and are likely to contain
several interesting patterns since they are based on the evo-
lution of complex and long lived processes (software devel-
opment and research publication processes). We now present
details about both data sources and our motivation for study-
ing the data.

Publication Records
Publications in a research community give a picture of the
progress of collaboration and emergence of topics in an ac-
tive research field. The authorship details on each publica-
tion represent a social network of collaboration between re-
searchers (authors) in the community. One would hope to
have a high degree of collaboration in an academic commu-
nity, in comparison to commercial communities.

Furthermore, the title of each publication can give us a pic-
ture of the emergence of research topics and areas of interest
in the community over time. A good understanding of the
progress of research interest in a community is likely to shed
some light on its evolution.

The DBLP [3] tracks the publication history for several com-
puter science conferences. The data is available as an XML
file. It records the title of the publications and the authors
of these publications. Using this data, we can investigate
several evolutionary phenomena. For example, we could vi-
sualize the collaboration of researchers in the field to under-
stand how collaboration between researchers has evolved as
the software engineering field matured. We can also moni-
tor the emergence and disappearance of research topics that
have shaped research in the field throughout time.

We analyzed the publication records of 21 software engi-
neering conferences from the DBLP database. The 21 con-
ferences chosen by us are: ADSD, APSEC, ASE, KBSE,



Conferences 21
Authors 9,994
Papers 7,407
Years 25

Table 2: Statistics about the DBLP Data for the Software
Engineering Field

CAiSE, COMPSAC, COOTS, ECOOP, ESEC, FSE, ICSE,
ICSR, METRICS, OOPSLA, PASTE, RE, SEKE, ICSM,
WCRE, IWPC, and CSMR. Table 2 shows descriptive statis-
tics about the publication data. Due to the size of the data,
aggregation techniques such averaging are likely to be used.
We would like to reduce the need for aggregating the data.
We propose the evolution spectrograph approach, covered in
the following section, to gain a more detailed understanding
of the data while reducing the need for aggregating the data.

Source Control Data
Whereas publication records track the evolution of a research
field and collaboration between its researchers. Data stored
in source control repositories track the progress of software
projects and the interaction between its developers and the
source code.

Source control systems are used extensively by large soft-
ware projects to control and manage their source code [18].
Data stored in these repository presents a great opportunity
to study the code development and change process. The data
collection costs are minimal since it is collected automati-
cally as modifications are done to the source code.

The repository of a source control system contains vari-
ous details about the development history of every file in a
project. It contains the creation date of a file, its initial con-
tent and a record of every modification done to the file. A
modification recordstores the date of the modification, the
name of the developer who performed the changes, the num-
ber of lines that were changed, the actual lines of code that
were added or removed, and a detailed message entered by
the developer explaining the reasons for the change. Using
the time of the change, the detailed message, and the devel-
oper’s name, we can determine all files that changed together
(i.e. Changelist) to implement or enhance a particular fea-
ture, or fix a specific bug. For the results presented in this
paper, we do not consider in our analysis changelists which
correspond to book keeping changes. Book keeping change-
lists are changelists where more than 15 files are changed
together or which have words such as ‘merge’, ‘clean up’, or
‘update copyright’ in their detailed message.

Unifying the Data
A straightforward approach to study the publication data is
to create a social collaboration network for the authors of
papers in the data [9]. We create a node for each author

that published a paper, and we create an edge between two
authors if they co-authored a paper together. We assign a
weight to each node (author) that is based on the number of
papers written by the author.

At first glance, it may seem that the DBLP publication
records and the source control modification records do not
have much in common. It may seem that each data would re-
quire specialized analysis techniques to study its evolution.
Luckily, this is not the case. We map entities and relations in
both data sets into a canonical format. Using this format, we
could use the same techniques to study both data sets.

The same aforementioned approach of creating a social col-
laboration network could be used to create a network for the
words in the paper titles in the publication data. Using the
paper titles, we removed stopwords (such as “the” and “of”)
and used a stemmer to derive the root of each word in the
title of a paper (for example, truncating “extracting” to “ex-
tract”). A node is created for each stemmed word and an
edge is created between two nodes if they both existed in the
same paper title. The weight of a node is proportional to the
number of papers that have the word corresponding to that
node in their title.

Similarly, we could create two networks form the source
control modification records. We could create a developer
collaboration network. Each developer is assigned a node
and an edge exists between two nodes if they both modified
a common subsystem in the software system. We could also
create a subsystem collaboration network. Each subsystem
is assigned a node and an edge exists between two nodes if
files that existed in both subsystems were modified as part of
the sameChangelist. Table 3 summarizes the different net-
works that we created for our analysis. We could create other
networks to study other evolutionary aspects of the data, nev-
ertheless we focus only on these four networks in this paper.

Studied Properties
Once the historical data is mapped to the canonical network,
we can study properties of the network that are independent
of the data. We can later express our results in the context of
the historical data. We study two properties of a network:

1. The growth of the weight of each node.
2. The growth of the number of neighbors of each node.

Both these properties are likely to reveal interesting infor-
mation and patterns about changes to the data. For example,
in a research community it is preferable that the collabora-
tion between authors increases over time. In other words,
we would expect that the number of neighbors for a node to
increase over time instead of remaining constant. We now
explore both properties and the metrics we chose to measure
them.

Weight Growth
We measure the growth of the weight of each node in com-



Network Node Edge Node Weighting Source

Author Author Co-authored a paper together Number of papers written
by author

DBLP data

Word Stemmed word Words occur in a paper title
together

Number of papers with
word in title

DBLP data

Developer Developer Modified common subsystems Number of changes done by
developer

CVS data

Subsystem Subsystem Changed in the same Change-
list

Number of changes done to
subsystem

CVS data

Table 3: Description of the Created Networks from the Publication Records and Source Control Data Sets

Network Changes toW for a nodex indicate that

Author Author x has contributed a large number
of publications in the studied research field
during the time period.

Word Wordx is becoming a popular buzzword or
research is focusing on the area related to
wordx during the time period.

Developer Developerx has implemented a large per-
centage of the changes andx is likely to
be the most knowledgable person about the
changes that occurred to the software sys-
tem during the time period

Subsystem Subsystemx has been the focus of most
changes during the time period.

Table 4: Possible Explanations for The Changes to theW
Metric Based on The Network Type.

Network Changes toN for a nodex indicate that

Author Authorx has collaborated with a larger than
average collaborators.

Word Word x is being used more often in newer
contexts than it used to be in the past.

Developer Developerx is likely to be interacting more
with other developers on the team or gain-
ing a better knowledge of other develop-
ers’ coding styles as she/he works on sub-
systems that have been touched by other
developers.

Subsystem Subsystemx may be becoming too depen-
dant on other subsystems due to the new co-
change dependencies.

Table 5: Possible Explanations for The Changes to theN
Metric Based on The Network Type.

parison to the total growth of the weight of all nodes in the
network during each time period. A formal definition of the
metric used to study the weight growth property (W ) for a
nodex during periodt:

W (x) =
change to weight of node x during period t

total change to weight of all nodes during t

Using such a metric, we can recognize nodes that have ex-
perienced large weight increases relative to the rest of the
nodes in a studied network during specific time periods. For
example in the word network, we may notice that most of the
publications in the software engineering field used the word
“java” in their title during a specific year. Such a finding may
indicate that research in the field during that year has focused
on java technologies. We may notice in later years that such
focus on java has shifted to a focus to a more general term
(“distributed”) due to the decline in the metric value for the
word java and its increase for the word distributed. The in-
terpretation of changes to theW metric varies between net-
works. Table 4 describe some possible interpretations for the
changes in theW metric for each network type.

Neighbors Growth
We measure the increase of the number of neighbors of each
node in the network during a time period. Using such a met-
ric N , we can recognize nodes that have experienced large
increases in interaction or collaboration with other nodes in
a studied network. For example in the author network, we
may notice that over time researchers are gaining new col-
laborators. The interpretation of changes to theN metric
varies between networks. Table 5 describe some possible
explanations for the changes in theN metric.

3 Evolution Spectrographs
In the previous section, we presented metrics to study inter-
esting properties of networks. To study changes to these met-
rics in large networks, we use evolution spectrographs. An
evolution spectrographis analogous to sound spectrographs.
A spectrograph is a color-coded evolution visualization tech-
nique which visually characterizes how a spectrum of com-



ponents change over time. A spectrograph can be tailored to
examine a variety of aspects of historical data and to yield
insights in understanding the process of evolution. By us-
ing a visual representations to study the historical data and
its corresponding metrics, we are shifting work from the hu-
man cognitive system to the perceptual system and making
use of humans’ ability to detect patterns and anomalies, and
to process large volumes of visual data quickly. We now
describe evolution spectrographs by drawing an analogy to
sound spectrographs.

Spectrograph Dimensions
A sound spectrograph provides a visual representation of the
frequency content of sound and its variation in time. It is
normally presented in the form of an XY graph, in which
the horizontal axis X denotes the time dimension, the verti-
cal axis Y denotes the frequency range, and the brightness
of a position indicates the relative amplitude of the energy
present for a given frequency and time. Analogous to sound,
evolution of a network can be characterized in terms oftime,
spectrum, andmeasurement, and then visualized using spec-
trographs. We now provide our interpretations of these three
dimensions.

Time
The time dimension denotes periods within the lifetime of
a network. Time can be measured in two ways. We can
measure time in units of evolution events, such as software
releases. Or, we can use fixed-length periods as time steps,
such as months and years. Depending on the purpose of our
study, we need to measure time differently. For example,
for an author network we can measure time in units of years
since conferences occur yearly. For a subsystem network,
we can measure time in units of software releases because
the system structure likely undergoes substantial changes be-
tween releases. If we want to study developer activities (in
a developer network), a measurement based on fixed-length
periods (e.g., month or quarter) may be more appropriate.

Spectrum
Analogous to sound decomposition into frequency compo-
nents, a network is composed of nodes. These nodes pro-
vide a measurement basis for the Y axis. In the spectrum
of sound, frequency components are arranged into an order
according to their values. Similarly, network units (nodes)
must be ordered by a particular property. In this paper, we or-
der nodes by their creation time (appearance in the data set).
This ordering technique permits us to visualize the growth
curve of the network as part of the spectrograph. The growth
curve is represented by the upper envelope of the spectoro-
graph (see Figure 4). In Section 4, we present several con-
crete examples of spectrum.

Measurement
For a component in the spectrum, we can measure a particu-
lar aspect or property of that component at any points during
the lifetime of a network. For our purposes we use theW

andN metrics defined in the previous section.

Spectrograph Model
The spectrograph uses a matrixM as its underlying data
model (see Figure 1). For a given spectrum, each of its com-
ponents (c) will be measured according to a particular prop-
erty (p). A row in the matrix stores a vector of values that
represents the evolution history of a spectrum component. A
column stores a snapshot of evolution states for all compo-
nents in the spectrum at a particular time point or during a
particular period. If the spectrum containsm components
(c0, c1, ..) and time is measured usingn discrete points (t0,
t1, ..), the matrix will have the dimension ofm×n. We view
such a matrix as a metrics-based representation that mathe-
matically characterizes the history of a network.

Figure 1: Spectrograph Model

Spectrograph Coloring
After we have computed an evolution matrixM , we use col-
ors to code values stored inM in order to produce the final
spectrograph. The coloring of the spectrograph permits us to
easily distinguish patterns in the historical data. These pat-
terns are then examined closely to gain a better understand-
ing of the evolution of the studied network. This approach
gives us a better view of large amount of data, in contrast to
other graph based approaches which depend on aggregating
the historical data into one or few data values for the whole
system in a metric plot. These aggregation techniques are
likely to hide some of the complex and interesting patterns
that appear in rich historical data.

In previous studies, we found that the coloring must be spe-
cially tailored for various subjects and purposes [19]. We use
a quartile coloring method for the case studies presented in
this paper.

Quartile Coloring
This coloring method is based on the idea of box plots. By
calculating the median and the quartiles (the lower quartile
is the 25th percentile and the upper quartile is the 75th per-
centile), the value range of the studied metric is divided into



four quarters, which are associated with four different colors
respectively. In our case studies, we have chosen red, yellow,
light-green, and light-grey, as shown in Figure 2.

Figure 2: Quartile Coloring

4 Case Studies
Through the evolution spectrograph which uses a quartile
coloring, we can closely study and easily recognize evolu-
tionary patterns in the studied data. In this section, we show
examples of several patterns that the spectrograph uncovered
in each of the studied data sets and their corresponding net-
works.

Study 1: Publication Records – Word Network
For the word network, we studied the top one hundred most
active words throughout the lifetime of the studied publica-
tion data. These words were in the titles of over seven thou-
sand papers during a 25 year period. The studied words are
chosen by summing up theW metric for each word for all
25 years then picking up the top 100 words. To clean up the
studied data, we removed stopwords (such as “the” and “of”)
and used a Porter stemmer to derive the root of each word in
the title of a paper (for example, truncating “extracting” to
“extract” and “experience” to “experi”) [15].

Reverse
Java

Compon

orient

object

software
program

experi

system

engin

data

design

76  77 78  79 80 81  82  83 84 85 86  87  88 89 90  91 92  93 94 95  96  97  98  99 00  01 02 03

abstract

Figure 3: A Spectrograph for Words in Software Engineer-
ing Publications (Node Weight)

Figure 3 shows the evolution spectrograph for the node
weightW for the top 100 nodes (words):

• A dark color (red) for a cell indicates that a word was
in the title of a large number of publications during the
corresponding year. For example, the word ‘experi’ in

1990. This may be an indication of the push in the soft-
ware engineering area in the early 90s to engage practi-
tioners in the research conducted by focusing on expe-
rience reports from industry.

• A dark colored horizontal line indicates that a word has
been popular over a long period of time. For example,
the words “software”, “program” and “system”. This
finding is not surprising given that such terms are cen-
tral to most research work related to software engineer-
ing.

• The spectrograph shows the slow growth of the usage
of new terms. The latest popular terms are “java” and
“compon”.

Furthermore, we note a number of interesting patterns:

• The terms “object” and “orient” (corresponding to “ori-
ented”) have a high tendency to occur together in the
same paper title. Nevertheless, the history of the term
“object” traces further back in history in references to
other usage such as “object code”.

• The terms “java” and “compon” (corresponding to
“component”) have gained popularity in the recent
years.

• The term “reverse” shows up 1993 which is the same
year that the Working Conference on Reverse Engineer-
ing (WCRE) commenced.

Study 2: Publication Records – Author Network
We now look at another network generated from the pub-
lication records data: the author network. For the author
network, we present two spectrographs: the node weightW
and the neighbors growthN spectrographs. We again focus
on the top one hundred most active authors in the field of
software engineering out of almost ten thousand authors (see
Table 2).

The node weight spectrograph, shown in Figure 4, reveals a
rather interesting pattern. It shows that in the early years of
the field of software engineering a small number of authors
contributed a large percentage of the work in the field. This
is visible in the dark (red) area in the lower left corner of
the spectrograph in Figure 4. As the field evolved the contri-
butions have become more varied and distributed across the
researchers. The spectrograph also shows that the number
of authors has been growing at a large rate. We believe that
these findings are good signs since no single researcher or
group of researchers are the main drivers of the field instead
the field is evolving through the collaborative efforts of many
of its members.

To examine the collaboration between authors in the field,
we study the spectrograph for the neighbors growth for each
node (shown in Figure 5). This spectrograph shows very
light colors in the lower left corner of the graph while in
the right side of the graph we see darker colors (green and
yellow). This coloring pattern indicates that recently more
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Figure 4: A Spectrograph for Authors in Software Engineer-
ing Publications (Node Weight)
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Figure 5: A Spectrograph for Authors in Software Engineer-
ing Publications (Neighbors Growth)

and more authors are collaborating with new authors. This is
likely due to the growth of popularity and accessability of the
Internet and Electronic email which represent great collabo-
ration mediums for authors and researchers worldwide [9].

Study 3: Source Control Data – Subsystem Network
Encouraged by the patterns revealed by the spectrographs for
the publication records data, we used spectrographs to study
the source control data for several open source projects. We
present some of these spectrographs and discuss the most
interesting findings.

We examined the NetBSD source control data for the ten
years, starting from March 1993. We divided the data into

30 time periods each time period is four months long.

NetBSD is an operating system derived from 4.4BSD and
386BSD. It is being developed with a primary focus on cre-
ating an extremely portable and flexible OS. It runs on over
30 hardware platforms and provides a lot of flexibility to en-
able research and experimentation with many different types
of hardware, and protocols.

dev

uvm

netinet6

fs

compat arch

1   2   3   4   5   6  7   8 9  10 1112 13 14 151617 1819 20 212223 24 252627 28 29 30

Figure 6: A Spectrograph for Top Level Subsystems in
NetBSD (Node Weight)

Figure 6 shows a spectrograph of all 43 high level subsys-
tems in NetBSD. We now discuss a few noteworthy pat-
terns:

• The “arch”, “compat”, and “dev” subsystems have al-
ways been actively modified throughout the lifetime of
the NetBSD project. The “compat” subsystem is re-
sponsible for ensuring compatibility to other operat-
ing systems such as Linux, Solaris, and Ultrix. The
“dev” subsystem contains the code for the various de-
vice drivers. The “arch” subsystem contains the code
needed to support the various hardware architectures
such as x86 and Sparc. The continuous modifications
to these three subsystems indicates that the project is
actively adding and maintaining support for a variety
of hardware architectures and devices (the main design
goal of the project).

• The “fs” subsystem is a recently added subsystem (it
appears in time period 27). This is a surprising finding
since we would have expected NetBSD to support sev-
eral filesystems throughout its lifetime. A closer exami-
nation of the source control data reveals that the appear-
ance of the “fs” subsystem coincidences with a source
code refactoring which grouped several of the high level
filesystem subsystem, such as “msdosfs”, “ntfs” and
“smbfs”, under the newly created “fs” subsystem.

• The “netinet6” subsystem appears in time period 20
(mid 1999). The “netinet6” subsystem supports the



IPv6 internet protocol, its appearance corresponds to
the growth of awareness for the need for the IPv6 pro-
tocol to deal with the explosive growth of networked
devices. The “netinet6” subsystem has been actively
changed at a high rate. Its rate of change has been slow-
ing down over time (going from red to grey). This may
be considered as an indicator that it is becoming more
stable and robust.

• The “uvm” subsystem appears in time period 15 (early
1998). It replaces NetBSD’s virtual memory subsystem
with a new system that is specifically designed to pro-
vide NetBSD’s I/O and IPC subsystems with a range
of flexible data movement mechanisms. Examining the
“uvm” spectrum we can monitor its stabilization over
time. We as well notice that the “uvm” went through
another stage of active change between periods 24 to
27.

Studying Co-Change
As a software system evolves, it is preferable that working
on features or fixing bugs would require localized changes.
The need for a subsystem to be modified when another sub-
system is modified is an indication of an implicit dependency
that may introduce bugs in the future [7]. Therefore, a good
design should aim to minimize the need for co-changing
other subsystems. We are interested in monitoring growth
of co-change dependencies between subsystems over time.
By studying the neighbors growth over time, we can monitor
the decay of the design of a software system.

NetBSD KOffice

Figure 7: A Spectrograph for Top Level Subsystems for
NetBSD and KOffice (Neighbors Growth)

Figure 7 compares the addition of new neighbors over time
for two projects (NetBSD and KOffice). TheKOfficeproduc-
tivity suite is written in C++. It is an integrated office suite
for KDE, the K Desktop Environment. The full suite is de-
veloped by a community of software developers online under
an open source license. It features a full set of applications:
KWord a word processor,KSpreada spreadsheet applica-
tion, KPresentera presentation program,Kivio a visio-style
flowcharting application,Karbon14a vector drawing appli-
cation,Krita a raster-based image manipulation program like
Adobe Photoshop,Kugar a business reports generating tool,
KChart a chart drawing tool,KFormula a powerful for-

mula editor, andKexi a small database similar to Microsoft
Access. It has 34 high level subsystems most of these sub-
systems correspond to the applications offered in the suite.

Examining Figure 7 reveals that:

• The first period of both projects tends to have darker
colors as more dependencies are created between sub-
systems.

• Throughout the lifetime of NetBSD, its subsystems
have gained new neighbors (i.e. other subsystems
which had to be modified along with them). The same
holds for KOffice. Nevertheless, for KOffice we notice
that the growth has been larger over time (more grey ar-
eas). Furthermore, it seems that new subsystems in their
first period (red diagonal in the KOffice spectrograph)
have a tendency to interact with a large number of sub-
systems. We believe that this may be an indication that
the current KOffice design does not enforce strict infor-
mation hiding principles between its high level subsys-
tems, since the initial code for each subsystem which
is likely to suffer the least from design decay tends to
interact with too many subsystems.

Study 4: Source Control Data – Developer Network
We examine the weight growth of each node (developer) in
the developer network for the KOffice project using a spec-
trograph shown in Figure 8. The spectrograph shows that
several of the original developers of KOffice are no longer
modifying the code of the project (the white area in the lower
right corner of the spectrograph), this may be due to them de-
parting from the project or assuming managerial roles.

Figure 8: A Spectrograph for Developers in KOffice
(Weight Growth)

Evolution spectrographs can visualize changes to a variety
of metrics while minimizing the need to aggregate the data
into a few metric values. The presented case studies used
evolution spectrograph to analyze and discover patterns in
large complex historical data.



5 Related Work
The paper presents techniques and metrics to visualize the
evolution of complex processes. The idea of applying social
network analysis techniques to the source control data has
been proposed by Lopez-Fernandezet al. [12]. The authors
propose measuring several graph metrics and use aggrega-
tion techniques (averaging and weighting) to visualize the
evolution of large open source projects. Our approach makes
use of spectrographs to reduce the need for aggregating the
data into a single number since the spectrograph permits us
to examine closely the evolution of several data entities at
once.

The literature on software engineering is rich with studies
about software evolution. Most of the studies focused on us-
ing simple numerical plots to gauge the evolution of a soft-
ware system, few papers have proposed the adoption of spe-
cialized visualization techniques. Our work contributes to
that venue of research. We now present and contrast our
work to prior work along the same venue of specialized vi-
sualization techniques.

Gall and Jazayeri present a 2D or 3D visual representation
for examining a system’s release history [8]. They visual-
ize system structure, historical evolution, and software prop-
erties simultaneously in one view. The system structure is
displayed by 2D or 3D graphs. The third dimension is used
to represent time. Colors are used to represent a particular
property (e.g., version numbers, code size, etc.). They have
applied this technique to find notable changes from the re-
lease history and to support the system’s future evolution. In
more recent work, Gall proposes a visualization technique
specialized for detecting unintended coupling between mod-
ules [7]. A similar approach is proposed by Biemanet al.
to visualize the change architecture of object oriented sys-
tems [1].

The Evolution Matrix is used to visualize the evolution of
OO software systems [10]. Each class is represented as a box
with the dimensions of the box determined by metrics. For
example, the number of instance variables may determine the
width and the number of methods may determine the height.
The layout and shape are used to highlight change patterns
over time. Lanza has applied this visualization technique on
a number of OO software systems and identified several in-
teresting evolutionary patterns about classes, which include
Pulsar, Supernova, White Dwarf, Red Giant, Dayfly, Stag-
nant, and Persistent [10]. By contrast, the spectrograph relies
on coloring to emphasize visual cues and scales the analysis
to large historical data sets.

The SeeSoft view is used to visualize historical code change
data stored in source control repositories [4]. Each line of
code is reduced to a pixel in the SeeSoft view. Each pixel is
colored based on historical attributes that are calculated for
the corresponding line. Whereas the evolution matrix and the
spectograph visualize the evolutionary process, the SeeSoft

view condenses the rich evolutionary process into a single
color for each pixel. Additionally, Eicket al. describe how
several views such as bar-graphs, pie-charts, matrix views,
and cityscape views can be applied to visualize a large num-
ber of statistics from many different perspectives [5]. Re-
cently Froehlich and Dourish presented a tool called Augur
with added information about the developers working in the
project to the SeeSoft views. The Augur views condense
the evolutionary process of a software entity into a single
pixel [6].

GEVOL is a graph-based system for visualizing software
evolution [2]. A sequence of graphs are created to depict the
different states of a system at given points in time. GEVOL
preserve the viewers mental map as it moves between graphs
by using advanced force-directed layout algorithms. Colors
are applied to indicate change over time. The spectrograph
gives a static view of the evolution process and is able to
scale to analyze large data sets easily.

Revision towers are used to visualize the change history
stored in source control repositories [17]. A tower like view
is created for each file. The view shows all the revisions of
the file and the relationships between revisions and source
releases. Towers corresponding to all files in the repository
are displayed in a grid which fills the available display area.
The towers are ordered according to the date of file creation.
Although a revision tower provides very detailed information
about the change history of a file, it does not scale for large
software systems or other large data sets such as publication
records. Moreover, the approach does not assist in highlight-
ing interesting evolutionary patterns between studied entities
such as files.

Rysselberghe and Demeyer present a 2D plotting visualiza-
tion technique for recognizing relevant changes [16]. Apply-
ing this technique on the change history of Tomcat, they have
been able to identify unstable components, coherent entities,
design and architectural evolution, and fluctuations in team
productivity. Their work does not explore varied coloring.

6 Conclusion
The paper presents two main ideas. First, it proposes the
mapping of large historical data into a network with nodes
and edges. This network can be studied using techniques that
are independent from the data. The results can be interpreted
back in context according to the studied data. Second, the
paper demonstrates the use of spectrographs to support evo-
lutionary studies. Instead of using aggregation techniques
such as averaging, the data is studied at a higher granularity.
This higher granularity permits the discovery of interesting
patterns and events that are likely not to be visible as demon-
strated by prior studies by Gall [7] and Godfrey [13].

Spectrographs are useful for highlighting trends and anoma-
lies in the metrics for studied data entities. Researchers can
then develop hypotheses that could be tested by examin-
ing closely the data to understand the reasons behind such



anomalies (red areas).

The case studies, presented in the paper, show several inter-
esting aspects of the evolution of data. For publications in
the field of software engineering, the main findings are:

• Collaboration between researchers has increased over
time.

• Contributions to work in the field have become more
varied and less driven by a selected few, instead a large
number of researchers contribute to publications and re-
search in the field.

For source control data, spectrograph have highlighted:

• The evolution of source code components as they stabi-
lize.

• Large refactoring events such as the consolidation of
all filesystem related subsystems under one higher level
subsystem.

Spectrographs have revealed interesting evolutionary pat-
terns in complex data sets such as the source control data for
large software projects. Although in this paper we propose
the creation of four types of networks, a number of other
networks could be created and studied in hopes of revealing
other useful patterns and events that could assist in recov-
ering complex historical events. Moreover, other coloring
techniques and metrics should be explored since they may
reveal several interesting patterns.
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