
A Lightweight Approach for Migrating Web Frameworks

Ahmed E. Hassan and Richard C. Holt
Software Architecture Group (SWAG)

Department of Computer Science
University of Waterloo

Waterloo, Canada
{aeehassa, holt }@plg.uwaterloo.ca

ABSTRACT
Web application development frameworks, like the Java
Server Pages framework (JSP), provide web applications
with essential functions such as maintaining state informa-
tion across the application and access control. In the fast
paced world of web applications, new frameworks are intro-
duced and old ones are updated frequently. A framework
is chosen during the initial phases of the project. Hence,
changing it to match the new requirements and demands is a
cumbersome task.

We propose an approach (based onWater Transformations)
to migrate web applications between various web devel-
opment frameworks. This migration process preserves the
structure of the code and the location of comments to facili-
tate future manual maintenance of the migrated code. Conse-
quently, developers can move their applications to the frame-
work that meets their current needs instead of being locked
into their initial development framework. We give an exam-
ple of using our approach to migrate a web application writ-
ten using Active Server Pages (ASP) framework to Netscape
Server Pages (NSP) framework.

1 INTRODUCTION
Typing “www.amazon.com” in a web browser’s window,
loads up the main page of Amazon’s web site in the window.
Following links to a couple of pages on the site and filling
in a form with your credit card number, your card is charged
and a week later your book arrives in the mail. By visiting
Amazon’s web site and ordering a book, you used Amazon’s
book purchasing web application, a distributed web appli-
cation with a convenient interface delivered through a web
browser. With the advent of the Internet, a new type of appli-
cation has emerged - web applications. Web applications use
the Internet’s infrastructure. They are being developed and
maintained everyday [6]. Reports indicate that web applica-
tions represent more than thirty percent of software applica-
tions across all industry sectors and this number is expected
to grow as the web gains popularity [5].

Using a web browser as a client for a software application
instead of a specialized client poses many challenges for de-
velopers. One of these challenges, called the session man-
agement problems, arises from the difficulty of identifying
page requests with particular users. This problem arises from

the use of the HTTP, a stateless protocol. The web browser
connects to the web server and requests a page using HTTP.
Once the page is served, the connection between the browser
and the server is terminated. A new connection is established
for each new page requested. For the server, each request is
considered as an independent one. The server cannot de-
termine if the requesting client is the same as a previous
client or if it is a new client. This technique permits servers
to handle a large number of clients, as the clients consume
server resources only when they are requesting a page. A
web application page may need to identify the user request-
ing a page as being the same user that had requested previous
pages or a new user. For example, a page may need to deter-
mine if a user has already provided a username and password
or if the page should ask the user to login. To summarize, the
stateless nature of the HTTP protocol makes it difficult for a
web application to recognize if two requests have originated
from the same user during the same session.

A number of frameworks have been introduced to solve the
session management problem and other related problems as-
sociated with the development of web applications. Each
framework provides support for essential functions to expe-
dite the development of web applications. Java Server Pages
(JSP), Netscape Server Pages (NSP), Allaire Cold Fusion
(CF) and Active Server Pages (ASP) are some of the most
common frameworks in web application development.

Because of the fast pace of the industry and its immaturity,
current web application development emphasizes implemen-
tation productivity with little concern about maintenance and
evolution of the applications [13]. The choice of a frame-
work is done early in the life of a project and too often with
little thought about the future impact of such choice. Once
a web application is built on top of a framework, migrating
it to a new framework to meet the new demands is a chal-
lenging task, especially with tight schedules. Some frame-
works provide a rich set of libraries to speed up the initial
product release, but they usually suffer from many perfor-
mance bottlenecks which hamper the application’s evolution.
The embedded business logic and requirements in the code
of the application discourage companies from rewriting it
from scratch to make use of new web frameworks. Also
such rewrite would require a great amount of time and effort.

Therefore, applications need to be migrated to new frame-
works when their current framework is no longer supported
or if it lacks new technology features (such as the recent need
for migration from ASP to ASP.Net - the latest version of
Active Server Pages).

In this paper, we propose an approach to migrate from one
web development framework to another, in particular we
show an example of migrating a web application from the
ASP to the NSP framework. The approach aims to ease
future maintenance of the migrated code by preserving the
structure of the code and the location of the comments in
the migrated code. The approach is largely automated and
robust. It marks code segments that it fails to migrate so de-
velopers would review the marked segments and manually
migrate them. The approach –Water Transformationsis an
extension ofIsland Grammars[20], which have been previ-
ously used for reverse engineering, software understanding,
and impact analysis of traditional [24, 26] and web based
legacy software systems [15].

Through our approach, developers can move their applica-
tions to the framework that meets their current demands in-
stead of being locked in their initial development framework.

Organization of Paper
The rest of this paper is organized as follows. Section 2 de-
scribes web application frameworks. Section 3 presents our
migration process, introduces the concept ofWater Trans-
formationsand explains how we use them to ease the mi-
gration of multi-lingual software systems. Section 4 gives
a detailed example of the migration using the formal ap-
proach presented in the previous section. Section 5 explains
the technique and tools used to automate the code migration
part of the process. Section 6 compares our work with other
research projects and industrial tools which address similar
problems. Section 7 draws conclusions from our work and
proposes future directions.

2 WEB APPLICATION FRAMEWORKS
A web application framework provides support for the es-
sential functions pertaining to the development of a web ap-
plication, notably programming language support and a set
of built-in objects (an object model).

A Web application is composed of active pages and static
pages. Static pages are written in pure HTML. Active pages
are like static pages but they containactivecontrol code writ-
ten in languages such as VBScript, Java, and JavaScript. The
HTML tags are used to layout the data on the screen, and the
control code uses the functionalities offered by the frame-
work to customize the web page. Figure 1 shows an example
of an active page written in VBScript.

When the client requests a static page, the server returns the
page without modification. When the client requests an ac-
tive page, the server preprocesses it. The control code is
executed and the result of the execution is merged with the
static content and returned to the requesting browser. The

1: <HTML><TITLE>Main Page</TITLE>
2: <% If Session("LoggedIn") Then 'User already logged in %>
3: Welcome
4: <% Response.Write(Session("username")) %>
5: to your account, to display balance

click here
6: <% Else 'User needs to login %>
7: Please login first, click here
8: <% End If %>
9: </HTML>

Figure 1: Example ASP File

example shown in Figure 1 will appear as a page entitled
Main Page , when viewed in a browser. The page will ei-
ther welcome the logged-in user or ask the user to log into
the system.

Whereas web frameworks permit the embedding of con-
trol code in HTML, other technologies such as CGI, ISAPI,
NSAPI, and Java Servlet take the reverse approach. Ac-
tive pages written in such technologies are regular programs
which use print statements (such asprintf(“..”)) scattered
through out the code to output the HTML code. We are not
concerned with the migration of web applications developed
using such technologies, as they are similar to regular appli-
cation and can be migrated using traditional migration ap-
proaches. Instead, we focus on migrating web frameworks
where the intermixing of languages (HTML and control lan-
guage) complicates the adoption of traditional language mi-
gration approaches.

PROGRAMMING LANGUAGES FOR WEB
FRAMEWORKS
Each web framework has one or several programming lan-
guages which are used to express the control sections of ac-
tive pages. JavaScript, VBScript, ColdFusion, and Java are
the most commonly used programming languages.

The Active Server Page (ASP) framework uses VBScript,
which is a subset of the Visual Basic language developed by
Microsoft Corporation. It is a scripting language that is in-
terpreted and runs primarily on Microsoft Windows. It is a
weakly typed language with only one data type (Variant).
VBScript is an object-based language that permits develop-
ers to specify objects (in terms of methods and properties)
but does not support other object-oriented features such as
inheritance. No extensive reference manual exists that de-
scribes the language in detail. Therefore to develop a mi-
gration tool, we examined many systems and code samples
written in VBScript so we could infer the language’s struc-
ture and syntax.

The Netscape Server Pages (NSP) framework uses
JavaScript, also called ECMAScript [12], which is an object-
based scripting language and is not a subset of any other
language. JavaScript shares many similarities with object-
oriented languages such as the Java and C++ languages.

2

New types cannot be defined and it has many built-indata
type s such asString , Number, Boolean , Object ,
Array , Null , andUndefined . The language is loosely
typed; the data type of variables do not need to be defined
ahead of time and conversion between the different data
types is done automatically without the need of a cast op-
erator. The data type of a variable is based on the value
of the variable at run-time. The language is developed un-
der the control of the ECMA [11] standardization organiza-
tion. JavaScript is the name of Netscape Corp.’s implemen-
tation of the ECMAScript language whereas JScript is Mi-
crosoft Corp.’s name. Both implementations are supersets
of the ECMAScript language, since they provide extensions
specific to the implementing company. The extensions add
many built-in objects and provide mechanisms for the lan-
guage to interact more easily with other components in the
NSP framework. The ECMAScript language can be inter-
preted or compiled.

1: <HTML>
2: <CFOUTPUT>Hello World</CFOUTPUT>
3: </HTML>

Figure 2: “Hello World” Active Page Written in Cold Fusion

ColdFusion (CF) is another web development framework,
developed by Macromedia Corp [1]. Whereas JSP and ASP
are based on active code embedded in HTML, CF uses a spe-
cialized markup language called Cold Fusion Markup Lan-
guage (CFML) which is embedded in HTML as well. CFML
has tags which represent the control flow of a traditional pro-
gramming language such as<CFIF> or <CFELSE>. Fig-
ure 2 shows a program written in the CFML markup lan-
guage. Finally, Java Server Pages (JSP) framework permits
the embedding of active code written in the Java program-
ming language, a strongly typed object-oriented language
which shares many similarities with the Modula-3 and C++
languages.

A COMMON WEB OBJECT MODEL FOR WEB FRAME-
WORKS
Each language is supported by a set of built-in objects which
are provided by each web application framework. These ob-
jects abstract the commonly needed functionalities in the de-
velopment of a web application, such as access to the client’s
request or the maintenance of the client’s state across mul-
tiple HTTP requests. Through studying JSP, NSP, ASP, and
ColdFusion frameworks, we were able to define a set of com-
mon objects across all frameworks (refer to Table 1). Table 2
maps the various objects in our common object model and
the built-in objects in the studied frameworks. Through this
mapping we can migrate across the various framework built-
in objects, as we shall explain later.

3 THE MIGRATION PROCESS

Object
Name

Purpose

Request The Request object stores details related
to the request originating from the web
browser to the web application. The ob-
ject contains information entered by a user
in a form. The object can also be used to
retrieve cookies stored on the client side.

Response The Response object describes the result of
the request sent from the browser. An ac-
tive page would write information to the
Response object. The information could
set a cookie on the client. The information
could specify details to be displayed in the
browser.

Session The Session object represents the session
of a particular user. The session starts
when the user’s browser requests a page
from a web site and terminates after a con-
figured timeout period since the last page
request. Moreover, a session can also be
forcibly terminated when a user wants to
logout from an application. A Session ob-
ject is used to communicate information
across active pages in a web application.

Application The Application object represents a global
space for the whole web application. A
web application starts when the first page
in an application is requested by a browser.
It ends when the application server is ter-
minated. The Application object permits
the sharing of information between all ac-
tive pages in a particular web application.
An Application object may store a variable
to count how many users have accessed the
application since it started. Also it can be
used to pool database connections for reuse
by the various active pages.

Server The Server object is a global server level
object. It is shared among all web appli-
cations running on the application server.
It stores common configuration properties
and state information, such as the memory
usage of the server, or the email address of
the server administrator.

Error The Error object records all errors that oc-
curred during the interpretation of an active
page by the server. Each active page has an
Error object.

Table 1: Common Web Object Model

3

Common
Objects

ASP
Objects

NSP
Objects JSP Objects CF Objects

Request Request Request javax.servlet.ServletRequest <CFHttpParam>

Response Response _1
javax.servlet.ServletResponse

javax.servlet.jsp.JspWriter
<CFOutput>

Session Session Client javax.servlet.http.HttpSession
<CFApplication>

<CFCookie>

Application Application Project javax.servlet.ServletContext <CFApplication>

Server Server Server
javax.servlet.ServletContext

javax.servlet.ServletConfig
<CFRegistry>

Error ASPError Ssjs_onError java.lang.Throwable <CFError>

1. NSP does not encapsulate Response related methods in their own object; instead they reside in
the global namespace.

Table 2: ASP, NSP, JSP and CF Object Models Mapped to the Common Web Object Model

This section presents our process for migrating web appli-
cation to a new framework. As described in the previous
sections, web applications contain two types of pages: active
pages, and static pages. Static pages do not contain any con-
trol code; thus they are framework independent and are not
processed during our migration process. Instead, we focus
on migrating active pages, which contain control code that is
framework and language dependent.

Web applications range from simple static application (such
as a personal web site, a home page) to sophisticated e-
commerce ones (such asAmazon.com, eBay.com). Whereas
a large number of tools have been proposed to assist in build-
ing web sites, these tools either focus on building static appli-
cation with little control code in them or on building business
applications that follow well defined business flows [29].
They fail to provide the flexibility and support needed to
build large scale industrial level applications. Web develop-
ers tend to build and maintain such large applications without
using such rapid development tools [13, 14].

To keep up with the changing needs of users, it is common
for the migrated code to undergo repeated changes – adding
new features, enhancing old ones, or fixing bugs. Thus an au-
tomated migration process which produces unreadable code
with comments stripped out of the original application is not
an acceptable solution as the migrated application will be
manually maintained and evolved under the new framework.
Furthermore, the user interface of the application, which is
defined using the HTML code intermixed with the active
code, should not be altered as the application is migrated to
a new framework. The users of the application should not
notice user interface changes.

We define two main objectives for our migration process:

1. The migration process should ensure that HTML code
in the migrated application, remains in the same loca-
tion relative to the control code in the original applica-
tion. The user interface should not be affected by the
use of a different programming language or a different
development framework.

2. The migration process ensures that all comments in the
migrated code remain in the same locations relative to
the original source code, so developers can still easily
maintain the migrated application manually.

Island Grammars
In contrast to regular applications written in a single pro-
gramming language, web application contain a variety of
languages intermixed inside each active page. This inter-
mixing of control code, comments inside the control code,
and HTML tremendously increases the complexity of pars-
ing such pages. In our previous work [15], which concen-
trated on visualizing web applications, we dealt with the ex-
istence of multiple sections written in different programming
languages inside of a single source file by choosing to extract
only the entities which we are interested in visualizing.

Each processed file is viewed as an ocean of tokens – we
define two types of tokens “interesting” and “uninteresting”
tokens. We examine consecutive interesting tokens (islands
of interest) using set of extractors based on grammars for
each island of interest (control code islands, HTML islands,
etc.). Each extractor processes the source file and locates
the subsections (islands) of interest in the file. Once these
islands are located, the appropriate parse is performed to ex-

4

tract the information. For example if we define the HTML
code as being our interest island, then all the control code
tokens become water that is ignored by our parsers. Looking
at Figure 1, lines 1, 3, 5, 7, and 9 would be islands and the
other lines would be water.

The use of island grammars speeds up the parsing process, as
island grammars are much smaller than full language gram-
mars and we do not need to maintain complex details about
the full parse tree. Island grammars are as well more robust
and can recover from simple syntax errors as they only spec-
ify in detail small sections of the language and not the whole
language.

Definition: An Island Grammar is a grammar which con-
tains two types of productions: a) productions which de-
scribe constructs of interest (Islands), and b) liberal produc-
tions which catch the remaining uninteresting sections (Wa-
ter).

Formally, for a context free language (CFL)LG, a context
free grammar (CFG)G, such thatL(G) = LG is defined as
G = (V , Σ, S, P), where

1. V andΣ are finite sets withV ∩ Σ = ∅: V is the set of
variables or nonterminal symbols, andΣ is the alphabet
of terminal symbols (terminals)

2. S ∈ V is thestart symbol; and

3. P is a finite set ofproductions or grammar rules of the
form A→ α whereA ∈ V andα ∈ (V ∪ Σ)∗.

We define anIsland GrammarGI = (VI , ΣI , SI , PI) for
a set of constructs of interestI ⊆ Σ∗ such that∀ i ∈ I, S
⇒∗ s1is2, wheres1 ands2 ∈ Σ ands1is2 ∈ LG. This def-
inition ensures that the island grammar is more liberal than
the original grammari.e. L(G) ⊆ L(GI). ThereforeGI can
parse correctly text that is not valid underG. As the input
of the migration process is valid underG, we do not have to
be concerned about this fact. A more complete analysis of
island grammars is available in [25].

Water Transformations
WhereasIsland Grammarsare used to perform lightweight
understanding of large code bases, they are not capable of
performing powerful language transformations/migrations.
As the generated parse tree is restricted to the island (areas of
interests), the transformations can only be done on very sim-
ple/local areas inside the islands of interests [24]. This limits
the usefulness of Island grammars in migrating web applica-
tions; while keeping the HTML interface of the application
and the code comments intact relative to the migrated code.
To accomplish this task, we identified three different alterna-
tives:

1. Filtering Uninteresting Code: Remove all the HTML
and control code comments from an active page, per-
form the language/framework migrations, then re-insert

the HTML and code comments. In [8] the authors pro-
pose a similar approach to handle comments during the
migration of a legacy COBOL system. Their approach
removes the comment from the legacy code, performs
the migration, then re-inserts comments using a mod-
ified diff algorithm which compares the pre-migration
code and the post-migration code; and attempts to re-
insert the comments in the appropriate locations.

We choose not to use this approach because the ex-
tensive intermixing between HTML code, control code,
and comments in a single active page file would increase
the complexity of the proposed diff algorithm.

2. Grammar Extension: An alternative approach is to ex-
tend the grammar of the control code language to sup-
port the intermixing the HTML code, comments, and
control code. For example to migrate from JavaScript
to VBScript, we would extend the JavaScript and VB-
Script language grammars to support the embedding of
HTML code and comments in the generated parse tree.
Furthermore, we would have to define rules to specify
how these new comment and HTML tokens will be pro-
cessed during the language transformation.

We decided not to adopt this approach. The complexity
of extending each programming language grammar to
support such intermixing is too high, it would require a
good understanding of the grammars of each language,
and a good experience in crafting such complex gram-
mars. Furthermore, this would increase the complexity
of the grammars resulting in a slowdown of the migra-
tion process.

3. Water Transformations: We opted to adoptWater
Transformations, as a new technique to migrate multi-
lingual source code bases. The approach is more light
weight. The complexity of developing the transforma-
tion technique is much simpler than the other two de-
scribed approaches, since the approach unifies the vari-
ous languages into one language.

We now explainWater Transformations. Given a file that
has a large intermixing of different languages (comments,
HTML, and control code), we define anIsland Language.
The island language is the language we are interested in mi-
grating. For our case that would be the control code lan-
guages, such as JavaScript, or VBScript. Following the same
analogy asIsland Grammars, the rest of the tokens are con-
sidered asWater. We now defineWater Transformations,
which are code transformations that convert water tokens to
special islands. These new special islands follow the syn-
tax of the island language (in our case the control code lan-
guage). Once we apply theseWater Transformationsto the
input file, the result is a valid file in the language of the island
language with no Water (uninteresting) tokens left.

5

We then perform the migration using the grammar of the is-
land language. The migration can be performed by any tech-
nique described in the vast literature of language migration
such as [4, 21, 22, 28, 30, 32, 33, 35].

After the migration is performed, the inverse of the water
transformations is applied on the output to revert the special
islands back to water. The final output is a migrated file with
the location of the HTML code and source comments left
constant relative to the location of the newly migrated control
code.

Definition: We define theWater Transformation TW , as
the transformation that maps each set of consecutive tokens

(si)∗ in the input file toAj (i.e. (si)∗ : TW−−→ Aj), where∀i,
(si)∗ 6⊆L(GI); ∀j, Aj ⊆L(GI); andj ∈ {1, ..., n}, wheren
is the number of independent consecutive streams of tokens
(si)∗ in the input file.

In simpler terms, each continuous stream of tokens that are
not valid in the island language ((si)∗ 6⊆ L(GI)) are mapped
to Aj which is valid in theisland language. For example,
during the migration of an active page in ASP to NSP we
can transform each stream of continuous HTML code into
a call to a dummy function calledHTMLCALL() . Whereas
the HTML code is not valid code in the VBScript language,
HTMLCALL() is valid code in the VBScript langauge.

Using Water Transformation, the migration of a software
system can be written formally as:

T−1
W (TM (TW (Input F ile))),

whereTM is the migration transformation, which converts
from one programming language to the other.T−1

W , the

Inverse Water Transformationis defined asAj :
T−1

W−−−→
T−1

M (Aj) = (si)∗. This formula can be extended to as many
embedded languages as needed, a more general formula is:

T−1
Wx

(....T−1
W1

(TM (TW1(....(TWx
((Input F ile))))))).

In the following section, we present a case study of the mi-
gration process and a more detailed example than the abstract
examples presented in this section. We use the termPrepro-
cessingto indicate the application of theWater Transforma-
tionsand the termPostprocessingto indicate the application
of theInverse Water Transformations.

4 CASE STUDY: AN EXAMPLE OF THE MIGRATION
PROCESS

Figure 3 shows an overview of the migration process. The
migration process is divided into four main stages:

1. The Preprocessingstage removes the HTML code and
comments from the active page. These are set aside to
be later inserted into the migrated file in the (Postpro-
cessingstage). This stage corresponds to thermHTML
andrmComment boxes in Figure 3.

2. TheLanguage transformationstage translates the active

code from the initial programming language to the pro-
gramming language used by the target web application
framework. The translation is carried out by a program
written in TXL [34].

3. The Object model mappingstage transforms access to
objects in the original application framework to the cor-
responding objects in the target framework. For exam-
ple, we would mapResponse.Writeto Write to migrate
from the ASP to the NSP frameworks.

4. The Postprocessingstage reinserts the HTML code
and comments that were removed in thePreprocess-
ing stage. This corresponds to theaddHTML and
addComment boxes in Figure 3.

We elaborate these stages in the following subsections.

Preprocessing Stage
During thePreprocessingstage the active page is processed
by twoPerl scripts:

1. The firstPerl script (rmHTML) processes the ASP file
and replaces contiguous sections of HTML code with
a call to dummy function namedHTMLCALL() with
a numbered parameter. The removed HTML code is
stored in another file in an XML format. This XML file
and the numbering is used later to reconstruct the full
NSP file. Figure 4 shows the result of this action when
processing the active page shown in Figure 1.

1: HTMLCALL(1);
2: If Session("LoggedIn") Then 'User already logged in
3: HTMLCALL(2);
4: Response.Write(Session("username"))
5: HTMLCALL(3);
6: Else 'User needs to login
7: HTMLCALL(4);
8: End If
9: HTMLCALL(5);

Figure 4: Example ASP File AfterrmHTML

2. The secondPerl script (rmComment) processes the
output of the first script; it removes each line of com-
ments in the VBScript code and replaces it with a call
to dummy function namedCOMMENTCALL()with a
numbered parameter. The same technique used to rein-
sert the HTML code is used to reinsert the comment
code. The scripts perform some massaging of the source
code to reduce the complexity of the grammar used in
the following stage to parse the VBScript file. For ex-
ample, it adds a semicolon at the end of each line of VB-
Script and breaks all statements that are separated with
a “:” into separate lines1. Figure 4, shows the results

1VBscript permits multiple statements on the same line if the they are
separated by “:”

6

ASP
File

NSP
File

VBScript
File

JavaScript
File

addHTML
(in Perl)

rmComment
(in Perl)

addComment
(in Perl)

Language
transformation

(in TXL)Removed
HTML

Removed
Comments

rmHTML
(in Perl)

Control code flowHTML and Comments flow

Object model
mapping
(in TXL)

Figure 3: Migration Process

after running thermComment Script.

1: HTMLCALL(1);
2: If Session("LoggedIn") Then; COMMENTCALL(1);
3: HTMLCALL(2);
4: Response.Write(Session("username"));
5: HTMLCALL(3);
6: Else; COMMENTCALL(2);
7: HTMLCALL(4);
8: End If ;
9: HTMLCALL(5);

Figure 5: ASP File AfterrmComment

At the end of thePreprocessingstage, the output file contains
a valid VBScript program with no comments and with each
line terminated by a semi-colon as shown in Figure 5.

As our migration process is performed on each file sepa-
rately and code changes are only reflected locally in the pro-
cessed file/code section, our migration process is simple and
quite scalable. The location of code segments is not suscep-
tible to large changes during migration, thus the location of
HTML and comments remains constant relative to the active
migrated code.

Language Transformation and Object Model Mapping Stages
Once thePreprocessingstage is completed, the output is pro-
cessed by two programs written in theTXL [8, 34] program-
ming language. TheTXL programming language is a hybrid
functional/rule-based language with unification, implied it-
eration and deep pattern matching. This language permits
us to describe the transformation easily using abstract syntax
nodes. Section 5 gives more details about theseTXL pro-
grams. Figure 6 shows the results of the two TXL programs:

1: HTMLCALL(1);
2: If (Client.LoggedIn) { COMMENTCALL(1);
3: HTMLCALL(2);
4: Write(Client.username);
5: HTMLCALL(3);
6: } else { COMMENTCALL(2);
7: HTMLCALL(4);
8: }
9: HTMLCALL(5);

Figure 6: ASP File AfterTXL Processing

1. Thelanguage transformationprogram translates control
code in one language to another, for example from VB-
Script code into JavaScript code. Each programming
language has its own type system. Although VBScript
and JavaScript are both weakly typed, VBScript has
only one data type, while JavaScript has multiple data
types. In the general case, we would need to determine
the data types of each converted variable and map them
to the corresponding data type in the target language.
Fortunately, the JavaScript interpreter can determine the
type of a variable at run-time based on its content. Thus,
we do not need to perform type inference analysis. In-
stead the determination of the data types is left to the
interpreter at run-time. Alternatively, to migrate an ap-
plication which uses the ASP framework to one that uses
the JSP framework, a type inference analysis is required
as JSP uses a strongly typed language (Java). From our
experience in studying web applications [14, 15, 16],
we notice that a large percentage of the variables in ac-
tive pages are of typeString . During the migration to
strictly typed language, the migration process may sim-
ply assume that all variables are of typeString since it

7

is the most used variable type in web applications. The
developer will need to examine the result of the migra-
tion to JSP and correct the output.

2. The object model mappingprogram examines object
references to built-in objects provided by the ASP
framework. The program transforms these references
to ones to the corresponding built-in objects provided
by the NSP framework (see Table 1). For example,
during migration of an ASP file to a JSP file, each
reference to theRequest object is replaced with a
reference tojavax.servlet.ServletRequest
object. Whereas the Table 1 shows high level map-
pings between object names, theTXL program speci-
fies more accurately the mapping between the various
frameworks. The program details the mapping at the
level of method names and parameter order and type. In
the cases, where no appropriate mapping exists a special
token<UNKNOWN>is inserted and manual intervention
is needed to correct the output. ThisTXL program could
be extended by declaring new mappings between user
defined or special objects.

The input to this stage is a file in a single programming
language, namely VBScript, and the output is a file in the
JavaScript langauge. The techniques used in this stage are
similar to traditional program migration techniques and other
techniques from the literature could be adopted. Using such
techniques would not have been possible without the pre-
vious pre-processing stage which converts the multilingual
active page into a single language page. The following stage
undoes the Water transformations done in the preprocessing
stage.

Post-Processing Stage
This is the last stage of the migration. TwoPerl scripts
process the output of the previous stage:

1. The addComment script reinserts source code com-
ments that were removed byrmComment script in
the pre-processing stage. It scans the input file
and replaces each call to the place-holder function
COMMENTCALL()with the corresponding comment
line stored in the “Removed Comment” XML file.

2. TheaddHTMLscript reinserts the HTML code that was
removed byrmHTMLscript in the pre-processing stage.
Calls to the place-holder functionHTMLCALL() are re-
placed with the corresponding HTML code.

Figure 7 shows the results of this last stage of the migration
from ASP to NSP frameworks. The<SERVER>tag, shown
in Figure 7, is used by the NSP framework to indicate control
code in an active page. The active page shown in Figure 7 is
equivalent to the active page shown in Figure 1.

1: <HTML> <TITLE>Main Page</TITLE>
2: <SERVER>If (Client.LoggedIn) { // User already logged in</SERVER>
3: Welcome
4: <SERVER> Write(Client.username) ; </SERVER>
5: to your account, to display balance

click here
6: <SERVER> } else { 'User needs to login </SERVER>
7: Please login first, click here
8: <SERVER> } </SERVER>
9: </HTML>

Figure 7: Final NSP Active Page

5 TXL PROGRAMS
Our migration process uses theTXL language to express the
transformation from one language to another. Since this
transformation approach, as used to migrate web applica-
tions, is novel; we will present it in some detail in this
section. TheTXL language is useful for structural analy-
sis and transformation of formal notations such as program-
ming languages, specification languages, structured docu-
ments. It was used extensively during the Y2K analysis of
COBOL/PL1 programs to repair date problems [10, 7]. It
provides high level constructs to build a parse tree of an input
program, to specify transformations for the parse tree using
tree structure and textual pattern rules, and to emit the trans-
formed parse tree. EachTXL program is composed of three
sections:

• Parse tree specification for the input language.
• Parse tree extension for the target language.
• Transformation rules specification.

PARSE TREE SPECIFICATION
The first section of aTXL program defines how the input file
should be parsed and outlines the structure of the generated
parse tree for the input. This is specified in aBNFlike syntax.

The TXL code shown in Figure 8 defines the structure of
the IfThenElse for the VBScript language. The keyword
opt indicates that the node may not exist in the parse tree.
The keywordrepeat indicates that the node may be re-
peated multiple times. The[stmts] non-terminal speci-
fies any valid VBScript statement. The[expression]
non-terminal specifies all valid expressions in the VBScript
language. Both definitions are given elsewhere and are omit-
ted to improve the readability of the code snippet.

Figure 8 shows that an “If ” statement may contain
other statements. It may have multiple[ElseIfBody]
clauses that may in turn contain more statements. It may
have an optional[ElseBody] clause which may contain
other statements. The generated parse tree would contain
nodes corresponding to the[expression] , [stmts] ,
[ElseBody] , and [ElseIfBody] non-terminals. Fig-
ure 9 shows the generatedTXL parse tree when the program
in Figure 5 is processed by the TXL program.

8

IfThenElse_statement

ElseBody

stmts stmts

VBScript Program

HTMLCALL() HTMLCALL()IF END IFexpression THEN stmts

stmts

HTMLCALL()
Session

("loggedIn")
Response.Writ

e(....)

terminal (keyword)
non-terminal

COMMENTCALL()

ELSE

COMMENT
CALL()

Figure 9: Parse Tree for Program Shown in Figure 5

define IfThenElse_statement
IF [expression] THEN ;

[stmts] [repeat ElseIfBody]
[opt ElseBody]

END IF;
end define

define ElseIfBody
ELSEIF [expression] THEN ; [stmts]

end define

define ElseBody
ELSE ; [stmts]

end define

Figure 8: Simplified Parse Tree Specification for The
IfThenElse Statement in VBScript

PARSE TREE EXTENSION
The second section of aTXL program defines the syntax of
the output in the target language. This is used to ensure that
the parse tree is a valid parse tree during the execution of all
the transformation listed in theTXL program. At the begin-
ning of the transformation, the parse tree is a pure VBScript
parse tree. After a couple of transformations, the parse tree
is a mixture of a VBScript parse tree and a JavaScript parse
tree. At the end - after applying all the transformations, it
is a pure JavaScript parse tree. Figure 10 shows the ex-
tensions needed to the base VBScript grammar to specify
the JavaScript grammar for theIfThenElse statement. In

JavaScript theIf statement condition expression is enclosed
between parentheses. Curly braces are used to delimit theIf
statement instead of using theEND IF keyword. Also the
keywordELSEIF is replaced with the keywordsELSEand
IF .

redefine IfThenElse_statement
...
| IF ([expression]) [opt {]

[opt stmts]
[opt }]
[repeat ElseIfBody]
[opt ElseBody]

end define

redefine ElseBody
...
| ELSE [opt {]

[stmts]
[opt }]

end define

redefine ElseIfBody
...
| ELSE IF ([expression]) [opt {]

[opt stmts]
[opt }]

end define

Figure 10: Extension of theIfThenElse Statement to
Specify the JavaScript Language

9

TRANSFORMATION RULES SPECIFICATION

rule VBScript_ifthenelse_to_javascript
replace [IfThenElse_statement]

IF EXP [expression] THEN ;
STMTS [stmts]

EIB [repeat ElseIfBody]
EB [opt ElseBody]
END IF;

by
IF (EXP) {

STMTS
} EIB EB

end rule

rule VBScript_elsebody_to_javascript
replace [ElseBody]
 ELSE ; STMTS [stmts]
by

ELSE {
STMTS

}
end rule

rule VBScript_elseifbody_to_javascript
replace [ElseIfBody]
 ELSEIF EXP [expression] THEN ;

STMTS [stmts]
by

ELSE IF (EXP) {
STMTS

}
end rule

Figure 11: Rules to transform theIfThenElse Statement
from VBScript to JavaScript

The final section of aTXL program specifies the rules that
will transform the VBScript program into a JavaScript pro-
gram. EachTXL transformation rule must have, at least, one
pattern to match and a replacement. A rule has this form:

r u l e name
r e p l a c e [t ype]

p a t t e r n
by

r e p l a c e m e n t
end r u l e

Name is an identifier,type is a non-terminal in the parse
tree which the rule transforms,pattern is a pattern which
the rule’s input tree must match, andreplacementreplaces
the matchedpattern. If the input tree matches the pat-
tern, the result is the replacement, otherwise the result is

the (unchanged) input tree. For example in Figure 11, the
VBScript ifthenelse to javascript rule would
only match and transform a VBScriptIf statement. To sim-
plify the specification of the rules,TXL permits the marking
of sub-trees in the pattern so they can be repeated in the re-
placement tree unchanged. In Figure 11EIB , EB, EXP, and
STMTSare examples of such markings.

Each transformation rule is localized to the matched state-
ment and it would not affect other statements. The transfor-
mation rules are applied repeatedly on the parse tree until no
more rules can be applied.

Figure 12 shows an example of the matching of the
VBScript ifthenelse to javascript rule to the
parse tree generated for the example input file. The ovals
in Figure 12 indicate the matching sub-trees for the nonter-
minals in the rule specified in Figure 11.

��
STMTS

�
EXP

��
EB

IfThenElse_statement

ElseBodyIF END IFexpression THEN stmts

stmts

HTMLCALL()
Session

("loggedIn")
Response.Writ

e(....) COMMENTCALL()

ELSE

COMMENT
CALL()

Figure 12: Matching Rule in Figure 11 to the parse tree
shown in Figure 9

6 RELATED WORK
Migrating web applications between different technologies
has been mainly done as a manual process. [19] and [31]
present approaches to migrate web application which depend
on Enterprise Java Beans (EJB) between application servers
built by different companies. [3] describes a case study
where a web application developed using windows technolo-
gies is migrated to a web application using java technology.
Such approach are not automated, are error prone and are
cumbersome for developers to perform, since they need to
deal with many details that would ideally be automated.

Tools have been proposed to automate or semi-automate the
migration [9, 23] of the database access code in a web ap-
plication. Our approach is not capable of processing com-
plex variations in the database access code between the
source and target framework. Nevertheless, we can migrate
database access code that is done using built-in framework
objects. Thus these approaches complement our work, in
particular for applications that use complex database access
techniques such as IBM’s Net.Commerce.

Since the publication of a preliminary version of this work
in [17], a number of commercial approaches have been pro-
posed to automate the migration of web applications. We

10

briefly contrast these approaches to our work.

To deploy web applications written using Microsoft tech-
nologies on Unix platforms, Stryon offers a set of tools
which reverse engineer the binaries (ILs) generated by Mi-
crosoft’s .NET web framework into Java source code [18].
This Java source code along with a set of libraries provided
by Stryon enable developers to run .NET web applications
using Java technologies. This java source code produced by
the application is not easy to maintain, as it is produced from
the binary and is missing the documentation and code inden-
tation. The java code may be missing some of the original
code as it may have been removed during the optimization
phase when the IL code was generated. The Stryon approach
assumes that the developer continues using .NET languages
to develop the application. The tool is only used to perform
the migration for deploying the application on a Unix plat-
form.

Other approaches similar to our approach of migrating the
source code of the application have been proposed by Mi-
crosoft and by Diamond Edge. Microsoft introduced a mi-
gration guide to automate the migration of JSP web applica-
tions to the ASP.Net web applications [27]. The guide aims
at facilitating the adoption of Microsoft’s newly introduced
web application framework (ASP.Net) by web developers.
The guide defines the migration process into two phases:
a functional equivalence migration phase and an optimiza-
tion phase. The functional equivalence phase is largely au-
tomated using a tool which first performs a code analysis to
identify any trouble spots in the migration process, then the
tool automatically migrates the application. Unfortunately,
no details are provided concerning the internals of the tool
and the maintenance of comments in the migrated source
code. Similarly to our approach, the tool attempts to mi-
grate as much as possible of the application. Failing to do so
it inserts tags in the source code for the migration engineer
to review the troublesome areas. Once the initial phase is ac-
complished, the framework focuses on the manual optimiza-
tion of the newly migrate site to benefit from the features of
the ASP.Net platform.

Diamond Edge offers a set of tools (ASP2JSP) to migrate
ASP web applications to JSP [2]. The approach followed
by Diamond Edge is closely related to our approach. The
ASP2JSP tool offers a mapping file to permit the mapping
of user defined objects. Comments are not migrated between
both applications.

7 OBSERVATIONS AND CONCLUSION
In this paper, we highlighted the risks faced by developers
maintaining their web applications as they are locked into
their initial development framework. These initial develop-
ment framework may no longer be supported by the compa-
nies who produced them or may no longer suit the current
requirements and future needs of a web application.

We proposed a migration approach to permit developers to

migrate their web application to their desired modern frame-
work. The approach has been used successfully to migrate
the Hopper News application to NSP. The Hopper News ap-
plication is a sample web application provided by Microsoft
to showcase the ASP framework. It is described in more de-
tail in [15].

Whereas prior migration research focused on migrating reg-
ular applications, the migration process of web applications
faces additional challenges, in particular, the intermixing of
programming languages inside web applications. Instead of
proposing a new paradigm for migrating web applications,
we focused on reusing prior migration techniques and re-
sults. To adopt prior migration techniques, we had to trans-
form web applications from multilingual application to sin-
gle language applications. We developed a process called
Water Transformationsto perform the transformation to sin-
gle language applications. We then used traditional migra-
tion tools, such asTXL, for the migration. The approach
automates error prone and low level migration details. De-
velopers can concentrate on more interesting and complex
problems in the migration process. The migration technique
aims at easing future maintenance of the migrated code by
preserving the structure of the migrated code and the relative
position of comments in the generated code.

TheWater Transformationsapproach can be used more gen-
erally to migrate programming languages that are embedded
inside other programming languages (for example to migrate
embedded SQL to newer version of SQL) by using the ideas
of preprocessing the input file and placing place-holders to
be later replaced in thePostprocessingstage after the trans-
formations are done.

ACKNOWLEDGEMENTS
Web applications provided by Microsoft Inc. and Sun Mi-
crosystems of Canada Inc. were used to develop the grammar
for the VBScript language, as no extensive reference manual
describes the language in detail. In particular, we would like
to thank Wai-Ming Wong from Sun for his assistance in our
study of the web applications. We would also like to thank
Thomas R. Dean, James R. Cordy from Queen’s University
and Andrew J. Malton from the University of Waterloo for
introducing the TXL language to us.

REFERENCES

[1] Macromedia, 2002. Avail-
able online at:http://www.macromedia.com/
software/coldfusion/ .

[2] ASP2JSP, The ASP to JSP Converter. Available
online at: http://www.diamondedge.com/
products/Convert-ASP-to-JSP.html .

[3] Best Practices - Case Studies: BlueNile.com – Build-
ing a Gem of a Site with Oracle and Sun. Available on-
line at: http://www.sun.com/third-party/

11

global/oracle/success/
BlueNileCaseStudy.pdf .

[4] A. Cimitile, U. de Carlini, and A. D. Lucia. Incremen-
tal migration strategies: Data flow analysis for wrap-
ping. In 5th Working Conference on Reverse Engi-
neering (WCRE), pages 59–68, Honolulu, Hawai, Oct.
1998.

[5] E-business implementation by industy sector, 1999.
Avail-
able online at: http://ebusiness.mit.edu/
cgi-bin/stats/catagorybrowser.cgi .

[6] J. Conallen.Building Web Applications with UML. ob-
ject technology. Addison-Wesley Longman, Reading,
Massachusetts, USA, first edition, Dec. 1999.

[7] J. Cordy, T. D. andA.J. Malton, and K. Schneider. Soft-
ware Engineering by Source Transformation - Experi-
ence with TXL. InIEEE 1st International Workshop on
Source Code Analysis and Manipulation, pages 168–
178, Florence, Italy, Nov. 2001.

[8] J. Cordy, T. Dean, A. Malton, and K. Schneider. Soft-
ware Engineering by Source Transformation.Spe-
cial Issue on Source Code Analysis and Manipulation,
Journal of Information and Software Technology, Feb.
2002.

[9] O. Corp. In2j : Automated tool for migrating Oracle
PL/SQL into Java. 2001. Available online at:http:
//www.in2j.com .

[10] T. Dean, J. Cordy, K. Schneider, and A. Malton. Ex-
perience Using Design Recovery Techniques to Trans-
form Legacy Systems. InIEEE International Confer-
ence on Software Maintenance, pages 622–631, Flo-
rence, Italy, Nov. 2001.

[11] ECMA - Standardizing Information and Communica-
tion Systems. Available online at:http://www.
ecma.ch .

[12] Standard ECMA-262: ECMAScript Language Specifi-
cation . Available online at:ftp://ftp.ecma.ch/
ecma-st/Ecma-262.pdf .

[13] P. M. G. Mecca, P. Atzeni, and V. Crescenzi. The
Araneus Guide to Web-Site Development - Ara-
neus Project Working Report. AWR-1-99, Uni-
versity of Roma Tre, Mar. 1999. Available
online at: http://www.dia.uniroma3.it/
Araneus/publications/AWR-1-99.ps .

[14] A. E. Hassan. Architecture Recovery of Web Applica-
tions. Master’s thesis, University of Waterloo, 2001.
Available online at: http://plg.uwaterloo.
ca/ ∼aeehassa/home/pubs/msthesis.pdf .

[15] A. E. Hassan and R. C. Holt. Architecture Recovery of
Web Applications. InIEEE 24th International Confer-
ence on Software Engineering, Orlando, Florida, USA,
May 2002.

[16] A. E. Hassan and R. C. Holt. A Visual Architectural
Approach to Maintaining Web Applications.Annals
of Software Engineering- Special Volume on Software
Visualization, 16, 2003.

[17] A. E. Hassan and R. C. Holt. Migrating Web Frame-
works Using Water Transformations. InProceedings
of COMPSAC 2003: International Computer Software
and Application Conference, Dallas, Texas, USA, Nov.
2003.

[18] iNET - Write Once in .NET, Run Anywhere. Avail-
able online at: http://www.halcyonsoft.
com/products.asp?s=4 .

[19] S. iPlanet. Migration Guide, iPlanet Application
Server.
2000. Available online at:http://docs.sun.
com/source/816-5774-10/mpreface.htm .

[20] Island Gram-
mars, 2001. Available online at:http://losser.
st-lab.cs.uu.nl/ ∼visser/cgi-bin/
twiki/view/Transform/IslandGrammars .

[21] I. Jacobson and F. Lindstrm. Re-engineering of old sys-
tems to an object-oriented archistecture. InObject Ori-
ented Programming Systems Languages and Applica-
tions Conference (OOPSLA), pages 340–350, Phoenix,
Arizona, 1991.

[22] K. Kontogiannis, J. Martin, K. Wong, R. Gregory,
H. Müller, and J. Mylopoulos. Code migration through
transformations: An experience report. InIBM Centre
for Advanced Studies Conference (CASCON), pages 1–
13, Toronto, Canada, Nov. 1998.

[23] T. C. Lau, J. Lu, E. Hedges, and E. X. Xing. Migrat-
ing e-commerce database applications to an enterprise
java environment. InIBM Centre for Advanced Stud-
ies Conference (CASCON), Toronto, Canada, 2001.
Available online at:http://www.cas.ibm.com/
archives/2001/papers/cascon01/htm/
english/abs/lau.htm .

[24] L. Moonen. Generating robust parsers using island
grammars. InWorking Conference on Reverse Engi-
neering, Stuttgart, Germany, 2001.

[25] L. Moonen. Exploring Software Systems. PhD thesis,
Faculty of Natural Sciences, Mathematics, and Com-
puter Science, University of Amsterdam, Dec. 2002.

12

[26] L. Moonen. Lightweight impact analysis using island
grammars. In10th International Workshop on Program
Comprehension, Paris, France, 2002.

[27] JSP to ASP.NET Migration Guide, 2003. Available on-
line at: http://msdn.microsoft.com/asp.
net/using/migrating/jspmig/ .

[28] P. Newcomb and P. Martens. Reengineering proce-
dural into object-oriented systems. In3rd Working
Conference on Reverse Engineering (WCRE), Toronto,
Canada, July 1995.

[29] Business Flow Accelerators. Available online
at: http://www.oracle.com/consulting/
offerings/ebs/index.html?content.
html .

[30] P. Patil, Y. Zou, K. Kontogiannis, and J. Mylopoulos.
Migration of Procedural Systems to Network-Centric
Platforms. InIBM Centre for Advanced Studies Confer-
ence (CASCON), pages 68–82, Toronto, Canada, Nov.
1999.

[31] T. Research. Moving from IBM WebSphere 3 to
BEA WebLogic Server 5.1, White Paper. Available
online at: http://www.bea.com/products/
weblogic/server/Migration WP.pdf .

[32] H. Sneed. Encapsulating legacy software for use in
client/server systems. In3rd Working Conference on
Reverse Engineering WCRE), pages 104–119, Nov.
1996.

[33] H. Sneed. Object-oriented cobol recycling. In3rd
Working Conference on Reverse Engineering (WCRE),
pages 169–178, Nov. 1996.

[34] The TXL Transformation System, 2001. Available on-
line at: http://www.txl.ca/ .

[35] A. Yeh, D. Harris, and H. Reubenstein. Recovering
abstract data types and object instances from conven-
tional procedural language. In2nd Working Confer-
ence on Reverse Engineering (WCRE), pages 227–236,
Toronto, Canada, July 1995.

13

