Animated Visualization of Software History using Evolution Storyboards

Dirk Beyer *
EPFL, Switzerland

Abstract

The understanding of the structure of a software system
can be improved by analyzing the system’s evolution during
development. Visualizations of software history that provide
only static views do not capture the dynamic nature of soft-
ware evolution. We present a new visualization technique,
the Evolution Storyboard, which provides dynamic views of
the evolution of a software’s structure. An evolution sto-
ryboard consists of a sequence of animated panels, which
highlight the structural changes in the system; one panel
for each considered time period. Using storyboards, engi-
neers can spot good design, signs of structural decay, or
the spread of cross cutting concerns in the code. We imple-
mented our concepts in a tool, which automatically extracts
software dependency graphs from version control reposito-
ries and computes storyboards based on panels for differ-
ent time periods. For applying our approach in practice, we
provide a step by step guide that others can follow along
the storyboard visualizations, in order to study the evolu-
tion of large systems. We have applied our method to sev-
eral large open source software systems. In this paper, we
demonstrate that our method provides additional informa-
tion (compared to static views) on the ArgoUML project, an
open source UML modeling tool.

1. Introduction

Large software systems have a rich development and
maintenance history, which is filled with noteworthy events
(e.g., major refactoring or re-architecting) and interesting
time periods (e.g., bug fixing or active and quiet develop-
ment periods). Such information is rarely documented, in-
stead it is kept in the minds of senior developers who have
been working on the system for several years. Such infor-
mation is relayed from one developer to the next through
anecdotes and other informal communication.

Many future decisions in a project are affected by lessons
that can be learned from the software’s history. Projects risk
losing this rich history over time, because senior developers

*Supported in part by the MICS NCCR of the SNSE.

Ahmed E. Hassan

University of Victoria, Canada

tend to move on to other projects, or eventually leave the
organization. As these developers depart, the project would
lose the developers’ undocumented wisdom and knowledge.
However, version control systems (VCS) contain valuable
historical information about a project, and mining the VCS
repository may reveal interesting events in the development
and maintenance of long-lived projects.

The software engineering literature contains many ap-
proaches for visualizing and studying the evolution of soft-
ware systems. Most of these visualizations are static —
static in the sense that a single visualization (e.g., graph or
numerical plot) is used to summarize the various periods
in the lifetime of a system. Static visualizations often can-
not capture the dynamic nature of software evolution. We
attempt to overcome this shortcoming with our new visual-
ization concept evolution storyboard.

A storyboard is traditionally produced beforehand to
help directors and cinematographers to study movie scenes
to uncover potential problems before they occur [3, 11, 13].
In our work about software engineering, we define the con-
cept of evolution storyboards to replay and study the history
of a software system, retrospectively. Practitioners can use
our evolution storyboards to better understand the rationale
behind the current structure of the software system, and to
uncover problems (e.g., structural decay) and possible im-
provements (e.g., refactoring and code re-organization) to
the software structure. In contrast to static visualizations,
the evolution storyboard presents dynamic views, which de-
pict consecutively important events and periods in the life-
time of long-lived software systems. However, we do not
propose a full movie visualization since developers watch-
ing such a movie would have difficulties controlling it. De-
velopers would likely miss interesting events, and are not
able to easily focus on particular periods or parts of the sys-
tem. In short, the evolution storyboard visualization strikes
a balance between static and movie-like visualization to per-
mit developers to effectively study the dynamics of software
evolution.

An evolution storyboard consists of a series of dynamic
panels. Each panel represents the dependency informa-
tion of a particular period in the lifetime of a studied soft-
ware system. Each panel contains software artifacts (e.g.,

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006 IEEE

files or functions) that are placed in a two-dimensional
space, where the positions of the artifacts are obtained by an
energy-based graph clustering algorithm. These placements
have the property that artifacts that are dependent have close
positions, and artifacts that are independent have distant po-
sitions. Each panel highlights changes of the software ar-
tifacts” dependency degree, and optionally showcases the
movement of them through animated arrows. The evolution
storyboard assists developers in spotting artifacts that are
becoming more or less dependant on others.

The evolution storyboard visualizes changes of the sys-
tem structure over time based on dependency graphs. For
the case studies mentioned in this paper, we used co-
change graphs —an abstract representation of the change
transactions— as dependency graphs. However, the method
is parametric in the kind of dependency graph. A co-change
graph can be extracted from the VCS repository of a soft-
ware system using a simple and efficient extraction process.
The panels in this paper represent the co-change informa-
tion: artifacts are positioned closely together if they were
often changed together. The approach is programming-
language independent, and the software artifacts are not re-
stricted to program source but can also represent artifacts
such as build scripts, documentation, and test cases.

Storyboard visualizations help practitioners to under-
stand the evolution of the structure of a software system,
complementing other existing techniques. In comparison to
static visualizations of evolution, our animated visualization
can monitor how the structure of dependencies in a software
system has changed over time. More concretely, our work
provides support for the following reengineering subtasks
(selection of possible applications of our approach):

e Explaining decay symptoms. Storyboards help ex-
plaining symptoms and clarify misconceptions. E.g.,
although a static visualization may reveal symptoms
of decays, the storyboard could reveal that these symp-
toms have existed over the years since the beginning of
the project and are more likely design decisions rather
than decay symptoms.

o Highlighting refactoring candidates. Storyboards
help uncover artifacts that are good candidates for
refactorings. Artifacts that are responsible for a variety
of concerns in a software system and tend to change
with many different groups of artifacts that represent
particular concerns, are examples of such candidates.
Such refactoring candidates are highlighted in the pan-
els of a storyboard since they frequently move as they
change often with different artifacts over time.

e Spotting good structure. Storyboards highlight well
designed sets of artifacts. Such artifacts tend to change
together, and rarely change with other artifacts. Our

clustering layout causes artifacts with such character-
istics to separate from the rest of the system and to
form their own cluster. The storyboard panels help us
to visualize the emergence of such clusters over time.

Many useful software visualization approaches lack to
provide a guideline that explains how to use the visualiza-
tion and what insights can be obtained from the pictures.
We provide a step by step guideline for using our method.
The guide aims at helping to get started when analyzing the
software’s evolution, in order to gain a better understand-
ing of the current structure of the system. Practitioners can
follow this simple guideline to understand, visualize and an-
imate their system and its structure. We evaluate our own
technique along the proposed guideline in the last section
of the paper, and showcase our new storyboard visualiza-
tion on a large open source project. We demonstrate how to
address the above reengineering tasks for these systems.

Contributions. The contributions of this work can be sum-
marized as follows:

1. We define a new dependency graph model, which gen-
eralizes the co-change graph model from [5] to arbi-
trary software dependency graphs.

2. We introduce the evolution storyboard, a new concept
for animated visualizations of historical information
about the software structure, and the storyboard panel,
which is the building block for highlighting structural
differences between two versions of a system.

3. We highlight several obvious applications of our tech-
nique to typical reengineering tasks, and show on large
example systems how it provides solutions.

4. We formulate a guideline for the usage of our visual-
ization, in order to make the approach applicable by
and useful for non-experts, and to make the evaluation
repeatable on other subject systems.

Related Work. Ball et al. mined and visualized graphs
based on common source code changes from the version
control repository [2]. Baker and Eick used animated vi-
sualizations of software metrics to observe the growth of
software systems [1]; they did not use co-change infor-
mation from version repositories. The visualization of
release histories by Gall et al. is produced by generat-
ing two-dimensional pictures and combining them to a
layered structure (system—subsystem—module) for different
versions of the system over time; several attributes are used
to color the visualizations [10]. Collberg et al. proposed a
method that is limited to source code objects and the pro-
gramming language Java, to produce sequences of static
layouts of call and inheritance graphs [6]. The method uses
energy models that are not designed for clustering, but for

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006 IEEE

aesthetic layout of non-software graphs. Fischer and Gall
visualized the dependencies between features[7], and Lanza
used matrices to represent evolution data [14]. Beyer and
Noack introduced energy-model based visual clustering of
software systems using co-change graphs [5]. We use their
method to compute the positions of artifacts in our panels.

QOutline. Section 2 defines the graph model that our method
is based on. Section 3 defines how the static layouts are
computed and how they are combined to form a dynamic
storyboard. We use a clustering layout technique to posi-
tion artifacts in the storyboard panels. Then we compute
the panels for each period, add the animation to each panel,
and apply several filtering heuristics to avoid pollution of
the visualization with unimportant information, to make the
presentation clear and easy to understand. In Section 4 we
propose a usage guideline for our approach and report our
findings from applying the technique to three large open-
source software projects. We conclude the paper with sum-
marizing and discussing our approach.

2. Graph Model

An evolution storyboard is constructed by combining

visualizations of multiple dependency graphs for differ-
ent periods. This section defines the graph model that is
used as input data for the method; these graphs can be
automatically extracted from version control repositories
(such as CVS), however this is not detailed in this paper
(cf. [16, 17, 8, 4, 12]).
Dependency graphs. Previous approaches to visualize de-
pendency structures are based on graph models where a de-
pendency between two artifacts is modeled as an edge be-
tween the two corresponding artifact nodes. In contrast to
this ‘condensed’ graph model, we prefer to keep more in-
formation in the graph. If the reason for the (assumed) de-
pendency is a syntactical coupling of three artifacts, then
we want to keep this fact in our model. For this purpose, we
introduce a new model for dependency graphs with a new
type of nodes, called a dependency node, which captures the
reason for the dependency.

A dependency graph is a weighted, bipartite, undirected
graph G = (V,E,w), where V is the set of nodes, E is the
set of edges, and w : E — R is a total function that assigns
a weight to each edge. A node v € V is either an artifact
node or a dependency node. An edge {d,a} € E between
a dependency node d € V and an artifact node a € V exists
if node d models the abstract reason that makes artifact a
dependent on all other artifacts @’ with {d,a'} € E. The
weight of an edge can be used to model the importance of
the dependency (if the weight is not mentioned explicitly,
we assume an edge weight of 1). Software artifacts are, e.g.,
subsystems, files, classes, or functions. Dependencies can
be induced by, e.g., calls, subtype relations, or co-changes.

Figure 1. Combined dependency graph

Example 1. (Dependency graph) Let x.h be a header file,
and let y.c and z.c be two implementation files that con-
tain both a preprocessor directive to include file x.h. This
fact of a syntactical inclusion dependency can be modeled
by the following (sub-) graph G = ({d;,d>,x.h,y.c,z.c},
{{d1,x.h},{d1,y.c},{d2,x.h},{dr,z.c}},w), w:V —{1}.
Co-change graphs. The dependency graphs that we use in
the examples in this paper are co-change graphs [5]. In this
case the graph represents the change history of a software
system in the following way: the dependency nodes repre-
sent version-control change transactions, and an edge {d,a}
between a change transaction node d and an artifact node a
exists if artifact a was changed by change transaction d.

Weighted combinations of different graphs. Since we
model the abstract reason for a dependency in a separate
graph node, it is possible to represent several different kinds
of dependencies between two artifacts in the same graph.
E.g., two artifacts can be connected by an inclusion depen-
dency node of an inclusion graph and by a change transac-
tion node of a co-change graph. The combination of two
different dependency graphs is the union of the two graphs.
If different dependency graphs are not considered equally
important, then the dependency graphs can be weighted
with different edge weights in the combination.

Example 2. (Combined dependency graph) Figure 1
shows a combined dependency graph that includes the facts
from the previous example, and additionally a co-change
dependency c between all three artifacts.

3. Visualization

An evolution storyboard visualizes a sequence of de-
pendency graphs for several periods in the development of
a software system. Therefore the storyboard consists of
several panels — each panel visualizing the dependency
graph at a particular period. In this section, we first present
our technique to layout a single dependency graph for a
panel. Then we discuss three alternatives for instantiating
the method to co-change graphs. We proceed with defining
the evolution storyboard and how it is drawn in the visual-
ization. In the visualization we need to ensure that we filter

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006 IEEE

out unimportant information that otherwise blur the gener-
ated picture. Finally, we discuss our tool implementation
for generating storyboards, and highlight the benefits and
limitations of the current implementation.

Visualization of single panels. A layout of a graph (V,E,w)
is a function p: V — R4, which maps each node from V to
a position in the d-dimensional real space (d € {2,3}). We
construct the function p using energy-based graph layout
(cf. [9]). An energy model is an evaluation function U that
assigns to each layout p a real number u. The layout p is
the best layout if U (p) is the global minimum of function U.
This means that the energy model encodes the desired prop-
erties of the layout. Since we are interested in grouping
a dependency graph into groups that represent subsystems,
we use energy models with clustering properties [5, 15].
The algorithm that computes a layout with minimal energy
is called a minimizer. To efficiently compute an approxima-
tion of the best layout of a dependency graph for a single
panel, we run the graph layout tool CCViIsu'.
Visualization of a sequence of graphs. Instead of visual-
izing a single dependency graph which represents the full
history of a software system (as done in [5]), we are here
interested in visualizing how that particular dependency
graph evolves over time. This visualization helps to gain in-
sights into changes to interdependencies between artifacts
and subsystems during the development of the system.

For the instantiation of our method to co-change graphs,
we considered the following three alternatives for the choice
of the co-change graphs at every panel:

1. Time-based co-change graphs: We consider graphs af-
ter a constant time period. In our case studies, we
chose to create a new panel after every 3 months.

2. Change-count-based co-change graphs: We consider
graphs after a constant number of additional depen-
dencies for each panel. In our case studies, we chose
to create a new panel after every 1000 dependencies.

3. Release-based co-change graphs: We consider graphs
at certain release points. We create a new panel for
each release of the software system.

Each alternative has its benefits and shortcomings; the
time-based graphs quickly reveal in their corresponding sto-
ryboard panels quiet time periods in the lifetime of a soft-
ware system, where little or no changes have occurred to
the software’s dependency structure. On the other hand, us-
ing the change-count-based or release-based alternative, the
user is not aware of the amount of time that has elapsed
between two panels in the storyboard. For example, one
panel may capture 1000 changes that occurred in a single
day whereas another panel may capture the same amount of
changes over a few weeks or months.

Thttp:/mtc.epfl.ch/~beyer/CCVisu

Evolution storyboards. The evolution storyboard divides
the lifetime of a software system into several periods, and
shows a storyboard panel for each of them. Every story-
board panel is based on a layout of the dependency graph to
visualize the structure of the software system.

Let G, = (V;, E;,w;) be the dependency graph of the soft-
ware system at time ¢, and let p; be the best layout of
the graph G;. An evolution storyboard for the sequence
of marks fy,71,...,t, is a sequence of n panels Py, P, ..., B,
one for each period between two subsequent marks. The
panel P consists of the layout p; and a set M; C V,NV,_;
of animated nodes. We use the set M, to restrict the anima-
tion of a panel to nodes that reflect the change of structure,
to filter out negligible change of nodes, to avoid clutter in
the panel. The conditions for a node of being considered as
animated node are detailed below.

The visualization of a single panel P, is implemented as
follows: for every artifact node a € V;, we draw a filled cir-
cle at position p;(a), with the circle area proportional to the
edge degree degg, (a) = ¥(qayer, wi({a,d}), ie., the sum
of the weights of dependency edges to the artifact node. For
every artifact node a € M;, we draw a grey filled circle at
the node’s previous position p;_;(a), with a circle area pro-
portional to the previous edge degree degg, , (a), and a grey
line from the previous position p;_;(a) to the current posi-
tion p;(a). This line is animated by moving bubbles that
move from p;_;(a) to p;(a). Furthermore, we visualize the
change in the degree of dependency since the previous panel
(i.e., the last period): we draw a red ring within the circle for
the artifact node a, with the area of the ring proportional to
the difference of the edge degree between graph G; and the
previous graph G, i.e., degg, (a) —degg, (a)ifa€V,_y,
and degg, (a) otherwise. This means: large nodes depend on
many other nodes, and nodes with large rings have changed
their degree of dependence a lot during the last period.

In the evolution storyboard, these panels are displayed in
a sequence for the purpose of visualizing and animating the
historical changes in the dependency of the nodes. The in-
terface of the tool permits the user to move quickly between
consecutive panels. The ability to move quickly between
panels offers a motion-like animation, which permits the
user to animate and study closely changes in the layout and
in the structure of a software system over time.

Stabilization and filtering techniques. To achieve a se-
quence of layouts that are similar to each other (stable), but
emphasize the change in the structure of the system, we feed
our graph-layout algorithm when computing the layout for
panel p; with the positions of the artifacts in panel p;_;. Le.,
the layout algorithm starts with the positions of the previous
layout, and adopts the positions of the artifacts in the current
layout according to the current graph, in order to produce a
layout with minimal energy.

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006 IEEE

— Y

Go-Change CCVisu Force Movgment
Depend. Layout Based Layout Filter

Figure 2. Approach overview

HTML
Storyboard

Stabilized
Layouts

il

In the following we explain in more detail how we fil-
ter out animation of negligible movement, to avoid that
unimportant information blurs the visualization. An arti-
fact node a € V; NV;_; is included in the set M, of animated
nodes if all of the following conditions hold:

1. The Euclidean distance ||p;(a) — p;—1(a)|| of the
node’s current and previous position is larger than
a certain threshold (e.g., 5% of the panel’s width).
The animation of artifacts not fulfilling this condition
would clutter the visualization by many very small
changes of positions.

2. The degree of dependency degg, (a) (i.e., the edge de-
gree) is above a certain threshold (i.e., the dependency
of the artifact changed often). Artifacts not fulfilling
this condition are not important for the overall struc-
ture of the system and its evolution.

3. The change of the degree of dependency degg, (a) —
degg, ,(a) in the last period (i.e., the difference of the
edge degrees) is above a certain threshold (i.e., the de-
pendency of the artifact changed a considerably in the
last period). Artifacts not fulfilling this condition are
not important for the change of the structure during the
last period.

Note that restricting the animation to a subset of arti-
facts does not affect the positions of the other artifacts in the
panel. If, e.g., an artifact changes its dependencies slowly
over a long period of time, it would always change its posi-
tion a bit, but we would not emphasize it by animation.

Tool implementation. The concepts of the evolution sto-
ryboard are implemented as a Java application, in order
to be platform independent. Clustering graph layouts are
efficiently computed by calling functions from CCVISU’s
layout library' [4], which is based on the best known algo-
rithm for computing energy-based graph layouts (Barnes-
Hut). Figure 2 gives an overview of the tool implemen-
tation. The dependency graphs for each panel are gen-
erated through either the time-based, change-count-based,
or release-based alternative. These graphs are feed to the
graph-layout tool. The tool uses the layout from previous
panels to generate the layout for the following panel. For
the first panel, the tool uses a random layout. The generated

layouts along with the dependency graphs are feed into the
movement filter. The filter uses the aforementioned thresh-
olds and heuristics to reduce the animation of unimportant
nodes. The complete evolution storyboard is displayed us-
ing standard, vendor-independent Java technology.

Alternatively, the storyboard can be written to several
SVG files (one for each panel), which are embedded in a
single HTML document for navigation. The use of stan-
dard web technology makes the tool easy to use and adopt
by software practitioners. To permit users to move quickly
between panels, all SVG files are loaded in memory using
HTML layers. Once a specific panel is to be shown, its
particular HTML layer is brought to the front. This tech-
nique permits very fast interaction with the storyboard with
no lag due to loading up an SVG file corresponding to a
panel. Users can zoom into a particular area of a panel to
monitor closely the interactions of a limited set of artifacts.
Although each panel is represented as a separate SVG file,
all the SVG files communicate together through JavaScript
functions to ensure that they are synchronized. For exam-
ple, once a user zooms into a particular panel then the view-
point of all other panels in the storyboard are adjusted to
reflect the same viewpoint.

Coloring schemes. Each generated storyboard supports
two coloring schemes by default. Additional coloring
schemes are possible. One coloring scheme is based on an
authoritative decomposition of the studied software system.
In this coloring scheme, all artifacts (i.e., nodes) in a sub-
system are colored using a particular color which represents
the subsystem. This coloring scheme highlights how in-
terdependencies between different subsystems change over
time. The second coloring scheme is a heat-based coloring
scheme (called HeatMap): artifacts which have moved in
more than 40 % of the panels are colored orange; files which
have moved in more than 30 % of the panels are colored yel-
low; and files which have moved in more than 20 % of the
panels are colored green. Finally files that have moved in
than less than 20 % of the panels are colored grey. This heat
coloring scheme permits us to note artifacts that are contin-
uously moving due to permanent change of dependencies.

4. Application
4.1. Step by Step Guideline

To get started with using evolution storyboards, we pro-
pose the following step by step guideline, which we derived
from our own experience in analyzing large software sys-
tems. We hope that this guideline provides help for others
who are interested in using storyboards on their own soft-
ware systems.

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006 IEEE

1. Data preprocessing. The input of the method is a

set of dependency graphs for different versions. These
need to be extracted from the system’s version control
repository (e.g., co-change graphs with CCVISU).

. Single-panel analysis. Analyze various static pan-
els individually. Use an authoritative decomposition
or the package/directory structure to color all artifacts
of one subsystem with the same color. The area of
an artifact circle indicates the degree of dependency
(e.g., how often it was changed). If the dependency
graph contains loosely coupled, cohesive groups of ar-
tifacts, then these groups appear in the layout as clus-
ters. If these clusters consist of nodes of mostly the
same color, then the dependency graph ‘matches’ the
authoritative decomposition. Watch for the following
characteristics:

(a) Large nodes. Artifacts represented by large
nodes have a high degree of dependency in the
graph (co-change graphs: were changed often in
the lifetime of the project). These artifacts can be
good candidates for reengineering.

(b) Separated subsystem components. Artifacts
that have the same color but are not closely posi-
tioned, are considered to be in the same subsys-
tem, but do not strongly depend on each other.
These nodes can be candidates for reassignment
into different subsystems.

(c) Independent clusters. A group of artifacts that
is separated from the rest in the layout represents
a very cohesive subsystem according to the sys-
tem’s dependency structure. The artifacts in such
a cluster strongly depend on each other (change
often together), and are not very dependant on
(often changed together with) other artifacts.

Such (groups of) artifacts are good candidates for
closer investigation.

. Animated analysis. Animate the dependency graph
using the evolution storyboard. Watch for the follow-
ing characteristics in the animation:

(a) Growing nodes. Observe how nodes grow over
time. In particular, focus on the large nodes that
were noticed in the single-panel analysis. This
will explain if artifacts had particular periods of
heavy dependencies to other artifacts (were fre-
quently changed) and quiet periods, versus ar-
tifacts that continuously had a stable degree of
dependency. Also look for groups of nodes that
do not change their size, these are ‘stable’ arti-
facts/subsystems, which do not change their de-
pendencies to other artifacts.

(b) Traveling nodes. Observe how nodes change
their position over time. In particular, look for
nodes that are frequently moving reasonable dis-
tances. This indicates that these artifacts are
changing not only their degree but also their de-
pendency partners excessively. Such artifacts
that frequently move across the storyboard are
good candidates for refactoring by breaking the
artifact into smaller artifacts, according to the dif-
ferent responsibilities (each representing a partic-
ular concern).

(c) Cluster movement. The single-panel analysis
gives us a static glimpse of how the different sub-
systems (colors) are related. It does not show
how the dependencies between these subsystems
change over time. Concentrate on the following
three particular aspects:

i. Independent clusters. Examine how each
cluster is moving over time in the story-
board. In particular, look for clusters that
could be identified in the single-panel anal-
ysis as being well separated from the rest of
the artifacts. If we observe that such clus-
ters have moved slowly over time to become
separated, then this can be the result of a re-
structuring activity and indicates that these
clusters are highly cohesive and have low
coupling to the rest of the system.

ii. Co-cluster movement. Compare how each
cluster has moved relative to the others. If
two clusters move closer together, this indi-
cates that these clusters are becoming more
and more dependant on each other.

iii. Emerging clusters. If a cluster moves out
of the rest of the system or out of another
cluster, this means that over time the depen-
dencies were concentrated within that clus-
ter. This effect can be a consequence of suc-
cessful restructuring activities. The cluster-
ing energy model ensures that the a cohesive
group of artifacts that is otherwise loosely
coupled with the rest gets separated.

4. Consult additional sources. Compile a list of note-

worthy artifacts and group of artifacts, and consult the
system documentation, look up the source code or API,
or consult a system expert, in order to get additional
information about the components to select and refine
the findings obtained using the evolution storyboard.
We hope that this consultation of additional sources
(which a tool cannot do for us) can be done more effi-
ciently after exploring the evolution storyboard, since
the user knows already which questions to ask.

IEE I-'

COMPUTER
SOCIETY

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006 IEEE

@ @
Documentation
(HTML)

k.

old source tree

] ocumentation (XML)

Figure 3. A storyboard panel for ArgoUML show-
ing old (left cluster) and new (right cluster) source
code files and documentation files

4.2. Case Studies

Our example storyboards were created by applying the
approach to the information stored in the version control
repository (CVS in this case) of three systems. We chose to
use co-change graphs as input, because they are simple and
efficient to extract from the version repository. We do not
claim that this is the best choice of dependency graph, and
our method is not limited to co-change graphs. For clear
presentation in the paper (limited resolution when printed),
we omit all artifacts with dependency degree less than 3.

We use both coloring schemes. The HeatMap coloring
scheme is helpful in our animated analysis since it high-
lights frequently moving nodes and subsystems. The col-
oring by authoritative decomposition helps to observe how
the dependency structure between the different subsystems
changes over time. Our Java implementation and SVG Java-
Scripts permit us to switch between both coloring schemes
on the fly, to not lose context. Once we observe an interest-
ing set of nodes (e.g., frequently moving or growing fast),
we can zoom and observe them more closely over time.

We have applied the evolution storyboard ap-
proach to the three large open source software
projects POSTGRESQL, ARGOUML, and MOZILLA.
POSTGRESQL is an open source relational database
system with more than 15 years of active development.
ARGOUML is an open source UML modeling tool which
includes support for all standard UML 1.4 diagrams.
MOZILLA is an open source web browser and mail client.
The evolution storyboards highlighted several interesting
historical events and information about the three systems.
Panels in the POSTGRESQL storyboard were created
using the time-based technique, whereas the panels in the
storyboards of ARGOUML and MOZILLA are change-
count-based. Due to space limitation, we discuss only the
ARGOUML storyboard in this paper, but we encourage the
reader to download and explore also the other storyboards
(we refer to the online supplement).

ArgoUML. The ARGOUML repository contains the devel-
opment history of 10,139 files over the last 8 years. Our
largest extracted co-change graph, which is used in the last
storyboard panel, models 10,108 commits (resulting in a to-
tal of 20,247 nodes with 57,036 single changes).

Single-panel analysis. Figure 3 shows a panel from our
first storyboard for ARGOUML. The figure shows two large
separated clusters. The different panels in the storyboard
show how one large cluster was becoming more active with
many changes applied to it and artifacts moving, while the
other large cluster had very few changes (node sizes not
growing) and no artifacts moving. A closer examination
of the version control system for ARGOUML revealed that
the system contains an old (no longer maintained) source
tree and another actively enhanced and maintained tree with
moving nodes and changing dependencies. Our generated
storyboard offered us a dynamic view into how the team
moved their development from their old source tree to the
new source tree.

To increase the clarity of the generated storyboard, we
decided to consider only the active source tree when we
built our next storyboard for ARGOUML. By dropping the
artifacts of the old tree from our visualization, the new ar-
tifacts could expand to fill the panel instead of using only
half of the panel’s space.

Figure 4 shows the first and last panel in the ARGOUML
storyboard. The first panel indicates the colors assigned to
each subsystem. Utility files and other files that are not as-
signed to any subsystem are drawn in white. Following our
step by step guide, we note all the large nodes in the last
panel. The names of the large nodes are indicated in the
figure. These large nodes are good candidates to observe
in the next step using animation. Moreover, we can inves-
tigate their overall movements using the HeatMap coloring
scheme. We also observe that the UI subsystem (yellow) has
grown considerably over the years and seems to be highly
dependant on several other subsystems. Nevertheless, we
notice in the lower right corner of the last panel the forma-
tion of a mini-cluster of the UI subsystem. Using the ani-
mated analysis, we can closely look at the formation of this
cluster over time to gain a better understanding of the ratio-
nale behind its formation. Finally, we notice that the I8N-
internationalization subsystem (orange) has remained over
the years as a reasonably independent cluster that is sepa-
rated from the rest of the system. This is a good indication
that the internationalization concerns within ARGOUML
are well contained except for a few orange files that are
placed close to the other subsystems.

Animated analysis. Our single-panel analysis high-
lighted the formation of a mini-cluster of the UI subsystem
(yellow) in the lower right corner in Fig. 4 (last panel). For
closer investigation, we zoom into the area that is greyed
in Fig. 4. Figure 5 shows four different panels from the

IEE l-:

COMPUTER
SOCIETY

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006 IEEE

R o o © ° [3
e & .
Cognitive]
T8, 80 270200, b
@ s ool @@g@r o %
hd ‘(OO od?% _&Ogo © [¢]
Application c o %00 ° Model
%Ge0° “BEWO ofyo oo
$9 © o °
I o © e © o o o®
e ° UOO o) ? (- ° [}
o
- A
Generator /
g U1
o o
First Panel °
I8N

~

@
ModelFacade.java °

’ Modellerjava

Project.java o o
S . 00
O
° e

o4
go oo
o.
o
©°
° o o ©
‘}: © O
o
® © &y ° o
@ D
Generatorjava.jdva O% O °
© o & o o Zoomed Area
o

°8 :
C{ \ 80
. o »
\ Main.java A o Qosa °
., % Q@
° PropPanel java ° [0
build xml

Figure 5. Animated analysis (ArgoUML)

zoomed ARGOUML storyboard at different moments in
time (from left to right). We observe the existence of two
yellow mini-clusters at the beginning of the project, labeled
A and B in the figure. As time progresses, a new mini-
cluster C is formed due to many nodes separating from clus-
ter A and B. These separated nodes tend to be modified to-
gether and are rarely modified with other artifacts, therefore
the energy layout separates them from the rest of the yel-
low subsystem. Recently (i.e., in the last panel), most of the
nodes in B have moved into C and we are back to having two
mini-clusters. The storyboard permits us to closely observe
the creation of the new cluster C and the slow disappearance
of cluster B. At this moment, the reason for the movement
and creation of these mini-clusters is still not clear to us.

Our analysis (detailed below) reveals that the storyboard
has highlighted a peculiar evolution path of the design of
ArgoUML. During our large-node single-panel analysis, we

marked the file PropPanel. java. This file is the largest
file in that area of interest in the storyboard panels. We use
this file to start our investigation.

Studying ARGOUML’s JavaDoc documentation, we
learn that PropPanel is an abstract class that provides basic
layout and event dispatching support for all property panels.
The class has three subclasses, PropPanelModelElement,
PropPanelDiagram, and TabDocumentation. The class
TabDocumentation is a simple class and it is placed close
to PropPanel. The class PropPanelDiagram represents
the property panel for a diagram. The classes that im-
plement UML diagrams, such as Use Case, Activities Di-
agram, inherit from it. Most classes that inherit from
PropPanelDiagram are placed beside the Diagram sub-
system classes (at the top of the storyboard panels), except
for a few classes which are more UI dependent and are lo-
cated in cluster A throughout the lifetime of the project.

IEE l-:

COMPUTER
SOCIETY

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006 IEEE

o

ParserDisplay;java ©
ModelFacade java
Modellerjava

©
O
»

Main.java ’

C< o °o
o
% Q ropPanel java
i build.xml L] Froppancl G
Last Panel (HeatMap) ©

O o°

Figure 6. A HeatMap storyboard panel (ArgoUML)

We now focus on the class PropPanelModelElement,
which holds the key in revealing the rationale for the mini-
clusters. The class PropPanelModelElement is an ab-
stract class which contains the property panel for a model
element. The class PropPanelModelElement has several
abstract classes that inherit from it. These abstract classes in
turn have many concrete classes that implement the desired
features. The three mini-clusters that are shown in Fig. 5
are due to movements of abstract and concrete classes in
the PropPanelModelElement family.

In the left most panel in Fig. 5, cluster B contains most
of the concrete classes in the PropPanelModelElement
family. This is expected as these concrete classes tend to
change together since they are related. The abstract classes
on the other hand should not be changing frequently since
they represent well-defined and stable interfaces. Never-
theless, as the project evolves, the abstract classes need to
change and changes to these abstract classes must be re-
flected in their concrete implementation classes. This evo-
lution of the design is shown in the second panel (from
the left) with many of the abstract classes joining cluster
B along with any concrete classes that had not joined the
cluster yet. Now, in the third panel, the implementation of
new functionality, which is likely caused by the changes to
the abstract classes, has caused the formation of a new inde-
pendent mini-cluster (cluster C in Fig. 5). Finally in the last
panel, we observe that cluster B is slowly losing many of its
nodes to cluster C. The remaining nodes in cluster B are the
nodes representing the abstract classes that have again be-
come more stable and are not changing with their concrete
implementation classes.

As we noted in our single-panel analysis (Fig. 4), we
found several large nodes that we planned to study using
our animated analysis. For the animated analysis, we use
the HeatMap storyboard for ARGOUML (shown in Fig. 6)
and we notice that many of these large files are continu-
ously moving, such as build.xml, ModelFacade. java,
Modeller. java, and Main. java.

A closer analysis of these files and consulting the
project’s documentation indicate that these files are respon-
sible for cross-cutting concerns that are spread throughout
the source code. Changes to these files cause changes to a
variety of other files that are spread across the system. For
example, the file build.xml is responsible for the build
aspect of the software system. The addition of a new file
requires updating this file to ensure that the new file be-
comes part of the build. The class ModelFacade acts like
an abstraction layer (e.g., facade and interface) to different
parts of the system. The implementation for these abstrac-
tion layer files is spread throughout the code, which causes
these files to change with a variety of files over time, instead
of having a consistent set of files which they change with.
Even though the file Modeller. java is part of the Reverse
Engineering (RevEng) subsystem, it interacts heavily with
the Model subsystem and hence it tends to oscillate its po-
sition between both subsystem based on recent co-changes.
The file Main. java is the application’s main file. The addi-
tion of features in any subsystem usually causes changes to
this file to enable these features through the command line
or through the user interface.

As we began studying the ARGOUML project using the
evolution storyboard technique, we had little knowledge
about the software system and its historical development.
Throughout our case study, we found that the storyboard’s
animation was valuable in highlighting interesting artifacts
that are worth investigating. In this section, we gave a brief
overview of a few notable discoveries regarding the evolu-
tion of ARGOUML. The evolution storyboard has guided
us in understanding a variety of other events in the lifetime
of ARGOUML, and other large projects.

5. Conclusion and Discussion

Existing techniques for evolution visualization offer
static views of the software history. Static views do not sup-
port the understanding of the dynamics of software develop-
ment and maintenance. We introduced a new visualization
technique for software evolution that offers dynamic views.
Evolution storyboards emphasize the history of a project
using a sequence of panels, each representing a particular
period in the life of the project. Each panel shows how ar-
tifacts (e.g., classes) change their dependencies over time.
The movement of an artifact is an indication of changes to
the interdependencies of the artifact with its environment.

IEE l-:

COMPUTER
SOCIETY

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006 IEEE

Our technique ensures that the visualization is not blurred
by animation of unimportant artifacts using a set of simple
heuristics. Although we have evaluated the method only for
co-change graphs, it is applicable to any dependency rela-
tion due to our general dependency graph model.

Several typical reengineering tasks were suggested for
which the new technique can provide helpful information,
and we outlined how to use the evolution storyboards by
providing a guideline. In our case studies, the storyboard
visualization revealed many interesting events in the life-
time of the considered large projects. For ARGOUML, we
reported how the storyboard highlights the team’s migration
from the old code tree to the new code tree over time, and
other interesting design observations.

We proposed two different artifact coloring schemes for
the storyboard. Through our case studies, we showed that
the heat-colored layout usually reveals files that implement
cross-cutting concerns. These files tend to frequently move
over time since they change with a large number of files.
The coloring technique based on authoritative decomposi-
tion (each subsystem is given a particular color) is helpful
in showing how the structure of a software system decayed
or remained stable over time.

Performance issues and scalability. The production of one
single panel for a large system like ArgoUML takes several
minutes of processor time. Therefore, it is not possible to
adjust the predefined panel periods interactively and show
the resulting storyboards immediately. Also, all kinds of
(slider or moving-window based) time-line zooming fea-
tures are prohibitive expensive for a clustering energy-
model based method like ours. However, panels are pre-
computed ahead of time using an efficient algorithm, and
zooming within panels for particular fixed periods is fast.

Evaluation. The storyboard has highlighted to us many un-
known and interesting details and facts about several large
projects. We believe that the storyboard is helpful in reveal-
ing various notable and historical events in the lifetime of a
project. However, more detailed case studies would be nec-
essary to prove the benefits of storyboards for the system’s
developers and reverse engineers, especially including ac-
tual developers of the software system to achieve a more
authoritative validation of our visualization technique. We
believe that the storyboard may prove useful even for expe-
rienced developers who might have forgotten various details
about the project, and the storyboard can help to remind
them of various interesting events.

Online supplement. The static nature of the paper medium
in which this article is written may hinder the reader’s
understanding of the operations on a storyboard. Story-
boards for the three systems mentioned in this article are
available on the supplementary web page (search the in-
ternet for the string “Evolution-Storyboard-Supplementary-
Material”). Once the storyboard is loaded, the user can nav-

igate through the storyboard pressing the following keys:
‘—’: go to next panel, ‘«—’: go to previous panel, ‘A’: ani-
mate the panel (moving bubbles emphasize changes to the
location of nodes), ‘P’: pause or resume the animation,
‘C’: switch between HeatMap and authoritative decompo-
sition coloring schemes. A user can use the viewer’s zoom
features in a single panel and all the other panels will be
updated to reflect this new view. If the user holds either the
‘—’ or ‘—’ button, the sequence appears in a movie-like
animation as the storyboard rapidly switches between the
different panels.

References

[1] M. Baker and S. Eick. Visualizing software systems. In
Proc. ICSE, pages 59-67. IEEE, 1994.

[2] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy. If your ver-
sion control system could talk ... In Proc. Workshop Process
Modelling and Empirical Studies of Software Engineering,
1997.

[3] M. Begleiter. From Word to Image: Storyboarding and the
Filmmaking Process. Michael Wiese Productions, 2001.

[4] D. Beyer. Co-change visualization. In Proc. ICSM’05, In-
dustrial and Tool volume, pages 89-92, Budapest, 2005.

[5] D. Beyer and A. Noack. Clustering software artifacts based
on frequent common changes. In Proc. IWPC, pages 259—
268. IEEE, 2005.

[6] C.Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler.
A system for graph-based visualization of the evolution of
software. In Proc. SOFTVIS, pages 77-86. ACM, 2003.

[71 M. Fischer and H. Gall. Visualizing feature evolution of
large-scale software based on problem and modification re-
port data. J. Software Maintenance and Evolution: Research
and Practice, 16(6):385-403, 2004.

[8] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In Proc. ICSM, pages 23—. IEEE, 2003.

[9] T. M. J. Fruchterman and E. M. Reingold. Graph drawing
by force-directed placement. Software — Practice and Expe-
rience, 21(11):1129-1164, 1991.

[10] H. Gall, M. Jazayeri, and C. Riva. Visualizing software re-
lease histories: The use of color and third dimension. In
Proc. ICSM, pages 99-108. IEEE, 1999.

[11] J. Hart. The Art of the Storyboard. Focal Press, 1998.

[12] A.E.Hassan, R. C. Holt, and A. Mockus. Proc. MSR, 2004.
[13] S. Katz. Film Directing — Shot by Shot : Visualizing from
Concept to Screen. Michael Wiese Productions, 1991.

[14] M. Lanza. The evolution matrix: Recovering software evo-
lution using software visualization techniques. In Proc. VIS-
SOFT, pages 37-42. ACM, 2001.

[15] A. Noack. Energy-based clustering of graphs with nonuni-
form degrees. In Proc. GD’05, LNCS 3843, pages 309-320.
Springer, 2006.

[16] T.Zimmermann and P. Weilgerber. Preprocessing CVS data
for fine-grained analysis. In Proc. MSR, pages 2—6, 2004.

[17] T. Zimmermann, P. Weilgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. IEEE
Trans. Software Eng., 31(6):429-445, 2005.

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006 IEEE

