
CISC 322

Software Architecture

Reflexion Models

Ahmed E. Hassan

Understanding Large Systems

■ You are asked to provide an estimate on
the time needed to implement a particular
feature

– The software system is large– The software system is large

– Your knowledge of the system is limited

– Your estimate should be sufficiently accurate

Architecture Understanding

Process

■ Propose conceptual architecture

■ Compare conceptual with concrete
architecture

■ Investigate gaps

Conceptual Architecture

■ Developers propose a conceptual
architecture using assumptions and
preconceived ideas about the system and
its interactions based on:its interactions based on:

– System documentation

– Developer experience with similar systems

– Reference architecture

– Talking to senior developers and domain

experts

Working on an Operating System

■ A developer working on enhancing features in an OS,
might being with a conceptual breakdown which consists
of five conceptual subsystems:
– File System, Memory Manager, Network Interface, Process

Scheduler, and an Inter-Process Communication.

■ The developer might also assume that these subsystems ■ The developer might also assume that these subsystems
interact in a particular fashion to implement specific
features:
– File System depends on the Network Interface to support

networked file systems such as NFS.

– Memory Manager depends on the File System to support
swapping of processes to disk when the system runs out of
physical memory.

Operating System Architecture

Conceptual

(proposed)

Concrete

(reality)

Uncovering the Rationale

for the Differences

■ Uncovering the rationale is challenging
– A senior developer

• may be too busy

• may not recall the rationale for such dependency

• may no longer work on the software system• may no longer work on the software system

– The software
• may have been bought from another company

• may have its maintenance out-sourced

■ Developers must spend hours/days to uncover
the rationale. The rationale may be:
– Justified due to, e.g., optimizations or code reuse; or

– Not justified due to, e.g., developer ignorance or
pressure to market.

Software Reflexion Framework

Mapping source entities to

subsystems

■ Mapping files/functions:

– All files in the “src\sched” directory may be mapped to

the Process Scheduler subsystem

– All files in the “src\ipc” directory may be mapped to

the Inter-Process Communication subsystemthe Inter-Process Communication subsystem

■ Mapping dependencies:

– if a file in “src\ipc“ calls a function defined in another

file in “src\sched“ then this is considered to be a

dependency relation between the Inter-Process

Communication and Process Scheduler subsystems.

Investigating Gaps

■ Absences: rarely occur in large systems

■ Convergences: usually not a concern

■ Divergences: must investigate
dependencies

Which?

■Which concrete source code entities are
responsible for an unexpected
dependency?

■ Based on entity names, we may be able to ■ Based on entity names, we may be able to
deduce the reason for the existence of
dependencies

– Names may not help (too cryptic), thus

developers find themselves asking several

other questions

Who?

■ Who introduced an unexpected dependency or
removed a missing dependency?

■ A knowledge of this person may assist in
understanding the reasons for gaps.

■ A gap due to a change made by■ A gap due to a change made by
– a novice developer may suggest that the developer is

at fault and the change must be fixed

– a senior developer with a well established record for
producing high quality code may suggest that the
change is correct

■ If the change is correct then we may consider
updating our conceptual view of the system

When?

■When was the unexpected dependency
added or the missing dependency
removed?

■Was a change introduced by a senior ■Was a change introduced by a senior
developer to fix a critical bug under a tight
release schedule?
– E.g. a few days/hours before a release

■ Or is it is a justified dependency that we
should expect

Why?

■Why was this unexpected dependency
added or why was an expected
dependency missing?

■ A knowledge of the rationale is key in ■ A knowledge of the rationale is key in
explaining the gaps

Dependency Investigation

Questions (W4 Approach)

■ Which low level code entity is responsible for
the dependency?

– Network (SendData) ���� Scheduler (PrintToLog)

■ Who added/removed the dependency?
– Junior vs. senior/experienced developer

■ When was the dependency modified?
– Late night / Just before release

■ Why was the dependency added/removed?
– The rationale!

Source Sticky Notes

■We are interested in

– Current and past dependencies

Source StickyNotes

■ Static dependencies give only a current
static view of the system – not enough
detail!

■ Need to extend static dependencies, but ■ Need to extend static dependencies, but
how?

Extending Code Dependencies

■ Ask developers to fill StickyNotes for each
change

– Too time consuming and cumbersome

■ Use software repositories to build these ■ Use software repositories to build these
notes automatically

– Historical information may be hard to process

History as a guide

“History is a guide to navigation in perilous
times. History is who we are and why we
are the way we are”, David C. McCullough

■ Can we leverage the development history of a project in

order to understand its current state?

■ How can we get the development history of a project?

Challenges in studying historical

code information

main() {

int a;

/*call

help*/

helpInfo();

helpInfo() {

errorString!

}

main() {

int a;

helpInfo(){

int b;

}

main() {

int a;helpInfo();

}

int a;

/*call

help*/

helpInfo();

}

int a;

/*call

help*/

helpInfo();

}

V1:
Undefined func.

(Link Error)

V2:
Syntax error

V3:
Valid code

StickyNotes Recovery

■ Map code changes to entities and dependencies
instead of lines

■ Two pass analysis of the source control
repository data, to recover:
– All entities defined throughout the lifetime of a project – All entities defined throughout the lifetime of a project

– Historical Symbol Table
– All dependencies between these entities and attach

source control meta-data such as:
• Name of developer performing the change
• Text entered by developer describing the change – the

rationale
• Time of the change

Case Study – NetBSD

■ Large long lived system with hundreds of
developers

■ Case study used to demonstrate
usefulness of the reflexion model:usefulness of the reflexion model:

– Reuse prior results! ☺

– Focus on investigating gaps to show the

strength of our approach

NetBSD Conceptual and Reflexion

Model

Why? Who?

When?

Where?

Unexpected Dependencies

■ Eight unexpected dependencies

■ All except two dependencies existed since day one:

– Virtual Address Maintenance ���� Pager

Which?
vm_map_entry_create (in src/sys/vm/Attic/vm_map.c)

Which?
vm_map_entry_create (in src/sys/vm/Attic/vm_map.c)

depends on pager_map (in /src/sys/uvm/uvm_pager.c)

Who? cgd

When?
1993/04/09 15:54:59

Revision 1.2 of src/sys/vm/Attic/vm_map.c

Why?

from sean eric fagan:

it seems to keep the vm system from deadlocking the

system when it runs out of swap + physical memory.

prevents the system from giving the last page(s) to

anything but the referenced "processes" (especially

important is the pager process, which should never

have to wait for a free page).

Unexpected Dependencies

■ Pager ���� Hardware Translations

Unexpected Dependencies which

existed in the past

■ Two unexpected dependcies that were
removed in the past:

– Hardware Translation ���� VM Policy

– File System ���� Virtual Address Maintenance– File System ���� Virtual Address Maintenance

StickyNotes Usage Patterns

■ First note to understand the reason for
unexpected dependencies

■ Last note to study missing dependencies

■ All notes when first and last notes do not ■ All notes when first and last notes do not
have enough information to assist in
understanding

Limitations

■ Quality of comments and text entered by
developers in the past

■ In many open source projects, CVS
comments are used for:comments are used for:

– Communicating new features

– Narrating the progress of a project

Conclusions

■ Development history can help understand the

current structure of a software system

■ Traditional dependency graphs and program

understanding models usually do not use understanding models usually do not use

historical information

■ Proposed StickyNotes and presented a case

study to show the strength of the approach

