
Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Object-Oriented Design Patterns

Topics in
Object-Oriented Design

Patterns

Material drawn from [Gamma95,Coplien95]

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

OOD Patterns Topics
• Terminology and Motivation
• Reusable OO Design Patterns:

– Adapter
– Facade
– Iterator
– Composite
– Template
– Abstract Factory
– Observer
– Master-Slave

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Terminology and Motivation

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Design Patterns

• Good designers know not to solve every
problem from first principles. They reuse
solutions.

• Practitioners do not do a good job of
recording experience in software design for
others to use.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Design Patterns (Cont’d)

• A Design Pattern systematically names,
explains, and evaluates an important and
recurring design.

• We describe a set of well-engineered design
patterns that practitioners can apply when
crafting their applications.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Becoming a Master Designer

• First, One Must Learn the Rules:
– Algorithms
– Data Structures
– Languages

• Later, One Must Learn the Principles:
– Structured Programming
– Modular Programming
– OO Programming

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Becoming a
Master Designer (Cont’d)

• Finally, One Must Study the Designs of
Other Masters:
– Design patterns must be understood,

memorized, and applied.
– There are thousands of existing design patterns.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Reusable OO Design Patterns

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Adapter Pattern
• Intent: Convert the interface of a class into

another interface clients expect. Adapter
lets classes work together that couldn’t
otherwise because of incompatible
interfaces.

• Motivation: When we want to reuse classes
in an application that expects classes with a
different interface, we do not want (and
often cannot) to change the reusable classes
to suit our application.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Example of the Adapter Pattern

Editor Shape
BoundingBox()

CreateManipulator()

TextView
GetExtent()

LineShape
BoundingBox()

CreateManipulator()

TextShape
BoundingBox()

CreateManipulator()
return text -> GetExtent()

return new Text Manipulator

text

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Structure of the Adapter Pattern
Using Multiple Inheritance

Client Target
Request()

Adaptee
SpecificRequest()

Adapter
Request() SpecificRequest()

(implementation)

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Structure of the Adapter Pattern
Using Object Composition

Client Target
Request()

Adaptee
SpecificRequest()

Adapter
Request() SpecificRequest()

adaptee

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Participants of the
Adapter Pattern

• Target: Defines the application-specific
interface that clients use.

• Client: Collaborates with objects
conforming to the target interface.

• Adaptee: Defines an existing interface that
needs adapting.

• Adapter: Adapts the interface of the
adaptee to the target interface.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Facade Pattern (Intent)

• Provide a unified interface to a set of
interfaces in a subsystem. Facade defines a
higher-level interface that makes the
subsystem easier to use.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Facade Pattern (Motivation)

• Structuring a system into subsystems helps
reduce complexity.

• A common design goal is to minimize the
communication and dependencies between
subsystems.

• Use a facade object to provide a single,
simplified interface to the more general
facilities of a subsystem.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Example of the Facade Pattern
Compiler

Scanner

Parser

Token

ProgNode

ProgNodeBuilder

RISCCG

StackMachineCG

Statement Node

Expression Node

Variable NodeCompiler Subsystem Classes

Compile()

CodeGenerator

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Structure of the Facade Pattern

Subsystem Classes

Facade

Client Classes

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Participants of the
Facade Pattern

• Facade:
– Knows which subsystem classes are responsible

for a request.
– Delegates client requests to appropriate

subsystem objects.
• Subsystem Classes:

– Implement subsystem functionality.
– Handle work assigned by the facade object.
– Have no knowledge of the facade; that is, they

keep no references to it.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Iterator Pattern (Intent)

• Provide a way to access the elements of an
aggregate object sequentially without
exposing its underlying representation.

• Move the responsibility for access and
traversal from the aggregate object to the
iterator object.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Iterator Pattern (Motivation)
• One might want to traverse an aggregate

object in different ways.
• One might want to have more than one

traversal pending on the same aggregate
object.

• Not all types of traversals can be anticipated
a priori.

• One should not bloat the interface of the
aggregate object with all these traversals.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Example of the Iterator Pattern

List
Count()
Append(Element)
Remove(Element)

…

ListIterator

First()
Next()
IsDone()
CurrentItem()

index

list

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Structure of the Iterator Pattern
Aggregate

CreateIterator()

ConcreteAggregate

CreateIterator()

Iterator
First()
Next()

IsDone()
CurrentItem()

ConcreteIterator

return new ConcreteIterator(this)

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Participants of the
Iterator Pattern

• Iterator: Defines an interface for accessing
and traversing elements.

• Concrete Iterator: Implements an iterator
interface and keeps track of the current
position in the traversal of the aggregate.

• Aggregate: Defines an interface for
creating an iterator object.

• Concrete Aggregate: Implements the
iterator creation interface to return an
instance of the proper concrete iterator.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Composite Pattern (Intent)

• Compose objects into tree structures to
represent part-whole hierarchies.

• Composite lets clients treat individual
objects and compositions of objects
uniformly.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Composite Pattern
(Motivation)

• If the composite pattern is not used, client
code must treat primitive and container
classes differently, making the application
more complex than is necessary.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Example of the
Composite Pattern

Graphic
Draw()
Add(Graphic)
Remove(Graphic)
GetChild(int)

Line TextRect.

Draw() Draw()Draw()

Picture
Draw()

Add(Graphic)
Remove(Graphic)

GetChild(int)

forall g in graphics
g.Draw()

graphics

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Structure of the
Composite Pattern

Client

Component
Operation()
Add(Component)
Remove(Component)
GetChild(int)

Leaf Composite

Operation() Operation()
Add(Component)

Remove(Component)
GetChild(int)

forall g in children
g.Operation()

children

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Participants of
Composite Pattern

• Component:
– Declares the interface for objects in the

composition.
– Implements default behavior for the interface

common to all classes.
– Declares an interface for accessing and

managing its child components.
– Defines an interface for accessing a

component’s parent in the recursive structure
(optional).

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Participants of
Composite Pattern (Cont’d)

• Leaf:
– Represents leaf objects in the composition. A

leaf has no children.
– Defines behavior for primitive objects in the

composition.
• Composite:

– Defines behavior for components having
children.

– Stores child components.
– Implements child-related operations in the

component interface.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Participants of
Composite Pattern (Cont’d)

• Client:
– Manipulates objects in the composition through

the component interface.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Template Pattern (Intent)

• Define the skeleton of an algorithm in an
operation, deferring some steps to
subclasses.

• The Template Method lets subclasses
redefine certain steps of an algorithm
without changing the algorithm’s structure.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Template Pattern
(Motivation)

• By defining some of the steps of an
algorithm, using abstract operations, the
template method fixes their ordering.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

TemplateMethod()
PrimitiveOp1()
PrimitiveOp2()

Structure of the Template Pattern

AbstractClass

ConcreteClass
PrimitiveOp1()
PrimitiveOp2()

...
PrimitiveOp1()
PrimitiveOp2()

...

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Structure of the Template Pattern
• Abstract Class:

– Defines abstract primitive operations that
concrete subclasses define to implement steps
of an algorithm.

– Implements a template method defining the
skeleton of an algorithm. The template method
calls primitive operations as well as operations
defined in Abstract Class or those of other
objects.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Structure of the
Template Pattern (Cont’d)

• Concrete Class: Implements the primitive
operations to carry out subclass-specific
steps to the algorithm.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Abstract Factory Pattern
(Intent)

• Provides an interface for creating families
of related or dependent objects without
specifying their concrete classes.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Abstract Factory Pattern
(Behavior)

• Sometimes we have systems that support
different representations depending on
external factors.

• There is an Abstract Factory that provides
an interface for the client. In this way the
client can obtain a specific object through
this abstract interface.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Example of the
Abstract Factory Pattern

WidgetFactory

CreateScrollBar()
Create Window()

CreateScrollBar()
Create Window()

CreateScrollBar()
Create Window()

MotifWidgetFactory PMWidgetFactory PMWindow MotifWindow

Window

Client

PMScrollBar MotifScrollBar

ScrollBar

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Structure of the
Abstract Factory Pattern

AbstractFactory

CreateProductA()
CreateProductB()

CreateProductA()
CreateProductB()

CreateProductA()
CreateProductB()

ConcreteFactory1 ConcreteFactory2 ProductA1 ProductA2

AbstractProductA

Client

ProductB1 ProductB2

AbstractProductB

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Participants of the
Abstract Factory Pattern

• Abstract Factory:
– Declares an interface for operations that create

abstract product objects.
• Concrete Factory:

– Implements the operations to create concrete
product objects.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Participants of the Abstract
Factory Pattern (Cont’d)

• Abstract Product:
– Declares an interface for a type of product

object.
• Concrete Product:

– Defines a product object to be declared by the
corresponding concrete factory. (Implements
the Abstract Product interface).

• Client:
– Uses only interfaces declared by Abstract

Factory and Abstract Product classes.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Abstract Factory Example
public abstract class AbstractFactory {
public static final String MOTIF_WIDGET_NAME = "Motif";
public static final String WINDOWS_WIDGET_NAME = "Windows";

public static AbstractFactory getFactory(String name) {
if (name.equals(MOTIF_WIDGET_NAME))

return new MotifFactory();
else if (name.equals(WINDOWS_WIDGET_NAME))

return new WindowsFactory();
return null;

}

public abstract AbstractWindow getWindow();
};

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Abstract Factory Example (Cont’d)
// Code for class MotifFactory:

package example;

public class MotifFactory extends AbstractFactory {
public MotifFactory() { }

public AbstractWindow getWindow() {
return new MotifWindow();

}
};

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Abstract Factory Example (Cont’d)

// Code for class WindowsFactory:

public class WindowsFactory extends AbstractFactory {
public WindowsFactory() { }

public AbstractWindow getWindow() {
return new WindowsWindow();

}
};

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Abstract Factory Example (Cont’d)
// Code for class AbstractWindow:

public abstract class AbstractWindow {
public abstract void show();

};

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Abstract Factory Example (Cont’d)
//Code for class MotifWindow:
public class MotifWindow extends AbstractWindow {

public MotifWindow() { }
public void show() {

JFrame frame = new JFrame();
try {

UIManager.setLookAndFeel("
com.sun.java.swing.plaf.motif.MotifLookAndFeel");

} catch (Exception e) {
e.printStackTrace();

}
//updating the components tree after changing the LAF
SwingUtilities.updateComponentTreeUI(frame);
frame.setSize(300, 300);
frame.setVisible(true);

}
};

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Abstract Factory Example (Cont’d)
// Code for class WindowsWindow:
public class WindowsWindow extends AbstractWindow {

public WindowsWindow() { }
public void show() {

JFrame frame = new JFrame();
try {

UIManager.setLookAndFeel(
"com.sun.java.swing.plaf.windows.WindowsLookAndFeel");

} catch (Exception e) {
e.printStackTrace();

}
//updating the components tree after changing the LAF
SwingUtilities.updateComponentTreeUI(frame);
frame.setSize(300, 300);
frame.setVisible(true);

}
};

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Abstract Factory Example (Cont’d)
// Code for class Client:
public class Client {

public Client(String factoryName) {
AbstractFactory factory =

AbstractFactory.getFactory(factoryName);
AbstractWindow window = factory.getWindow();
window.show();

}

public static void main(String [] args)
{

//args[0] contains the name of the family of widgets
//to be used by the Client class (Motif or Windows)
new Client(args[0]);

}
};

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Observer Pattern (Intent)

• Define a one-to-many dependency between
objects so that when one object changes
state, all its dependents are notified and
updated automatically.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Observer Pattern
(Motivation)

• A common side-effect of partitioning a
system into a collection of cooperating
classes is the need to maintain consistency
between related objects.

• You don’t want to achieve consistency by
making the classes tightly coupled, because
that reduces their reusability.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Example of the Observer Pattern
a b c

60
y
x

5030
30

20
10

z 801010 a b c
a

b
c

a = 50%
b = 30%
c = 20%

change notificationrequests, modifications

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Structure of the Observer Pattern
Subject

Attach(Observer)
Detach(Observer)

Notify()

ConcreteSubject

subjectState

GetState()
SetState()

for all o in
observers {
o -> Update()}

Observer
Update()

observers

ConcreteObserver
observerState =
subject->GetState()Update()

observerState

return subjectState

subject

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Structure of the Observer Pattern

• The key objects in this pattern are subject
and observer.
– A subject may have any number of dependent

observers.
– All observers are notified whenever the subject

undergoes a change in state.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Participants of the
Observer Pattern

• Subject:
– Knows its numerous observers.
– Provides an interface for attaching and

detaching observer objects.
– Sends a notification to its observers when its

state changes.
• Observer:

– Defines an updating interface for concrete
observers.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Participants of the
Observer Pattern (Cont’d)

• Concrete Subject:
– Stores state of interest to concrete observers.

• Concrete Observer:
– Maintains a reference to a concrete subject

object.
– Stores state that should stay consistent with the

subject's.
– Implements the updating interface.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Master-Slave Pattern (Intent)

• Handles the computation of replicated
services within a software system to achieve
fault tolerance and robustness.

• Independent components providing the
same service (slaves) are separated from a
component (master) responsible for
invoking them and for selecting a particular
result from the results returned by the
slaves.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

The Master-Slave Pattern
(Motivation)

• Fault tolerance is a critical factor in many
systems.

• Replication of services and delegation of
the same task to several independent
suppliers is a common strategy to handle
such cases.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Example of the M/S Pattern

NuclearPP

acceptableRL()

Voter

RadLevel()

return max(
slave1->RadLevel(),
slave2->RadLevel(),
slave3->RadLevel())

Slave2

RadLevel()

Slave1

RadLevel()

Slave3

RadLevel()

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Structure of the M/S Pattern
Slave1

ServiceImp1()

Slave2

ServiceImp1()

Slave3

ServiceImp1()

Master

service()

Client

Compute()
request
service

forward
request

forward
request

forward
request

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Participants of the M/S Pattern
• Slave:

– Implements a service.
• Master:

– Organizes the invocation of replicated services.
– Decides which of the results returned by its

slaves is to be passed to its clients.
• Client:

– Requires a certain service in order to solve its
own task.

Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

References
• [Gamma95] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.
• [Coplien95] J. O. Complien, D.C. Schmidt, Pattern Languages of Program

Design. Addison-Wesley, 1995.

