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OOD Patterns Topics
• Terminology and Motivation
• Reusable OO Design Patterns:

– Adapter
– Facade
– Iterator
– Composite
– Template
– Abstract Factory
– Observer
– Master-Slave 
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Terminology and Motivation
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Design Patterns

• Good designers know not to solve every 
problem from first principles. They reuse 
solutions.

• Practitioners do not do a good job of 
recording experience in software design for 
others to use.
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Design Patterns (Cont’d)

• A Design Pattern systematically names, 
explains, and evaluates an important and 
recurring design.

• We describe a set of well-engineered design 
patterns that practitioners can apply when 
crafting their applications.
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Becoming a Master Designer

• First, One Must Learn the Rules:
– Algorithms
– Data Structures
– Languages

• Later, One Must Learn the Principles:
– Structured Programming
– Modular Programming
– OO Programming
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Becoming a 
Master Designer (Cont’d)

• Finally, One Must Study the Designs of 
Other Masters:
– Design patterns must be understood, 

memorized, and applied.
– There are thousands of existing design patterns.
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Reusable OO Design Patterns
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The Adapter Pattern
• Intent: Convert the interface of a class into 

another interface clients expect.  Adapter 
lets classes work together that couldn’t 
otherwise because of incompatible 
interfaces.

• Motivation: When we want to reuse classes 
in an application that expects classes with a 
different interface, we do not want (and 
often cannot) to change the reusable classes 
to suit our application.
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Example of the Adapter Pattern

Editor Shape
BoundingBox()

CreateManipulator()

TextView
GetExtent()

LineShape
BoundingBox()

CreateManipulator()

TextShape
BoundingBox()

CreateManipulator()
return text -> GetExtent()

return new Text Manipulator

text
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Structure of the Adapter Pattern 
Using Multiple Inheritance

Client Target
Request()

Adaptee
SpecificRequest()

Adapter
Request() SpecificRequest()

(implementation)
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Structure of the Adapter Pattern 
Using Object Composition

Client Target
Request()

Adaptee
SpecificRequest()

Adapter
Request() SpecificRequest()

adaptee



Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Participants of the
Adapter Pattern

• Target: Defines the application-specific 
interface that clients use.

• Client: Collaborates with objects 
conforming to the target interface.

• Adaptee: Defines an existing interface that 
needs adapting.

• Adapter: Adapts the interface of the 
adaptee to the target interface.
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The Facade Pattern (Intent)

• Provide a unified interface to a set of 
interfaces in a subsystem.  Facade defines a 
higher-level interface that makes the 
subsystem easier to use.
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The Facade Pattern (Motivation)

• Structuring a system into subsystems helps 
reduce complexity.  

• A common design goal is to minimize the 
communication and dependencies between 
subsystems.  

• Use a facade object to provide a single, 
simplified interface to the more general 
facilities of a subsystem.
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Example of the Facade Pattern
Compiler

Scanner

Parser

Token

ProgNode

ProgNodeBuilder

RISCCG

StackMachineCG

Statement Node

Expression Node

Variable NodeCompiler Subsystem Classes

Compile()

CodeGenerator
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Structure of the Facade Pattern

Subsystem Classes

Facade

Client Classes
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Participants of the 
Facade Pattern

• Facade:
– Knows which subsystem classes are responsible 

for a request.
– Delegates client requests to appropriate 

subsystem objects.
• Subsystem Classes:

– Implement subsystem functionality.
– Handle work assigned by the facade object.
– Have no knowledge of the facade; that is, they 

keep no references to it.
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The Iterator Pattern (Intent)

• Provide a way to access the elements of an 
aggregate object sequentially without 
exposing its underlying representation. 

• Move the responsibility for access and 
traversal from the aggregate object to the 
iterator object.
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The Iterator Pattern (Motivation)
• One might want to traverse an aggregate 

object in different ways.
• One might want to have more than one 

traversal pending on the same aggregate 
object.

• Not all types of traversals can be anticipated 
a priori.

• One should not bloat the interface of the 
aggregate object with all these traversals.
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Example of the Iterator Pattern

List
Count() 
Append(Element) 
Remove(Element) 

…

ListIterator

First()
Next()
IsDone()
CurrentItem()

index

list
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Structure of the Iterator Pattern
Aggregate

CreateIterator()

ConcreteAggregate

CreateIterator()

Iterator
First()
Next()

IsDone()
CurrentItem()

ConcreteIterator

return new ConcreteIterator(this)



Software Design (OOD Patterns)Software Design (OOD Patterns) © SERG

Participants of the 
Iterator Pattern

• Iterator: Defines an interface for accessing 
and traversing elements.

• Concrete Iterator:   Implements an iterator 
interface and keeps track of the current 
position in the traversal of the aggregate.

• Aggregate: Defines an interface for 
creating an iterator object.

• Concrete Aggregate: Implements the 
iterator creation interface to return an 
instance of the proper concrete iterator.
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The Composite Pattern (Intent)

• Compose objects into tree structures to 
represent part-whole hierarchies.  

• Composite lets clients treat individual 
objects and compositions of objects 
uniformly.
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The Composite Pattern 
(Motivation)

• If the composite pattern is not used, client 
code must treat primitive and container 
classes differently, making the application 
more complex than is necessary.
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Example of the 
Composite Pattern

Graphic
Draw()
Add(Graphic)
Remove(Graphic)
GetChild(int)

Line TextRect.

Draw() Draw()Draw()

Picture
Draw()

Add(Graphic)
Remove(Graphic)

GetChild(int)

forall g in graphics
g.Draw()

graphics
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Structure of the 
Composite Pattern

Client

Component
Operation()
Add(Component)
Remove(Component)
GetChild(int)

Leaf Composite

Operation() Operation()
Add(Component)

Remove(Component)
GetChild(int)

forall g in children
g.Operation()

children
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Participants of 
Composite Pattern

• Component:
– Declares the interface for objects in the 

composition.
– Implements default behavior for the interface 

common to all classes.
– Declares an interface for accessing and 

managing its child components.
– Defines an interface for accessing a 

component’s parent in the recursive structure 
(optional).
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Participants of 
Composite Pattern (Cont’d)

• Leaf:
– Represents leaf objects in the composition.  A 

leaf has no children.
– Defines behavior for primitive objects in the 

composition.
• Composite:

– Defines behavior for components having 
children.

– Stores child components.
– Implements child-related operations in the 

component interface.
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Participants of 
Composite Pattern (Cont’d)

• Client:
– Manipulates objects in the composition through 

the component interface.
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The Template Pattern (Intent)

• Define the skeleton of an algorithm in an 
operation, deferring some steps to 
subclasses.  

• The Template Method lets subclasses 
redefine certain steps of an algorithm 
without changing the algorithm’s structure.
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The Template Pattern 
(Motivation)

• By defining some of the steps of an 
algorithm, using abstract operations, the 
template method fixes their ordering.
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TemplateMethod()
PrimitiveOp1()
PrimitiveOp2()

Structure of the Template Pattern

AbstractClass

ConcreteClass
PrimitiveOp1()
PrimitiveOp2()

...
PrimitiveOp1()
PrimitiveOp2()

...
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Structure of the Template Pattern
• Abstract Class:

– Defines abstract primitive operations that 
concrete subclasses define to implement steps 
of an algorithm.

– Implements a template method defining the 
skeleton of an algorithm.  The template method 
calls primitive operations as well as operations 
defined in Abstract Class or those of other 
objects.
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Structure of the 
Template Pattern (Cont’d)

• Concrete Class: Implements the primitive 
operations to carry out subclass-specific 
steps to the algorithm.
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The Abstract Factory Pattern 
(Intent)

• Provides an interface for creating families 
of related or dependent objects without 
specifying their concrete classes.
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The Abstract Factory Pattern 
(Behavior)

• Sometimes we have systems that support 
different representations depending on 
external factors. 

• There is an Abstract Factory that provides 
an interface for the client.  In this way the 
client can obtain a specific object through 
this abstract interface.
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Example of the
Abstract Factory Pattern

WidgetFactory

CreateScrollBar()
Create Window()

CreateScrollBar()
Create Window()

CreateScrollBar()
Create Window()

MotifWidgetFactory PMWidgetFactory PMWindow MotifWindow

Window

Client

PMScrollBar MotifScrollBar

ScrollBar
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Structure of the 
Abstract Factory Pattern

AbstractFactory

CreateProductA()
CreateProductB()

CreateProductA()
CreateProductB()

CreateProductA()
CreateProductB()

ConcreteFactory1 ConcreteFactory2 ProductA1 ProductA2

AbstractProductA

Client

ProductB1 ProductB2

AbstractProductB
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Participants of the
Abstract Factory Pattern

• Abstract Factory:
– Declares an interface for operations that create 

abstract product objects.
• Concrete Factory:

– Implements the operations to create concrete 
product objects.
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Participants of the Abstract 
Factory Pattern (Cont’d)

• Abstract Product:
– Declares an interface for a type of product 

object.
• Concrete Product:

– Defines a product object to be declared by the 
corresponding concrete factory. (Implements 
the Abstract Product interface).

• Client:
– Uses only interfaces declared by Abstract 

Factory and Abstract Product classes.
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Abstract Factory Example
public abstract class AbstractFactory {
public static final String MOTIF_WIDGET_NAME = "Motif";
public static final String WINDOWS_WIDGET_NAME = "Windows";

public static AbstractFactory getFactory(String name) {
if (name.equals(MOTIF_WIDGET_NAME))

return new MotifFactory( );
else if (name.equals(WINDOWS_WIDGET_NAME))

return new WindowsFactory( );
return null;

}

public abstract AbstractWindow getWindow();
};
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Abstract Factory Example (Cont’d)
// Code for class MotifFactory:

package example;

public class MotifFactory extends AbstractFactory {
public MotifFactory() { }

public AbstractWindow getWindow() {
return new MotifWindow();

}
};
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Abstract Factory Example (Cont’d)

// Code for class WindowsFactory:

public class WindowsFactory extends AbstractFactory {
public WindowsFactory() { }

public AbstractWindow getWindow() {
return new WindowsWindow();

}
};
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Abstract Factory Example (Cont’d)
// Code for class AbstractWindow:

public abstract class AbstractWindow {
public abstract void show();

};
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Abstract Factory Example (Cont’d)
//Code for class MotifWindow:
public class MotifWindow extends AbstractWindow {

public MotifWindow() { }
public void show() {

JFrame frame = new JFrame();
try {

UIManager.setLookAndFeel("
com.sun.java.swing.plaf.motif.MotifLookAndFeel");

} catch (Exception e) {
e.printStackTrace();

}
//updating the components tree after changing the LAF
SwingUtilities.updateComponentTreeUI(frame);
frame.setSize(300, 300);
frame.setVisible(true);

}
};
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Abstract Factory Example (Cont’d)
// Code for class WindowsWindow:
public class WindowsWindow extends AbstractWindow {

public WindowsWindow() { }
public void show() {

JFrame frame = new JFrame();
try {

UIManager.setLookAndFeel(
"com.sun.java.swing.plaf.windows.WindowsLookAndFeel");

} catch (Exception e) {
e.printStackTrace();

}
//updating the components tree after changing the LAF
SwingUtilities.updateComponentTreeUI(frame);
frame.setSize(300, 300);
frame.setVisible(true);

}
};
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Abstract Factory Example (Cont’d)
// Code for class Client:
public class Client {

public Client(String factoryName) {
AbstractFactory factory = 

AbstractFactory.getFactory(factoryName);
AbstractWindow window = factory.getWindow();
window.show();

}

public static void main(String [] args)
{

//args[0] contains the name of the family of widgets
//to be used by the Client class (Motif or Windows)
new Client(args[0]);

}
};
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The Observer Pattern (Intent)

• Define a one-to-many dependency between 
objects so that when one object changes 
state, all its dependents are notified and 
updated automatically.
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The Observer Pattern 
(Motivation)

• A common side-effect of partitioning a 
system into a collection of cooperating 
classes is the need to maintain consistency 
between related objects.  

• You don’t want to achieve consistency by 
making the classes tightly coupled, because 
that reduces their reusability.
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Example of the Observer Pattern
a b c

60
y
x

5030
30

20
10

z 801010 a   b   c
a

b
c

a = 50%
b = 30%
c = 20%

change notificationrequests, modifications
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Structure of the Observer Pattern
Subject

Attach(Observer)
Detach(Observer)

Notify()

ConcreteSubject

subjectState

GetState()
SetState()

for all o in
observers {
o -> Update()}

Observer
Update()

observers

ConcreteObserver
observerState =
subject->GetState()Update()

observerState

return subjectState

subject
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Structure of the Observer Pattern

• The key objects in this pattern are subject
and observer.
– A subject may have any number of dependent 

observers.
– All observers are notified whenever the subject 

undergoes a change in state.
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Participants of the
Observer Pattern

• Subject:
– Knows its numerous observers.
– Provides an interface for attaching and 

detaching observer objects.
– Sends a notification to its observers when its 

state changes.
• Observer:

– Defines an updating interface for concrete 
observers.
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Participants of the
Observer Pattern (Cont’d)

• Concrete Subject:
– Stores state of interest to concrete observers.

• Concrete Observer:
– Maintains a reference to a concrete subject 

object.
– Stores state that should stay consistent with the 

subject's.
– Implements the updating interface.
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The Master-Slave Pattern (Intent)

• Handles the computation of replicated 
services within a software system to achieve 
fault tolerance and robustness.

• Independent components providing the 
same service (slaves) are separated from a 
component (master) responsible for 
invoking them and for selecting a particular 
result from the results returned by the 
slaves.
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The Master-Slave Pattern 
(Motivation)

• Fault tolerance is a critical factor in many 
systems.  

• Replication of services and delegation of 
the same task to several independent 
suppliers is a common strategy to handle 
such cases.
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Example of the M/S Pattern

NuclearPP

acceptableRL()

Voter

RadLevel()

return   max(
slave1->RadLevel(),
slave2->RadLevel(),
slave3->RadLevel())

Slave2

RadLevel()

Slave1

RadLevel()

Slave3

RadLevel()
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Structure of the M/S Pattern
Slave1

ServiceImp1()

Slave2

ServiceImp1()

Slave3

ServiceImp1()

Master

service()

Client

Compute()
request
service

forward
request

forward
request

forward
request
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Participants of the M/S Pattern
• Slave:

– Implements a service.
• Master:

– Organizes the invocation of replicated services.
– Decides which of the results returned by its 

slaves is to be passed to its clients.
• Client:

– Requires a certain service in order to solve its 
own task.
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