CISC 322 Software Architecture

Example of COCOMO-II Ahmed E. Hassan

Function Point Table

Number of FPs	Complexity		
External user type	Low	Average	High
External input type	3	4	6
External output type	4	5	7
Logical internal file type	7	10	15
External interface file type	5	7	10
External inquiry type	3	4	6

Example of FPA

An inventory system that needs to

- 'Add a record'
- 'Delete a record',
- 'Display a record',
- 'Edit a record', and
- 'Print a record'
- will have
 - 3 external input types
 - 1 external output type
 - 1 external inquiry type

Object Point Analysis - Screen

	Number and source of data tables				
Number of views contained	Total < 4 (<2 server, <2 client)	Total < 8 (2-3 server, 3-5 client)	Total 8+ (>3 server, >5 client)		
< 3	Simple	Simple	Medium		
3 – 7	Simple	Medium	Difficult		
8+	Medium	Difficult	Difficult		

Object Point Analysis - Reports

	Number and source of data tables				
Number of sections contained	Total < 4 (<2 server, <2 client)	Total < 8 (2-3 server, 3-5 client)	Total 8+ (>3 server, >5 client)		
< 2	Simple	Simple	Medium		
2 or 3	Simple	Medium	Difficult		
> 3	Medium	Difficult	Difficult		

Object Point Analysis – Complexity Weighting

_	Complexity			
Type of object	Simple	Medium	Difficult	
Screen	1	2	3	
Report	2	5	8	
3GL component	N/A	N/A	10	

Object Point Analysis – Productivity Rate

	Very Iow	Low	Nominal	High	Very High
Developer's experience and capability	4	7	13	25	50
CASE maturity and capability	4	7	13	25	50

COCOMO II

Effort = Constant × (Size)^{scale factor} × Effort Multiplier

- Effort in terms of person-months
- Constant: 2.45 in 1998
- Size: Estimated Size in KLOC
- Scale Factor: combined process factors
- Effort Multiplier (EM): combined effort factors

System to be built

An airline sales system is to be built in C:

- Back-end database server has already been built.
- We will use object point estimation technique for high level estimates and FP for detailed estimates

Object Point Analysis

- Application will have 3 screens and will produce 1 report:
 - A booking screen: records a new sale booking
 - A pricing screen: shows the rate for each day and each flight
 - An availability screen: shows available flights
 - A sales report: shows total sale figures for the month and year, and compares figures with previous months and years

Rating of system

Booking screen:

- Needs 3 data tables (customer info, customer history table, available seats)
- Only 1 view of the screen is enough. So, the booking screen is classified as simple.

Similarly, the levels of difficulty of the pricing screen, the availability screen and the sales report are classified as simple, simple and medium, respectively. There is no 3GL component.

Rating Results

Name	Objects	Complexity	Weight
Booking	Screen	Screen Simple	
Pricing	Screen	Simple	1
Availability	Screen	Medium	2
Sales	Report	Medium	5
		Total	9

Assessment of the developers and the environment shows:

- The developers' experience is very low (4)
- The CASE tool is low (7). So, we have a productivity rate of 5.5.
- According to COCOMO II, the project requires approx. 1.64 (= 9/5.5) person-months.

Function Point Estimation (FP->KLOC)

Name	External user types	Complexity	FP
Booking	External output type	Low	4
Pricing	External inquiry type	Low	3
Availability	External inquiry type	Medium	4
Sales	External output type	Medium	5
		Total	16

FP->LOC

Total function points = 16
Published figures for C show that: -1 FP = 128 LOC in C
Estimated Size -16 * 128 = 2048 = 2 KLOC

Scale Factor Estimation

Name	Very low (0.05)	Low (0.04)	Nominal (0.03)	High (0.02)	Very High (0.01)	Extra High (0.00)	Assessme nt	Value
Precedentedn ess	Thoroughly unprecedent ed	Largely unprecedent ed	Somewhat unprecedent ed	Generally familiar	Largely familiar	Thorough ly familiar	Very high	0.01
Flexibility	Rigorous	Occasional relaxation	Some relaxation	General conformit y	Some conformit y	General goals	Very high	0.01
Significant risks eliminated	Little (20%)	Some (40%)	Often (60%)	Generally (75%)	Mostly (90%)	Full (100%)	Nominal	0.03
Team interaction process	Very difficult	Some difficult	Basically cooperative	Largely cooperati ve	Highly cooperati ve	Seamless interactio ns	High	0.02
Process maturity	Level 1	Level 2	Level 2+	Level 3	Level 4	Level 5	Low	0.04
							Add	1.01
							Total	1.13

Effort Adjustment Factors (EAF)

Identifier	Name	Ranges (VL – EH)	Assessment VL/L/N/H/VH/EH	Values
RCPX	product Reliability and ComPleXity	0.5 – 1.5	low	0.75
RUSE	required reusability	0.5 – 1.5	nominal	1.0
PDIF	Platform DIFficulty	0.5 – 1.5	high	1.1
PERS	PERSonnel capability	1.5 – 0.5	high	0.75
PREX	PeRsonnel EXperience	1.5 – 0.5	very high	0.65
FCIL	FaCILities available	1.5 – 0.5	nomial	1.0
SCED	SChEDule pressure	1.5 – 0.5	low	1.2
			Product	0.4826

• Effort = $2.45 \times (2.048)^{1.13} \times 0.4826 = 2.66$ person-months

References

- Hughes, B., and Cotterell, M. (1999) Software project management, 2nd ed., McGraw Hill
- Pfleeger, S.L. (1998) Software Engineering: Theory and Practice, Prentice Hall
- Royce, W. (1998) Software Project Management: A Unified Framework, Addison Wesley
- Center for Software Engineering, USC (1999) COCOMO II Model Definition Manual.