
Chapter 23

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 1

Software Cost Estimation

Software cost estimation

� Predicting the resources required

for a software development

process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 2

process

Objectives

� To introduce the fundamentals of software

costing and pricing

� To describe three metrics for software

productivity assessment

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 3

productivity assessment

� To explain why different techniques should be

used for software estimation

� To describe the COCOMO 2 algorithmic cost

estimation model

Topics covered

� Productivity

� Estimation techniques

� Algorithmic cost modelling

Project duration and staffing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 4

� Project duration and staffing

Fundamental estimation questions

� How much effort is required to complete an

activity?

� How much calendar time is needed to complete

an activity?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 5

an activity?

� What is the total cost of an activity?

� Project estimation and scheduling and

interleaved management activities

Software cost components

� Hardware and software costs

� Travel and training costs

� Effort costs (the dominant factor in most

projects)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 6

projects)
• salaries of engineers involved in the project

• Social and insurance costs

� Effort costs must take overheads into account
• costs of building, heating, lighting

• costs of networking and communications

• costs of shared facilities (e.g library, staff restaurant, etc.)

Costing and pricing

� Estimates are made to discover the cost, to the

developer, of producing a software system

� There is not a simple relationship between the

development cost and the price charged to the

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 7

development cost and the price charged to the

customer

� Broader organisational, economic, political and

business considerations influence the price

charged

Software pricing factors

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 8

� A measure of the rate at which individual

engineers involved in software development

produce software and associated

documentation

Programmer productivity

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 9

� Not quality-oriented although quality assurance

is a factor in productivity assessment

� Essentially, we want to measure useful

functionality produced per time unit

� Size related measures based on some output

from the software process. This may be lines of

delivered source code, object code instructions,

etc.

Productivity measures

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 10

� Function-related measures based on an estimate

of the functionality of the delivered software.

Function-points are the best known of this type of

measure

� Estimating the size of the measure

� Estimating the total number of programmer

months which have elapsed

� Estimating contractor productivity (e.g.

Measurement problems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 11

� Estimating contractor productivity (e.g.

documentation team) and incorporating this

estimate in overall estimate

� What's a line of code?
• The measure was first proposed when programs were typed on

cards with one line per card

• How does this correspond to statements as in Java which can
span several lines or where there can be several statements on

Lines of code

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 12

span several lines or where there can be several statements on
one line

� What programs should be counted as part of the

system?

� Assumes linear relationship between system

size and volume of documentation

� The lower level the language, the more

productive the programmer
• The same functionality takes more code to implement in a

lower-level language than in a high-level language

The more verbose the programmer, the higher

Productivity comparisons

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 13

� The more verbose the programmer, the higher

the productivity
• Measures of productivity based on lines of code suggest that

programmers who write verbose code are more productive than
programmers who write compact code

High and low level languages

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 14

System development times

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 15

Function points

� Based on a combination of program

characteristics
• external inputs and outputs

• user interactions

• external interfaces

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 16

• external interfaces

• files used by the system

� A weight is associated with each of these

� The function point count is computed by

multiplying each raw count by the weight and

summing all values

Function points

� Function point count modified by complexity of

the project

� FPs can be used to estimate LOC depending on

the average number of LOC per FP for a given

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 17

the average number of LOC per FP for a given

language
• LOC = AVC * number of function points

• AVC is a language-dependent factor varying from 200-300 for
assemble language to 2-40 for a 4GL

� FPs are very subjective. They depend on the

estimator.
• Automatic function-point counting is impossible

Object points

� Object points are an alternative function-related

measure to function points when 4Gls or similar

languages are used for development

� Object points are NOT the same as object

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 18

� Object points are NOT the same as object

classes

� The number of object points in a program is a

weighted estimate of
• The number of separate screens that are displayed

• The number of reports that are produced by the system

• The number of 3GL modules that must be developed to
supplement the 4GL code

Object point estimation

� Object points are easier to estimate from a

specification than function points as they are

simply concerned with screens, reports and 3GL

modules

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 19

� They can therefore be estimated at an early point

in the development process. At this stage, it is

very difficult to estimate the number of lines of

code in a system

� Real-time embedded systems, 40-160

LOC/P-month

� Systems programs , 150-400 LOC/P-month

� Commercial applications, 200-800

Productivity estimates

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 20

� Commercial applications, 200-800

LOC/P-month

� In object points, productivity has been measured

between 4 and 50 object points/month

depending on tool support and developer

capability

Factors affecting productivity

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 21

� All metrics based on volume/unit time are

flawed because they do not take quality into

account

� Productivity may generally be increased at the

Quality and productivity

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 22

� Productivity may generally be increased at the

cost of quality

� It is not clear how productivity/quality metrics

are related

� If change is constant then an approach based on

counting lines of code is not meaningful

Estimation techniques

� There is no simple way to make an accurate

estimate of the effort required to develop a

software system
• Initial estimates are based on inadequate information in a user

requirements definition

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 23

requirements definition

• The software may run on unfamiliar computers or use new
technology

• The people in the project may be unknown

� Project cost estimates may be self-fulfilling
• The estimate defines the budget and the product is adjusted to

meet the budget

Estimation techniques

� Algorithmic cost modelling

� Expert judgement

� Estimation by analogy

Parkinson's Law

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 24

� Parkinson's Law

� Pricing to win

Algorithmic code modelling

� A formulaic approach based on historical cost

information and which is generally based on the

size of the software

� Discussed later in this chapter

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 25

� Discussed later in this chapter

Expert judgement

� One or more experts in both software

development and the application domain use

their experience to predict software costs.

Process iterates until some consensus is

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 26

reached.

� Advantages: Relatively cheap estimation

method. Can be accurate if experts have direct

experience of similar systems

� Disadvantages: Very inaccurate if there are no

experts!

Estimation by analogy

� The cost of a project is computed by comparing

the project to a similar project in the same

application domain

� Advantages: Accurate if project data available

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 27

� Advantages: Accurate if project data available

� Disadvantages: Impossible if no comparable

project has been tackled. Needs systematically

maintained cost database

Parkinson's Law

� The project costs whatever resources are

available

� Advantages: No overspend

� Disadvantages: System is usually unfinished

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 28

� Disadvantages: System is usually unfinished

Pricing to win

� The project costs whatever the customer has to

spend on it

� Advantages: You get the contract

� Disadvantages: The probability that the

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 29

� Disadvantages: The probability that the

customer gets the system he or she wants is

small. Costs do not accurately reflect the work

required

Top-down and bottom-up estimation

� Any of these approaches may be used top-down

or bottom-up

� Top-down
• Start at the system level and assess the overall system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 30

• Start at the system level and assess the overall system
functionality and how this is delivered through sub-systems

� Bottom-up
• Start at the component level and estimate the effort required for

each component. Add these efforts to reach a final estimate

Top-down estimation

� Usable without knowledge of the system

architecture and the components that might be

part of the system

� Takes into account costs such as integration,

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 31

� Takes into account costs such as integration,

configuration management and documentation

� Can underestimate the cost of solving difficult

low-level technical problems

Bottom-up estimation

� Usable when the architecture of the system is

known and components identified

� Accurate method if the system has been

designed in detail

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 32

designed in detail

� May underestimate costs of system level

activities such as integration and documentation

Estimation methods

� Each method has strengths and weaknesses

� Estimation should be based on several methods

� If these do not return approximately the same

result, there is insufficient information available

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 33

result, there is insufficient information available

� Some action should be taken to find out more in

order to make more accurate estimates

� Pricing to win is sometimes the only applicable

method

Experience-based estimates

� Estimating is primarily experience-based

� However, new methods and technologies may

make estimating based on experience inaccurate
• Object oriented rather than function-oriented development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 34

• Object oriented rather than function-oriented development

• Client-server systems rather than mainframe systems

• Off the shelf components

• Component-based software engineering

• CASE tools and program generators

Pricing to win

� This approach may seem unethical and

unbusinesslike

� However, when detailed information is lacking it

may be the only appropriate strategy

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 35

may be the only appropriate strategy

� The project cost is agreed on the basis of an

outline proposal and the development is

constrained by that cost

� A detailed specification may be negotiated or an

evolutionary approach used for system

development

Algorithmic cost modelling

� Cost is estimated as a mathematical function of

product, project and process attributes whose

values are estimated by project managers
• Effort = A × SizeB

× M

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 36

• A is an organisation-dependent constant, B reflects the
disproportionate effort for large projects and M is a multiplier
reflecting product, process and people attributes

� Most commonly used product attribute for cost

estimation is code size

� Most models are basically similar but with

different values for A, B and M

Estimation accuracy

� The size of a software system can only be known

accurately when it is finished

� Several factors influence the final size
• Use of COTS and components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 37

• Use of COTS and components

• Programming language

• Distribution of system

� As the development process progresses then the

size estimate becomes more accurate

Estimate uncertainty

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 38

The COCOMO model

� An empirical model based on project experience

� Well-documented, ‘independent’ model which is

not tied to a specific software vendor

� Long history from initial version published in

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 39

� Long history from initial version published in

1981 (COCOMO-81) through various

instantiations to COCOMO 2

� COCOMO 2 takes into account different

approaches to software development, reuse, etc.

COCOMO 81

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 40

COCOMO 2 levels

� COCOMO 2 is a 3 level model that allows

increasingly detailed estimates to be prepared

as development progresses

� Early prototyping level

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 41

• Estimates based on object points and a simple formula is used
for effort estimation

� Early design level
• Estimates based on function points that are then translated to

LOC

� Post-architecture level
• Estimates based on lines of source code

Early prototyping level

� Supports prototyping projects and projects where

there is extensive reuse

� Based on standard estimates of developer

productivity in object points/month

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 42

productivity in object points/month

� Takes CASE tool use into account

� Formula is
• PM = (NOP × (1 - %reuse/100)) / PROD

• PM is the effort in person-months, NOP is the number of object
points and PROD is the productivity

Object point productivity

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 43

Early design level

� Estimates can be made after the requirements

have been agreed

� Based on standard formula for algorithmic

models

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 44

models
• PM = A × SizeB

× M + PMm where

• M = PERS × RCPX × RUSE × PDIF × PREX × FCIL × SCED

• PMm = (ASLOC × (AT/100)) / ATPROD

• A = 2.5 in initial calibration, Size in KLOC, B varies from 1.1 to
1.24 depending on novelty of the project, development
flexibility, risk management approaches and the process
maturity

Multipliers

� Multipliers reflect the capability of the developers,
the non-functional requirements, the familiarity
with the development platform, etc.
• RCPX - product reliability and complexity

• RUSE - the reuse required

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 45

• RUSE - the reuse required

• PDIF - platform difficulty

• PREX - personnel experience

• PERS - personnel capability

• SCED - required schedule

• FCIL - the team support facilities

� PM reflects the amount of automatically generated
code

Post-architecture level

� Uses same formula as early design estimates

� Estimate of size is adjusted to take into account
• Requirements volatility. Rework required to support change

• Extent of possible reuse. Reuse is non-linear and has
associated costs so this is not a simple reduction in LOC

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 46

associated costs so this is not a simple reduction in LOC

• ESLOC = ASLOC × (AA + SU +0.4DM + 0.3CM +0.3IM)/100

» ESLOC is equivalent number of lines of new code. ASLOC is the

number of lines of reusable code which must be modified, DM is

the percentage of design modified, CM is the percentage of the

code that is modified , IM is the percentage of the original

integration effort required for integrating the reused software.

» SU is a factor based on the cost of software understanding, AA is

a factor which reflects the initial assessment costs of deciding if

software may be reused.

� This depends on 5 scale factors (see next slide).

Their sum/100 is added to 1.01

� Example
• Precedenteness - new project - 4

The exponent term

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 47

• Precedenteness - new project - 4

• Development flexibility - no client involvement - Very high - 1

• Architecture/risk resolution - No risk analysis - V. Low - 5

• Team cohesion - new team - nominal - 3

• Process maturity - some control - nominal - 3

� Scale factor is therefore 1.17

Exponent scale factors

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 48

� Product attributes
• concerned with required characteristics of the software product being

developed

� Computer attributes

• constraints imposed on the software by the hardware platform

Multipliers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 49

� Personnel attributes

• multipliers that take the experience and capabilities of the people
working on the project into account.

� Project attributes
• concerned with the particular characteristics of the software

development project

Project cost drivers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 50

Effects of cost drivers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 51

� Algorithmic cost models provide a basis for

project planning as they allow alternative

strategies to be compared

� Embedded spacecraft system

Project planning

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 52

� Embedded spacecraft system
• Must be reliable

• Must minimise weight (number of chips)

• Multipliers on reliability and computer constraints > 1

� Cost components
• Target hardware

• Development platform

• Effort required

Management options

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 53

Management options costs

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 54

Option choice

� Option D (use more experienced staff) appears

to be the best alternative
• However, it has a high associated risk as experienced staff may

be difficult to find

Option C (upgrade memory) has a lower cost

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 55

� Option C (upgrade memory) has a lower cost

saving but very low risk

� Overall, the model reveals the importance of staff

experience in software development

Project duration and staffing

� As well as effort estimation, managers must

estimate the calendar time required to complete

a project and when staff will be required

� Calendar time can be estimated using a

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 56

� Calendar time can be estimated using a

COCOMO 2 formula
• TDEV = 3 × (PM)(0.33+0.2*(B-1.01))

• PM is the effort computation and B is the exponent computed
as discussed above (B is 1 for the early prototyping model).
This computation predicts the nominal schedule for the project

� The time required is independent of the number

of people working on the project

Staffing requirements

� Staff required can’t be computed by diving the

development time by the required schedule

� The number of people working on a project

varies depending on the phase of the project

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 57

varies depending on the phase of the project

� The more people who work on the project, the

more total effort is usually required

� A very rapid build-up of people often correlates

with schedule slippage

Key points

� Factors affecting productivity include individual

aptitude, domain experience, the development

project, the project size, tool support and the

working environment

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 58

� Different techniques of cost estimation should be

used when estimating costs

� Software may be priced to gain a contract and

the functionality adjusted to the price

Key points

� Algorithmic cost estimation is difficult because

of the need to estimate attributes of the finished

product

� The COCOMO model takes project, product,

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 59

The COCOMO model takes project, product,

personnel and hardware attributes into account

when predicting effort required

� Algorithmic cost models support quantitative

option analysis

� The time to complete a project is not

proportional to the number of people working

on the project

