CISC 322

Software/Game Architecture

B B B IR B

Module 6: Reflexion Models
Ahmed E. Hassan

Understanding Large Systems

m You are asked to provide an estimate on
the time needed to implement a particular
feature

— The software system is large
— Your knowledge of the system is limited
— Your estimate should be sufficiently accurate

Architecture Understanding
Process

Propose »| Compare »| Investigate

T

m Propose conceptual architecture

m Compare conceptual with concrete
architecture

m /nvestigate gaps

Better Understanding

Conceptual Architecture

m Developers propose a conceptual
architecture using assumptions and
preconceived ideas about the system and
its interactions based on:

— System documentation
— Developer experience with similar systems
— Reference architecture

— Talking to senior developers and domain
experts

Working on an Operating System

m A developer working on enhancing features in an OS,
might being with a conceptual breakdown which consists
of five conceptual subsystems:

— File System, Memory Manager, Network Interface, Process
Scheduler, and an Inter-Process Communication.
m The developer might also assume that these subsystems
interact in a particular fashion to implement specific
features:

— File System depends on the Network Interface to support
networked file systems such as NFS.

— Memory Manager depends on the File System to support
swapping of processes to disk when the system runs out of
physical memory.

Operating System Architecture

/ e SyStem \ / e SyStem \

Memory Network Memory Network
Manager Interface Manager Interface
P
/
/
Process . Inter-Process Process [= — = = — | inter-Process
Scheduler | Communication Scheduler |~ Communication

Legend: depends on Legend: —~dependson, _unexpected
Conceptual Concrete

(proposed) (reality)

Uncovering the Rationale
for the Differences

m Uncovering the rationale is challenging

— A senior developer

* may be too busy
* may not recall the rationale for such dependency
* may no longer work on the software system

— The software

« may have been bought from another company
* may have its maintenance out-sourced

m Developers must spend hours/days to uncover
the rationale. The rationale may be:
— Justified due to, e.g., optimizations or code reuse; or

— Not justified due to, e.g., developer ignorance or
pressure to market.

Software Reflexion Framework

*

Conceptual
subsystems

Dependencies Mapping Extracted
between source entities source
subsystems to subsystems dependencies

~ 0 0N

|

Conceptual Concrete
architecture architecture

Investigate Gaps

Mapping source entities to
subsystems

m Mapping files/functions:

— All files in the “src\sched” directory may be mapped to
the Process Scheduler subsystem

— All files in the “src\ipc” directory may be mapped to
the Inter-Process Communication subsystem

m Mapping dependencies.

— if a file in “src\ipc” calls a function defined in another
file in “src\sched” then this is considered to be a
dependency relation between the Inter-Process
Communication and Process Scheduler subsystems.

Investigating Gaps

Conceptual Concrete
View View

Absences Convergences Divergences

m Absences: rarely occur in large systems
m Convergences: usually not a concern

m Divergences: must investigate
dependencies

Which?

m Which concrete source code entities are
responsible for an unexpected
dependency?

m Based on entity names, we may be able to
deduce the reason for the existence of
dependencies

— Names may not help (too cryptic), thus
developers find themselves asking several
other questions

Who??

m Who introduced an unexpected dependency or
removed a missing dependency?

m A knowledge of this person may assist in
understanding the reasons for gaps.

m A gap due to a change made by

— a novice developer may suggest that the developer is
at fault and the change must be fixed

— a senior developer with a well established record for
producing high quality code may suggest that the
change is correct

m If the change is correct then we may consider
updating our conceptual view of the system

When?

m When was the unexpected dependency
added or the missing dependency
removed?

m Was a change introduced by a senior
developer to fix a critical bug under a tight
release schedule?

— E.g. a few days/hours before a release

m Oris it is a justified dependency that we
should expect

Why??

m Why was this unexpected dependency
added or why was an expected
dependency missing?

m A knowledge of the rationale is key in
explaining the gaps

Dependency Investigation
Questions (W4 Approach)

m Which low level code entity is responsible for
the dependency?

— Network (SendData) — Scheduler (PrintTolLog)
m Who added/removed the dependency?
— Junior vs. senior/experienced developer

m When was the dependency modified?
— Late night / Just before release

m Why was the dependency added/removed?
— The rationale!

Source Sticky Notes

Entity A Dependency Ergjtyf’
(eg. function) : (eg. netion,
data type)
/ A
1. Rational
2. Time
3. Related Depedencies and Entities
4. Creator
N J

m We are interested in
— Current and past dependencies

Source StickyNotes

m Static dependencies give only a current

static view of the system — not enough
detail!

m Need to extend static dependencies, but
how?

Extending Code Dependencies

m Ask developers to fill StickyNotes for each
change

— Too time consuming and cumbersome

m Use software repositories to build these
notes automatically

— Historical information may be hard to process

History as a guide

“History is a guide to navigation in perilous
times. History is who we are and why we
are the way we are”, David C. McCullough

m Can we leverage the development history of a project in
order to understand its current state?

m How can we get the development history of a project?

Challenges in studying historical
code information

main() { helpInfo() { helpInfo(){
Int a; errorString! int b;
/*call } }
help™/ main() { main() {
helpInfo(); int a; nt a;
} /*call /*call
help™/ help*/
\/ helpInfo(); helpInfo();
))
(LIJ_?r?kegr;?gr)func. N SyntayArror N Valid gdde

StickyNotes Recovery

m Map code changes to entities and dependencies
instead of lines

m Two pass analysis of the source control
repository data, to recover:

— All entities defined throughout the lifetime of a project
— Historical Symbol Table

— All dependencies between these entities and attach
source control meta-data such as:
« Name of developer performing the change

« Text entered by developer describing the change — the
rationale

« Time of the change

Case Study — NetBSD

m Large long lived system with hundreds of
developers

m Case study used to demonstrate
usefulness of the reflexion model:
— Reuse prior results! ©

— Focus on investigating gaps to show the
strength of our approach

NetBSD Conceptual and Reflexion
Model

—> Depend —— Convergence
Hardware Subsystem H?':(;;v:.re ** »-Divergence
Trans. |: Subsystem
A A 4 4 \’\
N\ <« — — — —
Kernel Fault _____ _|
Kernel Fault \ Handler
Handler \
\ Y

2V

Y P ~ Pager |« |
~

=
Pager o~ v l
/ + Virt'l\Jﬂzlirﬁddr- VM Policy FileSystem — —I

Virtual Addr. . . N A
Maint. VM Policy FileSystem l
L o
> O I-O 0
Why? Who?
When?

Where?

Unexpected Dependencies

m Eight unexpected dependencies
m All except two dependencies existed since day one:

— Virtual Address Maintenance — Pager

vm_map_entry create (in src/sys/vm/Attic/vm_map.c)
depends on_pager_map (in /src/sys/uvm/uvim_pager.c)

Who? cgd

1993/04/09 15:54:59
Revision 1.2 of sr¢/sys/vim/Attic/vim_map.c

Which?

When?

from sean eric fagan:

it seems to keep the vm system from deadlocking the
system when it runs out of swap + physical memory.
Why? prevents the system from giving the last page(s) to
anything but the referenced "processes" (especially
important is the pager process, which should never
have to wait for a free page).

Unexpected Dependencies

m Pager = Hardware Translations

Which? uvm_pagermapin (in src/sys/uvm/uvm_pager.c) depends on
) pmap kenter pgs (in src/sys/arch/arm26/arm26/Attic/pmap.c)
Who? thorpe;
When? 1999/05/24 23:30:44;
' Revision 1.17 of sr¢/sys/uvm/uvm pager.c
Don't use pmap kenter pgs() for entering pager map
mappings. The pages are still owned by the object which is
paging, and so the test for a kernel object 1
Why? uvm_unmap remove() will cause pmap remove() to be used
y: msteadof pmap kremove().
This was a MAJOR source of pmap remove() vs
pmap_kremove() inconsistency (which caused the busted
kernel pmap statistics, and a cause of much locking hair on MP
systems).

Unexpected Dependencies which
existed in the past

m Two unexpected dependcies that were
removed in the past:

— Hardware Translation = VM Policy
— File System — Virtual Address Maintenance

Which? mfs_strategy (in.src/sys/ufs/mfs/mfs_vnops.c) \

depends on_vm_map (in src/sys/vim/Attic/vm_map.h)

Who? thorpe;j

2000/05/19 20:42:21;
Revision 1.23 of src/sys/ufs/mfs/mfs _vnops.c

When?

Back out previous change; there 1s something

()
Why: Seriously Wrong.

StickyNotes Usage Patterns

m First note to understand the reason for
unexpected dependencies

m Last note to study missing dependencies

m All notes when first and last notes do not
have enough information to assist in
understanding

Limitations

m Quality of comments and text entered by
developers in the past

m In many open source projects, CVS
comments are used for:
— Communicating new features
— Narrating the progress of a project

Conclusions

m Development history can help understand the
current structure of a software system

m [raditional dependency graphs and program
understanding models usually do not use
historical information

m Proposed StickyNotes and presented a case
study to show the strength of the approach

