
An Empirical Study of
Operating Systems Errors

Jing Huang

Background

previous research
manual inspection of logs, testing, and
surveys because static analysis is applied
uniformly to the entire kernel source

This research
automatic, static, compiler analysis applied to
the Linux and OpenBSD kernels
less comprehensive variety of errors

Background –contd.

previous research (static analysis)
primarily focus on the machinery and methods
used to find the errors

advantages:
can survey more comprehensive variety of errors

disadvantages:
over-represent errors where skilled developers

happened to look or where bugs happened to be triggered
most often

Background –contd.

This research
automatically get errors And concentrate on
the errors themselves

advantages
fair comparison cross different parts of the kernel

(the compiler applies a given extension uniformly across the
entire kernel)
easily track errors over many versions making it possible to
apply the same analysis to trends over time.

disadvantages:
types and content of errors are limited to those found by our
automatic tools

error scope

Considered
straightforward source-level errors

Unconsidered
facets of a complete system other than source-
level errors

performance
high-level design
user space programs

five central questions

Where are the errors?
How are bugs distributed?
How long do bugs live?
How do bugs cluster?
How do operating system kernels

compare?

mythology (Research data source)

from 21 different snapshots of the Linux
kernel spanning seven years (from v1.0—
v2.4.1).
from different parts of Linux kernel

kernel (main kernel)
mm (memory management)
ipc (inter-process communication)
arch (architecture specific code)
net (networking code)
fs (filesystem code)
drivers (device drivers)

mythology (Gathering the Errors)
Inspected errors: manually examined the error logs
produced by the checkers
(annotated and propagated from one version to another)
Projected errors: unexamined results occurred by ran
checkers with low false positive rates over all Linux versions
(Vat, Block, and Null)
Notes: add by 1 for a specific checker whenever
an extension encounters an event that (For example, the Null
checker notes every call to kmalloc or other routines that can
return NUL).

Relative error rate:
err_rate =(inspected+ projected) errors/notes.

.

mythology (checker and corresponding bugs)

mythology (Gathering the Errors)
Inspected errors: manually examined the error logs
produced by the checkers
(annotated and propagated from one version to another)
Projected errors: unexamined results occurred by ran
checkers with low false positive rates over all Linux versions
(Vat, Block, and Null)
Notes: add by 1 for a specific checker whenever
an extension encounters an event (For example, the Null
checker notes every call to kmalloc or other routines that can
return NULL).

Relative error rate:
err_rate =(inspected+ projected) errors/notes.

.

mythology (caveat)
whether this set of bugs is representative

reason: error only come from automatic compiler analysis
compensation ways:

using results from a collection of checkers that find a variety of different
types of errors
comparing our results with those of manually conducted studies

bugs has been treated equally
compensation ways:

find patterns only in important bugs
poor quality code can masquerade as good code

reason: it does not happen to contain the errors for which we check
compensation ways:

Examine bugs across time
Present distributions
Aggregate samples

checks could misrepresent code quality
Reason: they are biased toward low-level bookkeeping operations,
ignoring the quality of code

Analysis and answer
Where Are The Bugs?

Analysis and answer –contd.
Answer:

Driver has the highest error rate and absolute
number of bugs

the error rate in driver code is almost three times greater
than the rest of the kernel.
Drivers account for over 90% of the Block, Free, and Intr
bugs, and over 70% of the Lock, Null, and Var bugs.

Possible Reasons:
make mistakes using OS interfaces they do not fully
understand
Only a few test sites may have a given device so that
most drivers are not as heavily tested as the rest of the
kernel

Analysis and answer –contd.
How are bugs distributed?
A common pattern always emerges from

summary of the errors sorted by the number of
errors found per file. a few files have several
errors in them, and a much longer tail of files have
just one or two errors. This phenomena can be
described by the log series distribution.

To fit a distribution to the graph, we start with a set
of distributions to test. Each distribution has one or
more parameters that change the shape of the
curve.

Analysis and answer –contd.
Sub-conclusion

the log series gives a distinctly better fit if we omit the
Block checker..
for the Block checker, the Yule distribution fit better than
the log series distribution..

Analysis and answer –contd.
How are bugs distributed?

Analysis and answer –contd.

How long do bugs live?

Analysis and answer –contd.
A Bug’s life

a bug was born when it was introduced into the kernel
and was died when the bug was fixed.

Bugs that are still alive in the last release have an
artificially truncated right endpoint

Analysis and answer –contd.
Calculating average bug lifetime

Four main problems:
the granularity of the versions we check limits our
precision

Most of the versions are separated by about four
months, but the gap ranges from about one month
to about one year
Miss bugs whose lifespan falls between the
versions we check

Analysis and answer –contd.
Calculating average bug lifetime

Four main problems (con’t)
we have no exact death data for many bugs

they are still alive at 2.4.1 (i.e., right censoring).
Our own interference
Take into account the nature and purpose of
development

Traditionally the odd releases (1.3.x, 2.1.x, 2.3.x)
are development versions that ncorporate new
features and fix bugs
the even versions (1.2.x, 2.2.x, 2.4.x) are more
stable release versions, with most changes being
bug fixes

Analysis and answer –contd.
Average bug lifetimes predicted by the
Kaplan-Meier estimator

Analysis and answer –contd.
Maximum likelihood survivor function

X be a random variable representing the
lifetime of a bug
di is the number of bugs that die at time
ri is the number of bugs still alive at time i

Analysis and answer –contd.
How do bugs cluster?

Reasons:
dependent errors will cause error clustering

programmer competence degrades
poor programmers are more likely to produce
many errors in a single place
a programmer is ignorant of system restrictions
cut-and-paste is more likely to contain clusters of
errors

Analysis and answer –contd.
How do operating system kernels
compare?

compare Linux (2.4.1) and OpenBSD (2.8) releases using
four checkers: Intr, Free, Null, and Param.

Analysis and answer –contd.
Sub-conclusion for Cross-Validation
For these checkers, OpenBSD is always worse
than Linux, ranging from about 20% worse to
almost a factor of six

Potential shortcomings
the comparison based on a limited number of
checkers
the checkers only examine low-level operations,
and thus give no direct measurement of design
quality

conclusion
the relative error rate of drivers is far
higher than that of other kernel code
errors cluster roughly a factor of two
more tightly than from a random
distribution
bugs last an average of about 1.8 years
errors more objectively than manual
inspection could hope to

Questions?

	An Empirical Study of Operating Systems Errors
	 Background
	 Background –contd.
	 Background –contd.
	 error scope
	 five central questions
	 mythology (Research data source)
	 mythology (Gathering the Errors)
	 mythology (checker and corresponding bugs)
	 mythology (Gathering the Errors)
	 mythology (caveat)
	 Analysis and answer
	 Analysis and answer –contd.
	 Analysis and answer –contd.
	 Analysis and answer –contd.
	 Analysis and answer –contd.
	 Analysis and answer –contd.
	 Analysis and answer –contd.
	 Analysis and answer –contd.
	 Analysis and answer –contd.
	 Analysis and answer –contd.
	 Analysis and answer –contd.
	 Analysis and answer –contd.
	 Analysis and answer –contd.
	 Analysis and answer –contd.
	 conclusion

