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Abstract 
 

We have mapped defects from the bug database of 
Eclipse (one of the largest open-source projects) to 
source code locations. The resulting data set lists the 
number of pre- and post-release defects for every 
package and file in the Eclipse releases 2.0, 2.1, and 
3.0. We additionally annotated the data with common 
complexity metrics. All data is publicly available and 
can serve as a benchmark for defect prediction models. 
 
1. Introduction 
 

Why is it that some programs are more failure-
prone than others? This is one of the central questions 
of software engineering. To answer it, we must first 
know which programs are more failure-prone than oth-
ers. With this knowledge, we can search for properties 
of the program or its development process that com-
monly correlate with defect density; in other words, 
once we can measure the effect, we can search for its 
causes. 

One of the most abundant, widespread, and reliable 
sources for failure information is a bug database, list-
ing all the problems that occurred during the software 
lifetime. Unfortunately, bug databases frequently do 
not directly record how, where, and by whom the prob-
lem in question was fixed. This information is hidden 
in the version database, recording all changes to the 
software source code. 

In recent years, a number of techniques have been 
developed to relate bug reports to fixes [3, 6, 17]. Since 
we thus can relate bugs to fixes, and fixes to the loca-
tions they apply to, we can easily determine the num-
ber of defects of a component—simply by counting the 
applied fixes. 

We have conducted such a work on the code base of 
the Eclipse programming environment. In particular, 
we have computed the mapping of packages and 
classes to the number of defects that were reported in 
the first six months before and after release. In pre-
vious work, we made our Eclipse bug data set freely 

available [15]. For this paper, we extended our data 
with common complexity metrics and the counts of 
syntactic elements (obtained from abstract syntax 
trees). With this new data, many predictor models can 
be built out of the box which we demonstrate in this 
paper. 

We invite readers to use our data for research pur-
poses and to build their own models. We hope that the 
public availability of data sets like ours will foster em-
pirical research in software engineering, just like the 
public availability of open source programs fostered 
research in program analysis. 
 
2. State of the art 
 

Predicting which components are more failure-
prone than others has been addressed by a number of 
researchers in the past. This work, discussed below, 
used either complexity metrics or historical data to 
predict failures. 

 
2.1. Complexity metrics 
 

Typically, research on defect-proneness defines me-
trics to capture the complexity of software and builds 
models that relate these metrics to defect-proneness 
[4]. Basili et al. [1] were among the first to validate 
that OO metrics are useful for predicting defect densi-
ty. Subramanyam and Krishnan [18] presented a sur-
vey on eight more empirical studies, all showing that 
OO metrics are significantly associated with defects. 
Post-release defects are the defects that actually matter 
for the end-users of a program. Only few studies ad-
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URL: http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse

More data: Eclipse source code (for archived releases): 
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Figure 1. Summary of our data set. 



dressed post-release defects so far: Binkley and Schach 
[2] developed a coupling dependency metric and 
showed that it outperforms several other metrics; 
Ohlsson and Alberg [13] investigated a number of me-
trics to predict modules that fail during test or opera-
tion. Schröter et al. [16] showed that design data such 
as import relationships also can predict post-release 
failures. 

The MetriZone project at Microsoft Research inves-
tigates how to make early estimates of software quality 
to predict post-release failures. Nagappan and Ball [11] 
showed that relative code churn predicts software de-
fect density; (absolute) code churn is the number of 
lines added or deleted between versions. Additionally, 
Nagappan et al. [12] carried out the largest study on 
commercial software so far: Within five Microsoft 
projects, they identified metrics that predict post-
release failures and reported how to systematically 
build predictors for post-release failures from history. 
Nagappan and Ball [10] also showed that the ratio be-
tween the number of dependencies within a component 
and the number of dependencies across a component 
can predict post-release failures.  

 
2.2. Historical data 

 
Several researchers used historical data without tak-

ing bug databases into account. Khoshgoftaar et al. [9] 
classified modules as defect-prone whenever the num-
ber of lines of code added or deleted exceeded a thre-
shold. Graves et al. [7] used the sum of contributions to 
a module in its history to predict defect density. Os-
trand et al. [14] used historical data from up to 17 re-
leases to predict the files with the highest defect densi-
ty in the next release. Hudepohl et al. [8] predicted 
whether a module would be defect-prone by combining 

metrics and historical data. From several software me-
trics, Denaro et al. [5] learned logistic regression mod-
els for Apache 1.3 and verified them against Apache 
2.0. 
 
3. Eclipse data set 
 
This section presents details on how we computed the 
Eclipse bug data set and a description of its contents. 
Additionally, we point out research problems that can 
be investigated with our data set. 
 
3.1. Data collection 
 

How do we know which components failed and 
which did not? This data can be collected from version 
archives like CVS and bug tracking systems like 
BUGZILLA in two steps: 

1. We identify corrections (or fixes) in version arc-
hives: Within the commit messages, we search 
for references to bug reports such as “Fixed 
42233” or “bug #23444”. Basically every number 
is a potential reference to a bug report; however 
such references have a low trust at first. We in-
crease the trust level when a message contains 
keywords such as “fixed” or “bug” or matches 
patterns like “# and a number”. This approach 
was previously used in research [3, 6, 17]. 

2. We use the bug tracking system to map bug re-
ports to releases. Each bug report contains a field 
called “version” that lists the release for which 
the bug was reported; however, since the values 
of this field may change during the life cycle of a 
bug (e.g., when a bug is carried over to the next 
release), we only use the first reported release.  

Table 1. Metrics in the Eclipse data set. 

  Metric File level Package level 
methods FOUT Number of method calls (fan out) avg, max, total avg, max, total 

 MLOC Method lines of code avg, max, total avg, max, total 
 NBD Nested block depth avg, max, total avg, max, total 
 PAR Number of parameters avg, max, total avg, max, total 
 VG McCabe cyclomatic complexity avg, max, total avg, max, total 

classes NOF Number of fields avg, max, total avg, max, total 
 NOM Number of methods avg, max, total avg, max, total 
 NSF Number of static fields avg, max, total avg, max, total 
 NSM Number of static methods avg, max, total avg, max, total 

files ACD Number of anonymous type declarations value avg, max, total 
 NOI Number of interfaces value avg, max, total 
 NOT Number of classes value avg, max, total 
 TLOC Total lines of code value avg, max, total 

packages NOCU Number of files (compilation units) N/A value 
 



We distinguish two different kinds of defects: 
pre-release defects are observed during develop-
ment and testing of a program, while post-release 
defects are observed after the program has been 
deployed to its users. 

Since we know the location of every defect that has 
been fixed, it is easy to count the number of defects per 
location and release. 

For the computation of complexity metrics, we used 
the Java parser of Eclipse. We implemented visitors 
that compute standard metrics (see Table 1) for me-
thods, classes, and files (compilation units) and aggre-
gators that combine the metric values into single val-
ues for the levels we were interested in (files and pack-
ages). For aggregation we used the average, total, and 
maximum values of the metrics; we omitted minimum 
values because they are zero in most cases. The source 
code metrics were computed on the archived builds of 
Eclipse (see the URL in Figure 1). Note that file level 
is different from class level since in Java one file can 
contain several classes. 
 
3.2. Data description 
 

Our data consists of six files in total—one file for 
each level (files, packages) and release (2.0, 2.1, 3.0). 
Table 2 summarizes the total number of cases per file. 
Each case contains the following information: 

 name: The name of the file or package, respec-
tively, to which this case corresponds. It can be 
used to identify the source code in the release and 
may be needed for additional data collection.  

 pre-release defects: The number of non-trivial 
defects that were reported in the last six months 
before release. 

 post-release defects: The number of non-trivial 
defects that were reported in the first six months 
after release. 

 complexity metrics: We computed for each case 
several complexity metrics (see Table 1). Metrics 
that are computed for classes or methods are ag-
gregate by using average (avg), maximum (max), 
and accumulation (sum) to file and package level. 

 structure of abstract syntax tree(s): For each 
case, we list the size (=number of nodes) of the 
abstract syntax tree(s) of the file or package, re-
spectively. Abstract syntax trees also consist of 
different types of nodes (see Figure 2). In addi-
tion to size, we also list the frequency of each of 
these nodes. These counts allow constructing new 
metrics without any additional processing of the 
source code. 

3.3. Data relevance 
 

The Eclipse bug data set can be used to build and 
assess models for defect prediction. Figure 3 shows a 
histogram of the number of defects for packages in 
Eclipse 3.0. Most packages have no observed defects; 
some packages have up to 65 defects reported. 

This distribution calls for two interesting research 
questions: Which files/packages have defects (a classi-
fication problem)? And which are the files/packages 
with the most defects (a ranking problem)? Having 
reliable predictions for both supports allocation of re-
sources for quality assurance (such as testing) to parts 
of a system that are most defect-prone. 

Table 2. Number of cases 

 Number of 
Release Files Packages 

2.0 6729 377 
2.1 7888 434 
3.0 10593 661 

AnnotationTypeDeclaration 
AnnotationTypeMemberDeclaration 
AnonymousClassDeclaration 
ArrayAccess 
ArrayCreation 
ArrayInitializer 
ArrayType 
AssertStatement 
Assignment 
Block 
BlockComment 
BooleanLiteral 
BreakStatement 
CastExpression 
CatchClause 
CharacterLiteral 
ClassInstanceCreation 
CompilationUnit 
ConditionalExpression 
ConstructorInvocation 
ContinueStatement 
DoStatement 
EmptyStatement 
EnhancedForStatement 
EnumConstantDeclaration 
EnumDeclaration 
ExpressionStatement 
FieldAccess 
FieldDeclaration 
ForStatement 
IfStatement 
ImportDeclaration 
InfixExpression 
Initializer 
InstanceofExpression 
Javadoc 
LabeledStatement 
LineComment 
MarkerAnnotation 
MemberRef 
MemberValuePair 
MethodDeclaration 

MethodInvocation 
MethodRef 
MethodRefParameter 
Modifier 
NormalAnnotation 
NullLiteral 
NumberLiteral 
PackageDeclaration 
ParameterizedType 
ParenthesizedExpression 
PostfixExpression 
PrefixExpression 
PrimitiveType 
QualifiedName 
QualifiedType 
ReturnStatement 
SimpleName 
SimpleType 
SingleMemberAnnotation 
SingleVariableDeclaration 
StringLiteral 
SuperConstructorInvocation 
SuperFieldAccess 
SuperMethodInvocation 
SwitchCase 
SwitchStatement 
SynchronizedStatement 
TagElement 
TextElement 
ThisExpression 
ThrowStatement 
TryStatement 
TypeDeclaration 
TypeDeclarationStatement 
TypeLiteral 
TypeParameter 
VariableDeclarationExpression 
VariableDeclarationFragment 
VariableDeclarationStatement 
WhileStatement 
WildcardType 

Figure 2. Abstract syntax tree nodes. 



3.3.1. Classification 
 
Classification tries to predict whether a file or pack-

age will have at least one defect reported. When ap-
plied to all files/packages, the outcome is a classifica-
tion table such as the following: 

 
  Defects are observed.  
  True False  

Model 
predicts 
defects. 

Positive 
True  

Positive 
(TP) 

False 
Positive 

(FP) 
Precision

Negative 
False 

Negative 
(FN) 

True  
Negative 

(TN) 
 

  
 

Recall 
 


Accuracy

 
For assessing the quality of a classification model 

we recommend to use precision, recall, and accuracy: 

 Precision. The precision relates the number of 
true positives (predicted and observed as defect-
prone) to the number of files/packages predicted 
as defect-prone. 

precision = TP / (TP + FP) 

A value close to one is desirable and would mean 
that every file/package that was predicted to have 
defects actually had defects. 

 Recall. The recall relates the number of true posi-
tives (predicted and observed as defect-prone) to 
the number of files/packages that actually had de-
fects. 

recall = TP / (TP + FN) 

A value close to one is best and would mean that 
every file/package that had defects observed was 
predicted to have defects. 

 Accuracy. The accuracy relates the number of 
correct classifications (true positives and true 
negatives) to the total number of files/packages. 

accuracy = (TP + TN) / (TP + TN + FP + FN) 

A value of one is best and would mean that the 
model classified perfectly, i.e., made not a single 
mistake. 

In order to interpret these measures correctly, one addi-
tionally needs to know the percentage of files (or pack-
ages) that have defects. Assume that 80% of all files 
have defects and a model classifies every file as defect-
prone. In this case, the model has a precision of 80%, 
recall of 100%, and accuracy of 80%. Still such a mod-
el is not helpful for classification purposes. 

 

3.3.2. Ranking 
 
Ranking tries to predict an order of files/packages 

where the files/packages with most defects come first. 
To measure the quality of such a ranking, we recom-
mend using the Spearman correlation. 

 Spearman correlation. The Spearman correlation 
coefficient measures the correlation between a 
predicted and observed ranking. High correlations 
and thus a high quality of the predicted ranking 
are indicated by values close to 1 and -1: values 
of 1 indicate a identical ranking and values of -1 
indicate an opposite ranking. Values close to 0 
indicate no correlation. 

 
4. Experiments 
 

In this section, we present a few experiments using 
the Eclipse bug data set. We do not attempt to give 
definite answers for defect prediction, but merely high-
light the potential of bug data when it comes to address 
this problem. 
 
4.1. Correlations 
 

At first, we computed the Spearman correlation be-
tween the number of pre-release and post-release 
defects and the complexity metrics in the data set. Ta-
ble 3 lists the correlation values for both, file and pack-
age level (release 3.0). Correlations significant at the 
0.01 level are marked with (*). 

The high correlation value of 0.768 between the 
number of pre-release and post-release defects on 
package level indicates that the packages having the 
most pre-release defects are likely to also have the 
most post-release defects and vice versa. This effect is 
not as strong on file level (correlation on 0.390). 

Most correlations with metrics are positive and sig-
nificant—the more complex a file/package the more 
defects it will have. However, on file level only the 
accumulated number of method calls (FOUT_sum), the 

Figure 3. Histogram of post-release defects. 



total lines of code (TLOC_sum), and the closely re-
lated sum of method lines of code (MLOC_sum) have 
correlation values above 0.400. This indicates that the 
size of files and number of methods calls seems to be a 
good indicator for defect-prone files. 

On package level, most correlations are above the 
0.400 threshold: fan out as measured by the number of 
calls in a method (FOUT), lines of code (MLOC and 
TLOC) nested block depth (NBD), number of non-
static fields (NOF and NSF) and methods (NOM), 
complexity (VG), and the number of files in a package 
(NOCU). Most accumulated metrics (_sum) have high-
er correlations values than the averaged metrics. In 
many cases the maximum metrics (_max) show corre-
lation values comparable to the accumulated ones. The 
number of interfaces (NOI) is the only metric for 
which we observe no correlation at all. 

Finding a single indicator or predictor for the num-
ber of defects is extremely unlikely. In the next subsec-
tions, we will combine input features by building re-
gression models (linear for ranking, and logistic for 
classification). 
 
4.2. Classification 

 
The previous section showed that individual code 

metrics correlate with the number of defects. But how 
can we use metrics to predict whether a file/package 
will have defects? One solution is to build statistical 
models that classify files/packages as defect-prone 
(has_defects=1) or not (has_defects=0) based on the 
values of the code metrics. 

We built logistic regression models for the Eclipse 
bug data set to predict whether files/packages have 
post-release defects. Logistic regression models typi-
cally predict likelihoods (between 0 and 1); when the 
predicted likelihood was above 0.5, we classified a 
file/package as defect-prone, otherwise as defect-free. 
In total we built six models for two levels of granulari-
ty (files, packages) and three releases (2.0, 2.1, 3.0). 
We tested the models across releases of Eclipse, but 
always on the level they were built from. 

Table 4 lists the precision, recall, and accuracy val-
ues for the file level. The recall values are low for all 
tests, meaning that only few of the defect-prone files 
were correctly identified as defect-prone. However, the 
precision values are above 0.500 in all but one cases, 
suggesting that there are only few false positives, i.e., 
when a file is classified as defect-prone, this decision is 
most likely to be correct. Most of the precision, recall, 
and accuracy values remain comparable across releas-
es. This means that a model learned from one release, 
say 2.0, can be applied to a later release, say 3.0, with-
out losing too much predictive power (only a decrease 
of 0.015 in accuracy).  

Table 3. Spearman correlation between pre- 
and post-release defects and metrics. 

Release 3.0 File level  Package level 

 pre post  pre post 

pre 1.000 .390 (*)  1.000 .768 (*)

post .390 (*) 1.000  .768 (*) 1.000 

FOUT_avg .313 (*) .242 (*)  .258 (*) .266 (*)

FOUT_max .375 (*) .291 (*)  .429 (*) .413 (*)

FOUT_sum .400 (*) .319 (*)  .537 (*) .523 (*)

MLOC_avg .314 (*) .243 (*)  .242 (*) .282 (*)

MLOC_max .380 (*) .293 (*)  .429 (*) .455 (*)

MLOC_sum .403 (*) .322 (*)  .545 (*) .544 (*)

NBD_avg .303 (*) .237 (*)  .241 (*) .280 (*)

NBD_max .368 (*) .290 (*)  .487 (*) .508 (*)

NBD_sum .392 (*) .320 (*)  .552 (*) .546 (*)

NOF_avg .242 (*) .191 (*)  .268 (*) .264 (*)

NOF_max .256 (*) .201 (*)  .456 (*) .417 (*)

NOF_sum .260 (*) .204 (*)  .507 (*) .480 (*)

NOM_avg .296 (*) .255 (*)  .241 (*) .273 (*)

NOM_max .314 (*) .266 (*)  .418 (*) .417 (*)

NOM_sum .319 (*) .268 (*)  .502 (*) .491 (*)

NSF_avg .174 (*) .162 (*)  .256 (*) .216 (*)

NSF_max .186 (*) .170 (*)  .397 (*) .354 (*)

NSF_sum .186 (*) .170 (*)  .459 (*) .414 (*)

NSM_avg .197 (*) .176 (*)  .250 (*) .175 (*)

NSM_max .202 (*) .179 (*)  .391 (*) .323 (*)

NSM_sum .202 (*) .179 (*)  .448 (*) .371 (*)

PAR_avg .094 (*) .064 (*)  .111 (*) .122 (*)

PAR_max .257 (*) .209 (*)  .399 (*) .378 (*)

PAR_sum .350 (*) .283 (*)  .554 (*) .526 (*)

VG_avg .300 (*) .234 (*)  .254 (*) .268 (*)

VG_max .359 (*) .279 (*)  .435 (*) .430 (*)

VG_sum .389 (*) .315 (*)  .546 (*) .538 (*)

NOCU    .514 (*) .461 (*)

ACD .258 (*) .180 (*)    

ACD_avg    .316 (*) .301 (*)

ACD_max    .416 (*) .389 (*)

ACD_sum    .442 (*) .414 (*)

NOI -.160 (*) -.129 (*)    

NOI_avg    -.021 -.037 

NOI_max    .118 (*) .094 

NOI_sum    .129 (*) .110 (*)

NOT .160 (*) .129 (*)    

NOT_avg    .029 .043 

NOT_max    .190 (*) .174 (*)

NOT_sum    .518 (*) .470 (*)

TLOC .421 (*) .333 (*)    

TLOC_avg    .354 (*) .377 (*)

TLOC_max    .527 (*) .505 (*)

TLOC_sum    .581 (*) .559 (*)

Correlations significant at the 0.01 level marked with (*). 



Table 5 presents the results for the package level. 
The results improve substantially; precision values are 
now between 0.741 and 0.892, recall values between 
0.588 and 0.789. Intuitively, it is easier to predict de-
fect-prone packages, as already one defect-prone file 
makes a package defect-prone. 
 
4.3. Ranking 

 
In order to predict the files/packages that have most 

post-release defects we used linear regression models. 
Using these models we predicted for each file/package 
the number of expected post-release defects and com-
pared the resulting ranking to the observed ranking 
using Spearman correlation. Again, we built models for 
each level (file, package) and release (2.0, 2.1, 3.0) and 
tested them across releases. 

Table 6 shows the results for file level. In addition 
to Spearman, we also list the R2 value of the trained 
model and the Pearson correlation. The R2 value meas-
ures the variability in a data set that is accounted for by 
a statistical model. In our case only up to 37.4% of 
variance are explained by complexity metrics. Pearson 
correlation assumes a linear relation between the corre-
lated variables; we report Pearson values only for 
completeness. The Spearman correlation values  are 
low, reaching 0.398 at most, but positive. Therefore, 
files having a higher predicted rank are more likely to 
have a high observed rank, too. 

The results for package level are listed in Table 7. 
The R2 values substantially improve; for release 3.0 
86.5% of variability is explained by the linear model. 
The Spearman correlation values increase substantially 
to up to 0.704. Again the increase in correlation and R2 
values demonstrates that it is easier to make predic-
tions for packages than for files. Also, models learned 
from earlier releases can be used to predict for future 
releases; for instance the model trained from release 
2.1 showed a correlation of 0.704 on release 3.0. 
 
5. Conclusions 
 

Where do bugs come from? By mapping failures to 
components, our Eclipse bug data set offers the oppor-
tunity to research this question. The experiments in this 
paper showed that the combination of complexity me-
trics can predict defects, suggesting that the more com-
plex code it, the more defects it has.  

However, our predictions are far from being perfect. 
They therefore raise follow-up questions: Are there 
better indicators for defects than complexity metrics? 
How applicable are models across projects and over 
time? How do we integrate prediction models into the 
development process?  

Table 4. Classification of files.  
(Precision P, Recall R, and Accuracy Acc). 

Training Testing Defects P R Acc 
2.0 2.0 0.145 0.692 0.265 0.876 

 2.1 0.108 0.478 0.191 0.890 

 3.0 0.148 0.613 0.171 0.861 

2.1 2.0 0.145 0.664 0.203 0.870 

 2.1 0.108 0.668 0.160 0.900 

 3.0 0.148 0.717 0.139 0.864 

3.0 2.0 0.145 0.578 0.277 0.866 

 2.1 0.108 0.528 0.220 0.894 

 3.0 0.148 0.675 0.224 0.869 

 
Table 5. Classification of packages.  

(Precision P, Recall R, and Accuracy Acc). 

Training Testing Defects P R Acc 
2.0 2.0 0.504 0.853 0.763 0.814 

 2.1 0.447 0.741 0.634 0.737 

 3.0 0.474 0.786 0.588 0.729 

2.1 2.0 0.504 0.806 0.700 0.764 

 2.1 0.447 0.857 0.742 0.829 

 3.0 0.474 0.861 0.674 0.794 

3.0 2.0 0.504 0.760 0.784 0.767 

 2.1 0.447 0.782 0.758 0.797 

 3.0 0.474 0.892 0.789 0.855 

 
Table 6. Ranking files with linear regression. 

(Pearson r and Spearman  correlation) 

Files  Testing 
  2.0 2.1 3.0 

Training 

2.0 
R2=0.324 

r=0.569 
=0.398 

r=0.430 
=0.286 

r=0.544 
=0.340 

2.1 
R2=0.239 

r=0.517 
=0.377 

r=0.489 
=0.311 

r=0.562 
=0.359 

3.0 
R2=0.374 

r=0.518 
=0.383 

r=0.434 
=0.305 

r=0.611 
=0.362 

All correlations are significant at the 0.01 level. 

 
Table 7. Ranking packages with linear regres-
sion. (Pearson r and Spearman  correlation) 

Packages  Testing 
  2.0 2.1 3.0 

Training 

2.0 
R2=0.793 

r=0.890 
=0.647 

r=0.870 
=0.492 

r=0.733 
=0.546 

2.1 
R2=0.865 

r=0.833 
=0.641 

r=0.930 
=0.704 

r=0.731 
=0.704 

3.0 
R2=0.779 

r=0.727 
=0.655 

r=0.782 
=0.558 

r=0.882 
=0.691 

All correlations are significant at the 0.01 level. 
 



The above questions indicate the potential of future 
empirical research based on bug data. To support this 
very research, we are happy to make the Eclipse bug 
data set publicly available. 

Overall, we would like this dataset to become both a 
challenge and a benchmark: Which factors in programs 
and processes are predictors of future bugs, and which 
approach gives the best prediction results? The more 
we learn about past mistakes, the better are our chances 
to avoid them in the future—and build better software 
at lower cost.  

For access to the Eclipse bug data set, as well as for 
ongoing information on the project, see  

 
http://www.st.cs.uni-sb.de/softevo/ 
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A. Appendix: Replication guide in GNU R 
 
Step 0: Read the files 
 
files_20 <- read.table("eclipse-metrics-files-2.0.csv", header=T, sep=";") 
files_21 <- read.table("eclipse-metrics-files-2.1.csv", header=T, sep=";") 
files_30 <- read.table("eclipse-metrics-files-3.0.csv", header=T, sep=";") 
 
packages_20 <- read.table("eclipse-metrics-packages-2.0.csv", header=T, sep=";") 
packages_21 <- read.table("eclipse-metrics-packages-2.1.csv", header=T, sep=";") 
packages_30 <- read.table("eclipse-metrics-packages-3.0.csv", header=T, sep=";") 
 
Step 1: Count the files and packages (Table 2) 
 
nrow(files_20) 
nrow(files_21) 
nrow(files_30) 
nrow(packages_20) 
nrow(packages_21) 
nrow(packages_30) 
 
Step 2: Build the histogram (Figure 3) 
 
par(mar=c(5, 5, 2, 1) + 0.1) 
hist(packages_30$post, freq=T, breaks=100, xlim=c(0,70), axes=F, main="", xlab="Number 
of Post-Release Defects (per Package)", ylab="Percentage", col="darkgray") 
axis(1) 
axis(2, at=c(0,66.1,66.1*2,66.1*3,66.1*4,66.1*5,66.1*6), la-
bels=c("0%","10%","20%","30%","40%","50%","60%"), las=1) 
 
Steep 3: Compute the correlations including significance at 0.01 (Table 3) 
 
Note that the data begins only in column 3 and we therefore have to start the for loop at 3 and use i-2 to access pre.p 
and post.p which start with index 1. 
 
pre.p <- rep (-1, 33) 
post.p <- rep (-1, 33) 
for (i in 3:35) { 
 pre.p[i-2] <- cor.test(files_30[,i], files_30$pre, method="spearman", ex-
act=FALSE)$p.value 
 post.p[i-2] <- cor.test(files_30[,i], files_30$post, method="spearman", ex-
act=FALSE)$p.value 
} 
 
cbind(cor(files_30[,3:35], files_30$pre, method="spearman"), cor(files_30[,3:35], 
files_30$post, method="spearman"), (pre.p<0.01), (post.p<0.01)) 
 
pre.p <- rep (-1, 42) 
post.p <- rep (-1, 42) 
for (i in 3:44) { 
 pre.p[i-2] <- cor.test(packages_30[,i], packages_30 $pre, method="spearman", ex-
act=FALSE)$p.value 
 post.p[i-2] <- cor.test(packages_30[,i], packages_30 $post, method="spearman", 
exact=FALSE)$p.value 
} 
 
cbind(cor(packages_30[,3:44], packages_30$pre, method="spearman"), 
cor(packages_30[,3:44], packages_30$post, method="spearman"), (pre.p<0.01), 
(post.p<0.01)) 



 
Step 4: Run the classification experiments (Section 4.2, Table 4 and 5) 
 
test_classification <- function (train, test)  
{ 
 model.glm <- glm((post>0) ~ pre + ACD + FOUT_avg + FOUT_max + FOUT_sum + MLOC_avg 
+ MLOC_max + MLOC_sum + NBD_avg + NBD_max + NBD_sum + NOF_avg + NOF_max + NOF_sum + 
NOI + NOM_avg + NOM_max + NOM_sum + NOT + NSF_avg + NSF_max + NSF_sum + NSM_avg + 
NSM_max + NSM_sum + PAR_avg + PAR_max + PAR_sum + + + TLOC + VG_avg + VG_max + VG_sum, 
data=train, family = "binomial") 
 test.prob <- predict(model.glm, test, type="response") 
 test.pred <- test.prob>=0.50 
  
 outcome <- table(factor(test$post>0, levels=c(F,T)), factor(test.pred, le-
vels=c(F,T))) 
 TN <- outcome[1,1] 
 FN <- outcome[2,1] 
 FP <- outcome[1,2] 
 TP <- outcome[2,2] 
 precision <- if (TP + FP ==0) { 1 } else { TP / (TP + FP) } 
 recall <- TP / (TP + FN) 
 accuracy <- (TP + TN) / (TN + FN + FP + TP) 
 defects <- (TP + FN) / (TN + FN + FP + TP) 
 return (c(defects, precision, recall, accuracy)) 
} 
 
test_classification_pkg <- function (train, test)  
{ 
 model.glm <- glm((post>0) ~ pre + ACD_avg + ACD_max + ACD_sum + FOUT_avg + 
FOUT_max + FOUT_sum + MLOC_avg + MLOC_max + MLOC_sum + NBD_avg + NBD_max + NBD_sum + 
NOCU + NOF_avg + NOF_max + NOF_sum + NOI_avg + NOI_max + NOI_sum + NOM_avg + NOM_max + 
NOM_sum + NOT_avg + NOT_max + NOT_sum + NSF_avg + NSF_max + NSF_sum + NSM_avg + 
NSM_max + NSM_sum + PAR_avg + PAR_max + PAR_sum + TLOC_avg + TLOC_max + TLOC_sum + 
VG_avg + VG_max + VG_sum, data=train, family = "binomial") 
 test.prob <- predict(model.glm, test, type="response") 
 test.pred <- test.prob>=0.50 
  
 outcome <- table(factor(test$post>0, levels=c(F,T)), factor(test.pred, le-
vels=c(F,T))) 
 TN <- outcome[1,1] 
 FN <- outcome[2,1] 
 FP <- outcome[1,2] 
 TP <- outcome[2,2] 
 precision <- if (TP + FP ==0) { 1 } else { TP / (TP + FP) } 
 recall <- TP / (TP + FN) 
 accuracy <- (TP + TN) / (TN + FN + FP + TP) 
 defects <- (TP + FN) / (TN + FN + FP + TP) 
 return (c(defects, precision, recall, accuracy)) 
} 
 
 
test_classification(files_20, files_20) 
test_classification(files_20, files_21) 
test_classification(files_20, files_30) 
test_classification(files_21, files_20) 
test_classification(files_21, files_21) 
test_classification(files_21, files_30) 
test_classification(files_30, files_20) 
test_classification(files_30, files_21) 
test_classification(files_30, files_30) 
 



test_classification_pkg(packages_20, packages_20) 
test_classification_pkg(packages_20, packages_21) 
test_classification_pkg(packages_20, packages_30) 
test_classification_pkg(packages_21, packages_20) 
test_classification_pkg(packages_21, packages_21) 
test_classification_pkg(packages_21, packages_30) 
test_classification_pkg(packages_30, packages_20) 
test_classification_pkg(packages_30, packages_21) 
test_classification_pkg(packages_30, packages_30) 
 
Step 5: Run the ranking experiments (Section 4.3, Table 6 and 7) 
 
test_ranking <- function (train, test)  
{ 
 model.lm <- lm(post ~ pre + ACD + FOUT_avg + FOUT_max + FOUT_sum + MLOC_avg + 
MLOC_max + MLOC_sum + NBD_avg + NBD_max + NBD_sum + NOF_avg + NOF_max + NOF_sum + NOI 
+ NOM_avg + NOM_max + NOM_sum + NOT + NSF_avg + NSF_max + NSF_sum + NSM_avg + NSM_max 
+ NSM_sum + PAR_avg + PAR_max + PAR_sum + + + TLOC + VG_avg + VG_max + VG_sum, da-
ta=train) 
 test.pred <- predict(model.lm, test) 
  
 r.squared <- summary(model.lm)$r.squared 
 pearson <- cor(test$post, test.pred, method="pearson") 
 spearman <- cor(test$post, test.pred, method="spearman") 
 pearson.p <- cor.test(test$post, test.pred, method="pearson")$p.value 
 spearman.p <- cor.test(test$post, test.pred, method="spearman", ex-
act=FALSE)$p.value 
  
 return (c(r.squared, pearson, spearman, pearson.p<0.01, spearman.p<0.01)) 
} 
 
test_ranking_pkg <- function (train, test)  
{ 
 model.lm <- lm(post ~ pre + ACD_avg + ACD_max + ACD_sum + FOUT_avg + FOUT_max + 
FOUT_sum + MLOC_avg + MLOC_max + MLOC_sum + NBD_avg + NBD_max + NBD_sum + NOCU + 
NOF_avg + NOF_max + NOF_sum + NOI_avg + NOI_max + NOI_sum + NOM_avg + NOM_max + 
NOM_sum + NOT_avg + NOT_max + NOT_sum + NSF_avg + NSF_max + NSF_sum + NSM_avg + 
NSM_max + NSM_sum + PAR_avg + PAR_max + PAR_sum + TLOC_avg + TLOC_max + TLOC_sum + 
VG_avg + VG_max + VG_sum, data=train) 
 test.pred <- predict(model.lm, test) 
  
 r.squared <- summary(model.lm)$r.squared 
 pearson <- cor(test$post, test.pred, method="pearson") 
 spearman <- cor(test$post, test.pred, method="spearman") 
 pearson.p <- cor.test(test$post, test.pred, method="pearson")$p.value 
 spearman.p <- cor.test(test$post, test.pred, method="spearman", ex-
act=FALSE)$p.value 
  
 return (c(r.squared, pearson, spearman, pearson.p<0.01, spearman.p<0.01)) 
} 
 
 
test_ranking(files_20, files_20) 
test_ranking(files_20, files_21) 
test_ranking(files_20, files_30) 
test_ranking(files_21, files_20) 
test_ranking(files_21, files_21) 
test_ranking(files_21, files_30) 
test_ranking(files_30, files_20) 
test_ranking(files_30, files_21) 
test_ranking(files_30, files_30) 



 
test_ranking_pkg(packages_20, packages_20) 
test_ranking_pkg(packages_20, packages_21) 
test_ranking_pkg(packages_20, packages_30) 
test_ranking_pkg(packages_21, packages_20) 
test_ranking_pkg(packages_21, packages_21) 
test_ranking_pkg(packages_21, packages_30) 
test_ranking_pkg(packages_30, packages_20) 
test_ranking_pkg(packages_30, packages_21) 
test_ranking_pkg(packages_30, packages_30) 
 


