
Predicting Defects for Eclipse
[Revised for Dataset Version 2.0a]

Thomas Zimmermann
Saarland University

tz@acm.org

Rahul Premraj
Saarland University

premraj@cs.uni-sb.de

Andreas Zeller
Saarland University

zeller@acm.org

Abstract

We have mapped defects from the bug database of
Eclipse (one of the largest open-source projects) to
source code locations. The resulting data set lists the
number of pre- and post-release defects for every
package and file in the Eclipse releases 2.0, 2.1, and
3.0. We additionally annotated the data with common
complexity metrics. All data is publicly available and
can serve as a benchmark for defect prediction models.

1. Introduction

Why is it that some programs are more failure-
prone than others? This is one of the central questions
of software engineering. To answer it, we must first
know which programs are more failure-prone than oth-
ers. With this knowledge, we can search for properties
of the program or its development process that com-
monly correlate with defect density; in other words,
once we can measure the effect, we can search for its
causes.

One of the most abundant, widespread, and reliable
sources for failure information is a bug database, list-
ing all the problems that occurred during the software
lifetime. Unfortunately, bug databases frequently do
not directly record how, where, and by whom the prob-
lem in question was fixed. This information is hidden
in the version database, recording all changes to the
software source code.

In recent years, a number of techniques have been
developed to relate bug reports to fixes [3, 6, 17]. Since
we thus can relate bugs to fixes, and fixes to the loca-
tions they apply to, we can easily determine the num-
ber of defects of a component—simply by counting the
applied fixes.

We have conducted such a work on the code base of
the Eclipse programming environment. In particular,
we have computed the mapping of packages and
classes to the number of defects that were reported in
the first six months before and after release. In pre-
vious work, we made our Eclipse bug data set freely

available [15]. For this paper, we extended our data
with common complexity metrics and the counts of
syntactic elements (obtained from abstract syntax
trees). With this new data, many predictor models can
be built out of the box which we demonstrate in this
paper.

We invite readers to use our data for research pur-
poses and to build their own models. We hope that the
public availability of data sets like ours will foster em-
pirical research in software engineering, just like the
public availability of open source programs fostered
research in program analysis.

2. State of the art

Predicting which components are more failure-
prone than others has been addressed by a number of
researchers in the past. This work, discussed below,
used either complexity metrics or historical data to
predict failures.

2.1. Complexity metrics

Typically, research on defect-proneness defines me-
trics to capture the complexity of software and builds
models that relate these metrics to defect-proneness
[4]. Basili et al. [1] were among the first to validate
that OO metrics are useful for predicting defect densi-
ty. Subramanyam and Krishnan [18] presented a sur-
vey on eight more empirical studies, all showing that
OO metrics are significantly associated with defects.
Post-release defects are the defects that actually matter
for the end-users of a program. Only few studies ad-

Project: Eclipse (eclipse.org)
Content: Defect counts (pre- and post-release)

Complexity metrics
Releases: 2.0, 2.1, and 3.0

Level: Packages and files
URL: http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse

More data: Eclipse source code (for archived releases):
http://archive.eclipse.org/eclipse/downloads/

Figure 1. Summary of our data set.

dressed post-release defects so far: Binkley and Schach
[2] developed a coupling dependency metric and
showed that it outperforms several other metrics;
Ohlsson and Alberg [13] investigated a number of me-
trics to predict modules that fail during test or opera-
tion. Schröter et al. [16] showed that design data such
as import relationships also can predict post-release
failures.

The MetriZone project at Microsoft Research inves-
tigates how to make early estimates of software quality
to predict post-release failures. Nagappan and Ball [11]
showed that relative code churn predicts software de-
fect density; (absolute) code churn is the number of
lines added or deleted between versions. Additionally,
Nagappan et al. [12] carried out the largest study on
commercial software so far: Within five Microsoft
projects, they identified metrics that predict post-
release failures and reported how to systematically
build predictors for post-release failures from history.
Nagappan and Ball [10] also showed that the ratio be-
tween the number of dependencies within a component
and the number of dependencies across a component
can predict post-release failures.

2.2. Historical data

Several researchers used historical data without tak-

ing bug databases into account. Khoshgoftaar et al. [9]
classified modules as defect-prone whenever the num-
ber of lines of code added or deleted exceeded a thre-
shold. Graves et al. [7] used the sum of contributions to
a module in its history to predict defect density. Os-
trand et al. [14] used historical data from up to 17 re-
leases to predict the files with the highest defect densi-
ty in the next release. Hudepohl et al. [8] predicted
whether a module would be defect-prone by combining

metrics and historical data. From several software me-
trics, Denaro et al. [5] learned logistic regression mod-
els for Apache 1.3 and verified them against Apache
2.0.

3. Eclipse data set

This section presents details on how we computed the
Eclipse bug data set and a description of its contents.
Additionally, we point out research problems that can
be investigated with our data set.

3.1. Data collection

How do we know which components failed and
which did not? This data can be collected from version
archives like CVS and bug tracking systems like
BUGZILLA in two steps:

1. We identify corrections (or fixes) in version arc-
hives: Within the commit messages, we search
for references to bug reports such as “Fixed
42233” or “bug #23444”. Basically every number
is a potential reference to a bug report; however
such references have a low trust at first. We in-
crease the trust level when a message contains
keywords such as “fixed” or “bug” or matches
patterns like “# and a number”. This approach
was previously used in research [3, 6, 17].

2. We use the bug tracking system to map bug re-
ports to releases. Each bug report contains a field
called “version” that lists the release for which
the bug was reported; however, since the values
of this field may change during the life cycle of a
bug (e.g., when a bug is carried over to the next
release), we only use the first reported release.

Table 1. Metrics in the Eclipse data set.

 Metric File level Package level
methods FOUT Number of method calls (fan out) avg, max, total avg, max, total

 MLOC Method lines of code avg, max, total avg, max, total
 NBD Nested block depth avg, max, total avg, max, total
 PAR Number of parameters avg, max, total avg, max, total
 VG McCabe cyclomatic complexity avg, max, total avg, max, total

classes NOF Number of fields avg, max, total avg, max, total
 NOM Number of methods avg, max, total avg, max, total
 NSF Number of static fields avg, max, total avg, max, total
 NSM Number of static methods avg, max, total avg, max, total

files ACD Number of anonymous type declarations value avg, max, total
 NOI Number of interfaces value avg, max, total
 NOT Number of classes value avg, max, total
 TLOC Total lines of code value avg, max, total

packages NOCU Number of files (compilation units) N/A value

We distinguish two different kinds of defects:
pre-release defects are observed during develop-
ment and testing of a program, while post-release
defects are observed after the program has been
deployed to its users.

Since we know the location of every defect that has
been fixed, it is easy to count the number of defects per
location and release.

For the computation of complexity metrics, we used
the Java parser of Eclipse. We implemented visitors
that compute standard metrics (see Table 1) for me-
thods, classes, and files (compilation units) and aggre-
gators that combine the metric values into single val-
ues for the levels we were interested in (files and pack-
ages). For aggregation we used the average, total, and
maximum values of the metrics; we omitted minimum
values because they are zero in most cases. The source
code metrics were computed on the archived builds of
Eclipse (see the URL in Figure 1). Note that file level
is different from class level since in Java one file can
contain several classes.

3.2. Data description

Our data consists of six files in total—one file for
each level (files, packages) and release (2.0, 2.1, 3.0).
Table 2 summarizes the total number of cases per file.
Each case contains the following information:

 name: The name of the file or package, respec-
tively, to which this case corresponds. It can be
used to identify the source code in the release and
may be needed for additional data collection.

 pre-release defects: The number of non-trivial
defects that were reported in the last six months
before release.

 post-release defects: The number of non-trivial
defects that were reported in the first six months
after release.

 complexity metrics: We computed for each case
several complexity metrics (see Table 1). Metrics
that are computed for classes or methods are ag-
gregate by using average (avg), maximum (max),
and accumulation (sum) to file and package level.

 structure of abstract syntax tree(s): For each
case, we list the size (=number of nodes) of the
abstract syntax tree(s) of the file or package, re-
spectively. Abstract syntax trees also consist of
different types of nodes (see Figure 2). In addi-
tion to size, we also list the frequency of each of
these nodes. These counts allow constructing new
metrics without any additional processing of the
source code.

3.3. Data relevance

The Eclipse bug data set can be used to build and
assess models for defect prediction. Figure 3 shows a
histogram of the number of defects for packages in
Eclipse 3.0. Most packages have no observed defects;
some packages have up to 65 defects reported.

This distribution calls for two interesting research
questions: Which files/packages have defects (a classi-
fication problem)? And which are the files/packages
with the most defects (a ranking problem)? Having
reliable predictions for both supports allocation of re-
sources for quality assurance (such as testing) to parts
of a system that are most defect-prone.

Table 2. Number of cases

 Number of
Release Files Packages

2.0 6729 377
2.1 7888 434
3.0 10593 661

AnnotationTypeDeclaration
AnnotationTypeMemberDeclaration
AnonymousClassDeclaration
ArrayAccess
ArrayCreation
ArrayInitializer
ArrayType
AssertStatement
Assignment
Block
BlockComment
BooleanLiteral
BreakStatement
CastExpression
CatchClause
CharacterLiteral
ClassInstanceCreation
CompilationUnit
ConditionalExpression
ConstructorInvocation
ContinueStatement
DoStatement
EmptyStatement
EnhancedForStatement
EnumConstantDeclaration
EnumDeclaration
ExpressionStatement
FieldAccess
FieldDeclaration
ForStatement
IfStatement
ImportDeclaration
InfixExpression
Initializer
InstanceofExpression
Javadoc
LabeledStatement
LineComment
MarkerAnnotation
MemberRef
MemberValuePair
MethodDeclaration

MethodInvocation
MethodRef
MethodRefParameter
Modifier
NormalAnnotation
NullLiteral
NumberLiteral
PackageDeclaration
ParameterizedType
ParenthesizedExpression
PostfixExpression
PrefixExpression
PrimitiveType
QualifiedName
QualifiedType
ReturnStatement
SimpleName
SimpleType
SingleMemberAnnotation
SingleVariableDeclaration
StringLiteral
SuperConstructorInvocation
SuperFieldAccess
SuperMethodInvocation
SwitchCase
SwitchStatement
SynchronizedStatement
TagElement
TextElement
ThisExpression
ThrowStatement
TryStatement
TypeDeclaration
TypeDeclarationStatement
TypeLiteral
TypeParameter
VariableDeclarationExpression
VariableDeclarationFragment
VariableDeclarationStatement
WhileStatement
WildcardType

Figure 2. Abstract syntax tree nodes.

3.3.1. Classification

Classification tries to predict whether a file or pack-

age will have at least one defect reported. When ap-
plied to all files/packages, the outcome is a classifica-
tion table such as the following:

 Defects are observed.
 True False

Model
predicts
defects.

Positive
True

Positive
(TP)

False
Positive

(FP)
Precision

Negative
False

Negative
(FN)

True
Negative

(TN)



Recall


Accuracy

For assessing the quality of a classification model

we recommend to use precision, recall, and accuracy:

 Precision. The precision relates the number of
true positives (predicted and observed as defect-
prone) to the number of files/packages predicted
as defect-prone.

precision = TP / (TP + FP)

A value close to one is desirable and would mean
that every file/package that was predicted to have
defects actually had defects.

 Recall. The recall relates the number of true posi-
tives (predicted and observed as defect-prone) to
the number of files/packages that actually had de-
fects.

recall = TP / (TP + FN)

A value close to one is best and would mean that
every file/package that had defects observed was
predicted to have defects.

 Accuracy. The accuracy relates the number of
correct classifications (true positives and true
negatives) to the total number of files/packages.

accuracy = (TP + TN) / (TP + TN + FP + FN)

A value of one is best and would mean that the
model classified perfectly, i.e., made not a single
mistake.

In order to interpret these measures correctly, one addi-
tionally needs to know the percentage of files (or pack-
ages) that have defects. Assume that 80% of all files
have defects and a model classifies every file as defect-
prone. In this case, the model has a precision of 80%,
recall of 100%, and accuracy of 80%. Still such a mod-
el is not helpful for classification purposes.

3.3.2. Ranking

Ranking tries to predict an order of files/packages

where the files/packages with most defects come first.
To measure the quality of such a ranking, we recom-
mend using the Spearman correlation.

 Spearman correlation. The Spearman correlation
coefficient measures the correlation between a
predicted and observed ranking. High correlations
and thus a high quality of the predicted ranking
are indicated by values close to 1 and -1: values
of 1 indicate a identical ranking and values of -1
indicate an opposite ranking. Values close to 0
indicate no correlation.

4. Experiments

In this section, we present a few experiments using
the Eclipse bug data set. We do not attempt to give
definite answers for defect prediction, but merely high-
light the potential of bug data when it comes to address
this problem.

4.1. Correlations

At first, we computed the Spearman correlation be-
tween the number of pre-release and post-release
defects and the complexity metrics in the data set. Ta-
ble 3 lists the correlation values for both, file and pack-
age level (release 3.0). Correlations significant at the
0.01 level are marked with (*).

The high correlation value of 0.768 between the
number of pre-release and post-release defects on
package level indicates that the packages having the
most pre-release defects are likely to also have the
most post-release defects and vice versa. This effect is
not as strong on file level (correlation on 0.390).

Most correlations with metrics are positive and sig-
nificant—the more complex a file/package the more
defects it will have. However, on file level only the
accumulated number of method calls (FOUT_sum), the

Figure 3. Histogram of post-release defects.

total lines of code (TLOC_sum), and the closely re-
lated sum of method lines of code (MLOC_sum) have
correlation values above 0.400. This indicates that the
size of files and number of methods calls seems to be a
good indicator for defect-prone files.

On package level, most correlations are above the
0.400 threshold: fan out as measured by the number of
calls in a method (FOUT), lines of code (MLOC and
TLOC) nested block depth (NBD), number of non-
static fields (NOF and NSF) and methods (NOM),
complexity (VG), and the number of files in a package
(NOCU). Most accumulated metrics (_sum) have high-
er correlations values than the averaged metrics. In
many cases the maximum metrics (_max) show corre-
lation values comparable to the accumulated ones. The
number of interfaces (NOI) is the only metric for
which we observe no correlation at all.

Finding a single indicator or predictor for the num-
ber of defects is extremely unlikely. In the next subsec-
tions, we will combine input features by building re-
gression models (linear for ranking, and logistic for
classification).

4.2. Classification

The previous section showed that individual code

metrics correlate with the number of defects. But how
can we use metrics to predict whether a file/package
will have defects? One solution is to build statistical
models that classify files/packages as defect-prone
(has_defects=1) or not (has_defects=0) based on the
values of the code metrics.

We built logistic regression models for the Eclipse
bug data set to predict whether files/packages have
post-release defects. Logistic regression models typi-
cally predict likelihoods (between 0 and 1); when the
predicted likelihood was above 0.5, we classified a
file/package as defect-prone, otherwise as defect-free.
In total we built six models for two levels of granulari-
ty (files, packages) and three releases (2.0, 2.1, 3.0).
We tested the models across releases of Eclipse, but
always on the level they were built from.

Table 4 lists the precision, recall, and accuracy val-
ues for the file level. The recall values are low for all
tests, meaning that only few of the defect-prone files
were correctly identified as defect-prone. However, the
precision values are above 0.500 in all but one cases,
suggesting that there are only few false positives, i.e.,
when a file is classified as defect-prone, this decision is
most likely to be correct. Most of the precision, recall,
and accuracy values remain comparable across releas-
es. This means that a model learned from one release,
say 2.0, can be applied to a later release, say 3.0, with-
out losing too much predictive power (only a decrease
of 0.015 in accuracy).

Table 3. Spearman correlation between pre-
and post-release defects and metrics.

Release 3.0 File level Package level

 pre post pre post

pre 1.000 .390 (*) 1.000 .768 (*)

post .390 (*) 1.000 .768 (*) 1.000

FOUT_avg .313 (*) .242 (*) .258 (*) .266 (*)

FOUT_max .375 (*) .291 (*) .429 (*) .413 (*)

FOUT_sum .400 (*) .319 (*) .537 (*) .523 (*)

MLOC_avg .314 (*) .243 (*) .242 (*) .282 (*)

MLOC_max .380 (*) .293 (*) .429 (*) .455 (*)

MLOC_sum .403 (*) .322 (*) .545 (*) .544 (*)

NBD_avg .303 (*) .237 (*) .241 (*) .280 (*)

NBD_max .368 (*) .290 (*) .487 (*) .508 (*)

NBD_sum .392 (*) .320 (*) .552 (*) .546 (*)

NOF_avg .242 (*) .191 (*) .268 (*) .264 (*)

NOF_max .256 (*) .201 (*) .456 (*) .417 (*)

NOF_sum .260 (*) .204 (*) .507 (*) .480 (*)

NOM_avg .296 (*) .255 (*) .241 (*) .273 (*)

NOM_max .314 (*) .266 (*) .418 (*) .417 (*)

NOM_sum .319 (*) .268 (*) .502 (*) .491 (*)

NSF_avg .174 (*) .162 (*) .256 (*) .216 (*)

NSF_max .186 (*) .170 (*) .397 (*) .354 (*)

NSF_sum .186 (*) .170 (*) .459 (*) .414 (*)

NSM_avg .197 (*) .176 (*) .250 (*) .175 (*)

NSM_max .202 (*) .179 (*) .391 (*) .323 (*)

NSM_sum .202 (*) .179 (*) .448 (*) .371 (*)

PAR_avg .094 (*) .064 (*) .111 (*) .122 (*)

PAR_max .257 (*) .209 (*) .399 (*) .378 (*)

PAR_sum .350 (*) .283 (*) .554 (*) .526 (*)

VG_avg .300 (*) .234 (*) .254 (*) .268 (*)

VG_max .359 (*) .279 (*) .435 (*) .430 (*)

VG_sum .389 (*) .315 (*) .546 (*) .538 (*)

NOCU .514 (*) .461 (*)

ACD .258 (*) .180 (*)

ACD_avg .316 (*) .301 (*)

ACD_max .416 (*) .389 (*)

ACD_sum .442 (*) .414 (*)

NOI -.160 (*) -.129 (*)

NOI_avg -.021 -.037

NOI_max .118 (*) .094

NOI_sum .129 (*) .110 (*)

NOT .160 (*) .129 (*)

NOT_avg .029 .043

NOT_max .190 (*) .174 (*)

NOT_sum .518 (*) .470 (*)

TLOC .421 (*) .333 (*)

TLOC_avg .354 (*) .377 (*)

TLOC_max .527 (*) .505 (*)

TLOC_sum .581 (*) .559 (*)

Correlations significant at the 0.01 level marked with (*).

Table 5 presents the results for the package level.
The results improve substantially; precision values are
now between 0.741 and 0.892, recall values between
0.588 and 0.789. Intuitively, it is easier to predict de-
fect-prone packages, as already one defect-prone file
makes a package defect-prone.

4.3. Ranking

In order to predict the files/packages that have most

post-release defects we used linear regression models.
Using these models we predicted for each file/package
the number of expected post-release defects and com-
pared the resulting ranking to the observed ranking
using Spearman correlation. Again, we built models for
each level (file, package) and release (2.0, 2.1, 3.0) and
tested them across releases.

Table 6 shows the results for file level. In addition
to Spearman, we also list the R2 value of the trained
model and the Pearson correlation. The R2 value meas-
ures the variability in a data set that is accounted for by
a statistical model. In our case only up to 37.4% of
variance are explained by complexity metrics. Pearson
correlation assumes a linear relation between the corre-
lated variables; we report Pearson values only for
completeness. The Spearman correlation values  are
low, reaching 0.398 at most, but positive. Therefore,
files having a higher predicted rank are more likely to
have a high observed rank, too.

The results for package level are listed in Table 7.
The R2 values substantially improve; for release 3.0
86.5% of variability is explained by the linear model.
The Spearman correlation values increase substantially
to up to 0.704. Again the increase in correlation and R2
values demonstrates that it is easier to make predic-
tions for packages than for files. Also, models learned
from earlier releases can be used to predict for future
releases; for instance the model trained from release
2.1 showed a correlation of 0.704 on release 3.0.

5. Conclusions

Where do bugs come from? By mapping failures to
components, our Eclipse bug data set offers the oppor-
tunity to research this question. The experiments in this
paper showed that the combination of complexity me-
trics can predict defects, suggesting that the more com-
plex code it, the more defects it has.

However, our predictions are far from being perfect.
They therefore raise follow-up questions: Are there
better indicators for defects than complexity metrics?
How applicable are models across projects and over
time? How do we integrate prediction models into the
development process?

Table 4. Classification of files.
(Precision P, Recall R, and Accuracy Acc).

Training Testing Defects P R Acc
2.0 2.0 0.145 0.692 0.265 0.876

 2.1 0.108 0.478 0.191 0.890

 3.0 0.148 0.613 0.171 0.861

2.1 2.0 0.145 0.664 0.203 0.870

 2.1 0.108 0.668 0.160 0.900

 3.0 0.148 0.717 0.139 0.864

3.0 2.0 0.145 0.578 0.277 0.866

 2.1 0.108 0.528 0.220 0.894

 3.0 0.148 0.675 0.224 0.869

Table 5. Classification of packages.

(Precision P, Recall R, and Accuracy Acc).

Training Testing Defects P R Acc
2.0 2.0 0.504 0.853 0.763 0.814

 2.1 0.447 0.741 0.634 0.737

 3.0 0.474 0.786 0.588 0.729

2.1 2.0 0.504 0.806 0.700 0.764

 2.1 0.447 0.857 0.742 0.829

 3.0 0.474 0.861 0.674 0.794

3.0 2.0 0.504 0.760 0.784 0.767

 2.1 0.447 0.782 0.758 0.797

 3.0 0.474 0.892 0.789 0.855

Table 6. Ranking files with linear regression.

(Pearson r and Spearman  correlation)

Files Testing
 2.0 2.1 3.0

Training

2.0
R2=0.324

r=0.569
=0.398

r=0.430
=0.286

r=0.544
=0.340

2.1
R2=0.239

r=0.517
=0.377

r=0.489
=0.311

r=0.562
=0.359

3.0
R2=0.374

r=0.518
=0.383

r=0.434
=0.305

r=0.611
=0.362

All correlations are significant at the 0.01 level.

Table 7. Ranking packages with linear regres-
sion. (Pearson r and Spearman  correlation)

Packages Testing
 2.0 2.1 3.0

Training

2.0
R2=0.793

r=0.890
=0.647

r=0.870
=0.492

r=0.733
=0.546

2.1
R2=0.865

r=0.833
=0.641

r=0.930
=0.704

r=0.731
=0.704

3.0
R2=0.779

r=0.727
=0.655

r=0.782
=0.558

r=0.882
=0.691

All correlations are significant at the 0.01 level.

The above questions indicate the potential of future
empirical research based on bug data. To support this
very research, we are happy to make the Eclipse bug
data set publicly available.

Overall, we would like this dataset to become both a
challenge and a benchmark: Which factors in programs
and processes are predictors of future bugs, and which
approach gives the best prediction results? The more
we learn about past mistakes, the better are our chances
to avoid them in the future—and build better software
at lower cost.

For access to the Eclipse bug data set, as well as for
ongoing information on the project, see

http://www.st.cs.uni-sb.de/softevo/

Acknowledgments. Our work on mining software

repositories is funded by Deutsche Forschungsgemein-
schaft, grant Ze 509/1-1. Thomas Zimmermann is addi-
tionally funded by the DFG-Graduiertenkolleg-
Leistungsgarantien für Rechnersysteme. Thanks to
Adrian Schröter for computing the initial version of the
Eclipse bug data set.s

6. References

[1] V. R. Basili, L. C. Briand, and W. L. Melo, " A valida-

tion of object-oriented design metrics as quality indica-
tors " IEEE Transactions on Software Engineering vol.
22, pp. 751-761, 1996.

[2] A. B. Binkley and S. R. Schach, "Validation of the
coupling dependency metric as a predictor of run-time
failures and maintenance measures." in Proceedings of
the International Conference on Software Engineering,
1998, pp. 452-455.

[3] D. Cubranic and G. C. Murphy, "Hipikat: Recommend-
ing pertinent software development artifacts." in 25th
International Conference on Software Engineering
(ICSE), Portland, Oregon, 2003, pp. 408-418.

[4] G. Denaro, S. Morasca, and M. Pezzè, "Deriving mod-
els of software fault-proneness." in Proceedings of the
14th International Conference on Software Engineer-
ing and Knowledge Engineering Ischia, Italy, 2002 pp.
361 - 368.

[5] G. Denaro and M. Pezzè, "An empirical evaluation of
fault-proneness models." in Proceedings of the Interna-
tional Conference on Software Engineering (ICSE
2002), Orlando, Florida, USA, 2002, pp. 241-251.

[6] M. Fischer, M. Pinzger, and H. Gall, "Populating a
release history database from version control and bug
tracking systems." in Proc. International Conference

on Software Maintenance (ICSM 2003), Amsterdam,
Netherlands, 2003.

[7] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy,
"Predicting fault incidence using software change his-
tory." IEEE Transactions on Software Engineering,
vol. 26, 2000.

[8] J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B.
Allen, and J. Mayrand, "Emerald: Software metrics and
models on the desktop." IEEE Software, vol. 13, pp.
56-60, September 1996.

[9] T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi,
and J. McMullan, "Detection of software modules with
high debug code churn in a very large legacy system."
in ISSRE '96: Proceedings of the The Seventh Interna-
tional Symposium on Software Reliability Engineering
(ISSRE '96), Washington, DC, USA, 1996, p. 364.

[10] N. Nagappan and T. Ball, "Explaining failures using
software dependences and churn metrics," Microsoft
Research, Redmond, WA 2006.

[11] N. Nagappan and T. Ball, "Use of relative code churn
measures to predict system defect density." in Proceed-
ings of the International Conference on Software Engi-
neering (ICSE 2005), St. Louis, Missouri, USA, 2005,
pp. 284-292.

[12] N. Nagappan, T. Ball, and A. Zeller, "Mining metrics
to predict component failures." in Proceedings of the
International Conference on Software Engineering
(ICSE 2006), Shanghai, China, 2006.

[13] N. Ohlsson and H. Alberg, "Predicting fault-prone
software modules in telephone switches." IEEE Trans.
Software Eng., vol. 22, pp. 886-894, 1996.

[14] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Predict-
ing the location and number of faults in large software
systems." IEEE Trans. Software Eng., vol. 31, pp. 340-
355, 2005.

[15] A. Schröter, T. Zimmermann, R. Premraj, and A. Zel-
ler, "If your bug database could talk..." in Proceedings
of the 5th International Symposium on Empirical Soft-
ware Engineering. Volume II: Short Papers and Post-
ers, 2006, pp. 18-20.

[16] A. Schröter, T. Zimmermann, and A. Zeller, "Predict-
ing failure-prone components at design time." in Pro-
ceedings of the 5th International Symposium on Empir-
ical Software Engineering (ISESE 2006), Rio de Janei-
ro, Brazil, 2006.

[17] J. Śliwerski, T. Zimmermann, and A. Zeller, "When do
changes induce fixes? On fridays." in Proc. Interna-
tional Workshop on Mining Software Repositories
(MSR), St. Louis, Missouri, U.S., 2005.

[18] R. Subramanyam and M. S. Krishnan, "Empirical anal-
ysis of ck metrics for object-oriented design complexi-
ty: Implications for software defects." IEEE Trans.
Software Eng., vol. 29, pp. 297-310, 2003.

A. Appendix: Replication guide in GNU R

Step 0: Read the files

files_20 <- read.table("eclipse-metrics-files-2.0.csv", header=T, sep=";")
files_21 <- read.table("eclipse-metrics-files-2.1.csv", header=T, sep=";")
files_30 <- read.table("eclipse-metrics-files-3.0.csv", header=T, sep=";")

packages_20 <- read.table("eclipse-metrics-packages-2.0.csv", header=T, sep=";")
packages_21 <- read.table("eclipse-metrics-packages-2.1.csv", header=T, sep=";")
packages_30 <- read.table("eclipse-metrics-packages-3.0.csv", header=T, sep=";")

Step 1: Count the files and packages (Table 2)

nrow(files_20)
nrow(files_21)
nrow(files_30)
nrow(packages_20)
nrow(packages_21)
nrow(packages_30)

Step 2: Build the histogram (Figure 3)

par(mar=c(5, 5, 2, 1) + 0.1)
hist(packages_30$post, freq=T, breaks=100, xlim=c(0,70), axes=F, main="", xlab="Number
of Post-Release Defects (per Package)", ylab="Percentage", col="darkgray")
axis(1)
axis(2, at=c(0,66.1,66.1*2,66.1*3,66.1*4,66.1*5,66.1*6), la-
bels=c("0%","10%","20%","30%","40%","50%","60%"), las=1)

Steep 3: Compute the correlations including significance at 0.01 (Table 3)

Note that the data begins only in column 3 and we therefore have to start the for loop at 3 and use i-2 to access pre.p
and post.p which start with index 1.

pre.p <- rep (-1, 33)
post.p <- rep (-1, 33)
for (i in 3:35) {
 pre.p[i-2] <- cor.test(files_30[,i], files_30$pre, method="spearman", ex-
act=FALSE)$p.value
 post.p[i-2] <- cor.test(files_30[,i], files_30$post, method="spearman", ex-
act=FALSE)$p.value
}

cbind(cor(files_30[,3:35], files_30$pre, method="spearman"), cor(files_30[,3:35],
files_30$post, method="spearman"), (pre.p<0.01), (post.p<0.01))

pre.p <- rep (-1, 42)
post.p <- rep (-1, 42)
for (i in 3:44) {
 pre.p[i-2] <- cor.test(packages_30[,i], packages_30 $pre, method="spearman", ex-
act=FALSE)$p.value
 post.p[i-2] <- cor.test(packages_30[,i], packages_30 $post, method="spearman",
exact=FALSE)$p.value
}

cbind(cor(packages_30[,3:44], packages_30$pre, method="spearman"),
cor(packages_30[,3:44], packages_30$post, method="spearman"), (pre.p<0.01),
(post.p<0.01))

Step 4: Run the classification experiments (Section 4.2, Table 4 and 5)

test_classification <- function (train, test)
{
 model.glm <- glm((post>0) ~ pre + ACD + FOUT_avg + FOUT_max + FOUT_sum + MLOC_avg
+ MLOC_max + MLOC_sum + NBD_avg + NBD_max + NBD_sum + NOF_avg + NOF_max + NOF_sum +
NOI + NOM_avg + NOM_max + NOM_sum + NOT + NSF_avg + NSF_max + NSF_sum + NSM_avg +
NSM_max + NSM_sum + PAR_avg + PAR_max + PAR_sum + + + TLOC + VG_avg + VG_max + VG_sum,
data=train, family = "binomial")
 test.prob <- predict(model.glm, test, type="response")
 test.pred <- test.prob>=0.50

 outcome <- table(factor(test$post>0, levels=c(F,T)), factor(test.pred, le-
vels=c(F,T)))
 TN <- outcome[1,1]
 FN <- outcome[2,1]
 FP <- outcome[1,2]
 TP <- outcome[2,2]
 precision <- if (TP + FP ==0) { 1 } else { TP / (TP + FP) }
 recall <- TP / (TP + FN)
 accuracy <- (TP + TN) / (TN + FN + FP + TP)
 defects <- (TP + FN) / (TN + FN + FP + TP)
 return (c(defects, precision, recall, accuracy))
}

test_classification_pkg <- function (train, test)
{
 model.glm <- glm((post>0) ~ pre + ACD_avg + ACD_max + ACD_sum + FOUT_avg +
FOUT_max + FOUT_sum + MLOC_avg + MLOC_max + MLOC_sum + NBD_avg + NBD_max + NBD_sum +
NOCU + NOF_avg + NOF_max + NOF_sum + NOI_avg + NOI_max + NOI_sum + NOM_avg + NOM_max +
NOM_sum + NOT_avg + NOT_max + NOT_sum + NSF_avg + NSF_max + NSF_sum + NSM_avg +
NSM_max + NSM_sum + PAR_avg + PAR_max + PAR_sum + TLOC_avg + TLOC_max + TLOC_sum +
VG_avg + VG_max + VG_sum, data=train, family = "binomial")
 test.prob <- predict(model.glm, test, type="response")
 test.pred <- test.prob>=0.50

 outcome <- table(factor(test$post>0, levels=c(F,T)), factor(test.pred, le-
vels=c(F,T)))
 TN <- outcome[1,1]
 FN <- outcome[2,1]
 FP <- outcome[1,2]
 TP <- outcome[2,2]
 precision <- if (TP + FP ==0) { 1 } else { TP / (TP + FP) }
 recall <- TP / (TP + FN)
 accuracy <- (TP + TN) / (TN + FN + FP + TP)
 defects <- (TP + FN) / (TN + FN + FP + TP)
 return (c(defects, precision, recall, accuracy))
}

test_classification(files_20, files_20)
test_classification(files_20, files_21)
test_classification(files_20, files_30)
test_classification(files_21, files_20)
test_classification(files_21, files_21)
test_classification(files_21, files_30)
test_classification(files_30, files_20)
test_classification(files_30, files_21)
test_classification(files_30, files_30)

test_classification_pkg(packages_20, packages_20)
test_classification_pkg(packages_20, packages_21)
test_classification_pkg(packages_20, packages_30)
test_classification_pkg(packages_21, packages_20)
test_classification_pkg(packages_21, packages_21)
test_classification_pkg(packages_21, packages_30)
test_classification_pkg(packages_30, packages_20)
test_classification_pkg(packages_30, packages_21)
test_classification_pkg(packages_30, packages_30)

Step 5: Run the ranking experiments (Section 4.3, Table 6 and 7)

test_ranking <- function (train, test)
{
 model.lm <- lm(post ~ pre + ACD + FOUT_avg + FOUT_max + FOUT_sum + MLOC_avg +
MLOC_max + MLOC_sum + NBD_avg + NBD_max + NBD_sum + NOF_avg + NOF_max + NOF_sum + NOI
+ NOM_avg + NOM_max + NOM_sum + NOT + NSF_avg + NSF_max + NSF_sum + NSM_avg + NSM_max
+ NSM_sum + PAR_avg + PAR_max + PAR_sum + + + TLOC + VG_avg + VG_max + VG_sum, da-
ta=train)
 test.pred <- predict(model.lm, test)

 r.squared <- summary(model.lm)$r.squared
 pearson <- cor(test$post, test.pred, method="pearson")
 spearman <- cor(test$post, test.pred, method="spearman")
 pearson.p <- cor.test(test$post, test.pred, method="pearson")$p.value
 spearman.p <- cor.test(test$post, test.pred, method="spearman", ex-
act=FALSE)$p.value

 return (c(r.squared, pearson, spearman, pearson.p<0.01, spearman.p<0.01))
}

test_ranking_pkg <- function (train, test)
{
 model.lm <- lm(post ~ pre + ACD_avg + ACD_max + ACD_sum + FOUT_avg + FOUT_max +
FOUT_sum + MLOC_avg + MLOC_max + MLOC_sum + NBD_avg + NBD_max + NBD_sum + NOCU +
NOF_avg + NOF_max + NOF_sum + NOI_avg + NOI_max + NOI_sum + NOM_avg + NOM_max +
NOM_sum + NOT_avg + NOT_max + NOT_sum + NSF_avg + NSF_max + NSF_sum + NSM_avg +
NSM_max + NSM_sum + PAR_avg + PAR_max + PAR_sum + TLOC_avg + TLOC_max + TLOC_sum +
VG_avg + VG_max + VG_sum, data=train)
 test.pred <- predict(model.lm, test)

 r.squared <- summary(model.lm)$r.squared
 pearson <- cor(test$post, test.pred, method="pearson")
 spearman <- cor(test$post, test.pred, method="spearman")
 pearson.p <- cor.test(test$post, test.pred, method="pearson")$p.value
 spearman.p <- cor.test(test$post, test.pred, method="spearman", ex-
act=FALSE)$p.value

 return (c(r.squared, pearson, spearman, pearson.p<0.01, spearman.p<0.01))
}

test_ranking(files_20, files_20)
test_ranking(files_20, files_21)
test_ranking(files_20, files_30)
test_ranking(files_21, files_20)
test_ranking(files_21, files_21)
test_ranking(files_21, files_30)
test_ranking(files_30, files_20)
test_ranking(files_30, files_21)
test_ranking(files_30, files_30)

test_ranking_pkg(packages_20, packages_20)
test_ranking_pkg(packages_20, packages_21)
test_ranking_pkg(packages_20, packages_30)
test_ranking_pkg(packages_21, packages_20)
test_ranking_pkg(packages_21, packages_21)
test_ranking_pkg(packages_21, packages_30)
test_ranking_pkg(packages_30, packages_20)
test_ranking_pkg(packages_30, packages_21)
test_ranking_pkg(packages_30, packages_30)

