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Abstract—Software defect prediction strives to improve software quality and testing efficiency by constructing predictive classification

models from code attributes to enable a timely identification of fault-prone modules. Several classification models have been

evaluated for this task. However, due to inconsistent findings regarding the superiority of one classifier over another and the

usefulness of metric-based classification in general, more research is needed to improve convergence across studies and further

advance confidence in experimental results. We consider three potential sources for bias: comparing classifiers over one or a small

number of proprietary data sets, relying on accuracy indicators that are conceptually inappropriate for software defect prediction and

cross-study comparisons, and, finally, limited use of statistical testing procedures to secure empirical findings. To remedy these

problems, a framework for comparative software defect prediction experiments is proposed and applied in a large-scale empirical

comparison of 22 classifiers over 10 public domain data sets from the NASA Metrics Data repository. Overall, an appealing degree of

predictive accuracy is observed, which supports the view that metric-based classification is useful. However, our results indicate that

the importance of the particular classification algorithm may be less than previously assumed since no significant performance

differences could be detected among the top 17 classifiers.

Index Terms—Complexity measures, data mining, formal methods, statistical methods, software defect prediction.

Ç

1 INTRODUCTION

THE development of large and complex software systems
is a formidable challenge and activities to support

software development and project management processes
are an important area of research. This paper considers the
task of identifying error prone software modules by means
of metric-based classification, referred to as software defect
prediction. It has been observed that the majority of a
software system’s faults are contained in a small number of
modules [1], [20]. Consequently, a timely identification of
these modules facilitates an efficient allocation of testing
resources and may enable architectural improvements by
suggesting a more rigorous design for high-risk segments
of the system (e.g., [4], [8], [19], [33], [34], [44], [51], [52]).

Classification is a popular approach for software defect
prediction and involves categorizing modules, represented
by a set of software metrics or code attributes, into fault-
prone (fp) and non-fault-prone (nfp) by means of a
classification model derived from data of previous devel-
opment projects [57]. Various types of classifiers have been

applied to this task, including statistical procedures [4],
[28], [47], tree-based methods [24], [30], [43], [53], [58],
neural networks [29], [31], and analogy-based approaches
[15], [23], [32]. However, as noted in [48], [49], [59], results
regarding the superiority of one method over another or the
usefulness of metric-based classification in general are not
always consistent across different studies. Therefore, “we
need to develop more reliable research procedures before we can
have confidence in the conclusion of comparative studies of
software prediction models” [49].

We argue that the size of the study, the way predictive
performance is measured, as well as the type of statistical
test applied to secure conclusions have a major impact on
cross-study comparability and may have produced incon-
sistent findings. In particular, several (especially early)
studies in software defect prediction had to rely upon a
small number of, commonly proprietary, data sets, which
naturally constrains the generalizability of observed results
as well as replication by other researchers (see also [44]).
Furthermore, different accuracy indicators are used across
studies, possibly leading to contradictory results [49],
especially if these are based on the number of misclassified
fp and nfp modules. Finally, statistical hypothesis testing
has only been applied to a very limited extent in the
software defect prediction literature. As indicated in [44],
[49], it is standard practice to derive conclusions without
checking significance.

In order to remedy these problems, we propose a
framework for organizing comparative classification ex-
periments in software defect prediction and conduct a
large-scale benchmark of 22 different classification models
over 10 public-domain data sets from the NASA Metrics
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Data (MDP) repository [10] and the PROMISE repository
[56]. Comparisons are based on the area under the receiver
operating characteristics curve (AUC). As argued later in this
paper, the AUC represents the most informative and
objective indicator of predictive accuracy within a bench-
marking context. Furthermore, we apply state-of-the-art
hypothesis testing methods [12] to validate the statistical
significance of performance differences among different
classification models. Finally, the benchmarking study
assesses the competitive performance of several established
and novel classification models so as to appraise the overall
degree of accuracy that can be achieved with (automated)
software defect prediction today, investigate whether
certain types of classifiers excel, and thereby support the
(pre)selection of candidate models in practical applications.
In this respect, our study can also be seen as a follow-up to
Menzies et al.’s recent paper [44] on defect predictions,
providing additional results as well as suggestions for a
methodological framework.

This paper is organized as follows: Section 2 first
reviews accuracy indicators for classification and discusses
the distinctive merits of receiver operating characteristic
(ROC) analysis, after which statistical testing procedures
for model comparisons are presented. Section 3 is devoted
to the benchmarking experiment and discusses the respec-
tive setup, findings, as well as limitations. Conclusions are
given in Section 4.

2 COMPONENTS OF THE BENCHMARKING

FRAMEWORK

In this section, we present the two major components of our
framework. First, we discuss the difficulties associated with
assessing a classification model in software defect predic-
tion and advocate the use of the AUC to improve cross-
study comparability. Subsequently, the statistical testing
procedures applied within the benchmarking experiment
are introduced.

2.1 Accuracy Indicators for Assessing Binary
Classification Models

The task of (binary) classification can be defined as follows:

Let S ¼ fðxxi; yiÞgNi¼1 be a training data set of N examples,

where xxi 2 <M represents a software module that is

characterized by M software metrics and yi 2 fnfp; fpg
denotes its binary class label. A classification model is a

mapping from instances xx to predicted classes y:

fðxxÞ : <M 7!fnfp; fpg.
Binary classifiers are routinely assessed by counting the

number of correctly predicted modules over hold-out data.
This procedure has four possible outcomes: If a module is
fp and is classified accordingly, it is counted as true
positive (TP); if it is wrongly classified as nfp, it is counted
as false negative (FN). Conversely, an nfp module is
counted as true negative (TN) if it is classified correctly
or as false positive (FP) otherwise. El-Eman et al. describe a
large number of performance indicators which can be
constructed from these four basic figures [15].

A defect prediction model should identify as many
fp modules as possible while avoiding false alarms.

Therefore, classifiers are predominantly evaluated by
means of their TP rate (TPR), also known as sensitivity,
rate of detection, or hit rate, and by their FP rate (FPR) or
false alarm rate (e.g., [24], [32], [44], [67]):

TPR ¼ TP=ðFNþ TPÞ; FPR ¼ FP=ðTNþ FPÞ: ð1Þ

We argue that such error-based metrics, although having
undoubted practical value, are conceptually inappropriate
for empirical comparisons of the competitive performance
of classification algorithms. This is because they are
constructed from a discrete classification of modules into
fp and nfp. Most classifiers do not produce such crisp
classifications but instead produce probability estimates or
confidence scores, which represent the likelihood that a
module belongs to a particular class. Consequently, thresh-
old values have to be defined for converting such
continuous predictions into discrete classifications [17].
The Bayes rule of classification guides the choice of
threshold value: Let pðfpÞ and pðnfpÞ denote the prior
probabilities of fp and nfp modules, respectively. The
objective of software defect classification is to estimate the
a posteriori probability of a module with characteristics xx to
be fp, which we denote by pðy ¼ fpjxxÞ, with analogous
meaning for pðy ¼ nfpjxxÞ. Let CFP denote the cost of
conducting an FP error, i.e., classifying an nfp module
incorrectly as fp, and CFN the cost of an FN error
(misclassifying an fp module). Then, Bayes rule (e.g., [27])
states that modules should be classified as fp if

pðxxjy ¼ fpÞ
pðxxjy ¼ nfpÞ >

pðnfpÞ � CFP
pðfpÞ � CFN

; ð2Þ

whereby pðxxjy ¼ fpÞ and pðxxjy ¼ nfpÞ represent the so-
called class conditional probabilities, which are related to
the a posteriori probabilities via Bayes theorem.

The Bayes optimal threshold, i.e., the right-hand side of
(2), depends on prior probabilities and misclassification
costs or their respective ratios. However, within a bench-
marking context, classifiers should be compared over
several data sets from several different software releases
and/or projects (see also [9], [44], [52]) and it is extremely
unlikely that information on class and cost distributions is
available for every data set. Consequently, the necessary
information to determine meaningful and objective thresh-
old values is usually missing. This problem can be
alleviated by relying on default values or estimating
settings from the data [33]. However, two studies that use
the same classifiers and data sets could easily come to
different conclusions just because different procedures for
determining classification thresholds are employed.
Furthermore, it should be noted that detailing the concrete
strategy for determining thresholds is not a standard
practice in the defect prediction literature. Consequently,
comparing algorithms by means of discrete classifications
leaves considerable room for bias and may cause incon-
sistencies across studies. Our key point is that this risk can
be easily avoided if defect predictors are assessed inde-
pendently from thresholds, i.e., over all possible combina-
tions of misclassification costs and prior probabilities of fp
and nfp modules. ROC analysis is a tool that realizes such
an evaluation.
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The ROC graph is a 2D illustration of TPR on the Y-axis
versus FPR on the X-axis (Fig. 1). An ROC curve is obtained
by varying the classification threshold over all possible
values [17]. Thereby, each ROC curve passes through the
points (0, 0), representing a classifier that always predicts
nfp, and (1, 1), the opposite case [44]. The ideal point is the
upper left corner (0, 1) since such a classifier accurately
identifies all fp modules ðTPR ¼ 1Þ while making no error
ðFPR ¼ 0Þ. Hence, points toward the northwest are prefer-
able, i.e., achieve a high hit rate with low FPR. The
advantages of the ROC analysis are its robustness toward
imbalanced class distributions and to varying and asym-
metric misclassification costs [54]. Therefore, it is particu-
larly well suited for software defect prediction tasks which
naturally exhibit these characteristics [33], [44].

To compare different classifiers, their respective ROC
curves are drawn in ROC space. Fig. 1 provides an example
of three classifiers, C1, C2, and C3. C1 is a dominating
classifier because its ROC curve is always above that of its
competitors, i.e., it achieves a higher TP rate for all FP rates.

As ROC curves of different classifiers may intersect (e.g.,
curves C2 and C3), one often calculates the AUC as a single
scalar measure of expected performance [6]. Higher AUC
values indicate that the classifier is on average more to the
upper left region of the graph.

The AUC has the potential to significantly improve
convergence across empirical experiments in software
defect prediction because it separates predictive perfor-
mance from operating conditions, i.e., class and cost
distributions, and thus represents a general measure of
predictiveness. The importance of such a general indicator
in comparative experiments is reinforced when considering
the discussion following Menzies et al.’s paper [44] about
whether the accuracy of their models is or is not sufficient
for practical applications and whether method A is or is not
better than method B [42], [66]. Furthermore, the AUC has a
clear statistical interpretation: It measures the probability
that a classifier ranks a randomly chosen fp module higher
than a randomly chosen nfp module, which is equivalent to
the Wilcoxon test of ranks [17]. Consequently, any classifier
achieving AUC well above 0.5 is demonstrably effective for
identifying fp modules and gives valuable advice as to

which modules should receive particular attention in
software testing.

2.2 Statistical Comparison of Classification Models

Few reported studies in software defect prediction make
use of statistical inference. For example, analysis of
variance (ANOVA) is applied in [33], [34], [58] to determine
if observed performance differences between candidate
methods are statistically significant. However, as indicated
in [44], [49], the prevailing approach is to derive conclu-
sions solely from empirical results without applying formal
hypothesis tests. As will be shown later, this practice may
be misleading and consequently represents another possi-
ble source for inconsistency across experiments.

In a recent article, Dem�sar reviewed the problem of
benchmarking classifiers and offered valuable guidance on
how to organize such comparisons in a statistically sound
manner [12]. Subsequently, we summarize his recommen-
dations for the comparison of multiple algorithms over
multiple data sets, which we deem most relevant for
software defect prediction.1

The null hypothesis, H0, being tested in this setting is
that all algorithms perform alike. That is, it is assumed that
performance differences observed within an empirical
experiment are just due to random chance. Performance
may be measured by means of an arbitrary accuracy
indicator, e.g., the AUC. Testing the significance of
differences between multiple means, i.e., mean accuracies
across different data sets, is a well-known statistical
problem and ANOVA is specifically designed for this
purpose. However, Dem�sar explicitly discourages the use
of ANOVA for comparing classifiers because it is based on
assumptions that are most likely violated within this setting
[12]. In particular, ANOVA assumes that: 1) Performance
differences are distributed normally, which can be taken for
granted only if the sample size is large, i.e., the algorithms
are compared over many data sets (� 30), 2) all classifiers
exhibit the same variance in predictive performance over
all data sets (homogeneity of variance), and 3) the variance
in performance differences across two classifiers is identical
for all possible pairs of classifiers (sphericity assumption)
[65]. On the one hand, the validity of these assumptions is
difficult to check when the number of samples (i.e., data
sets) is limited. On the other hand, violations, especially
with respect to nonsphericity, have been shown to be
highly detrimental to ANOVA and especially to the
subsequently performed post hoc tests [55]. Consequently,
Dem�sar recommends the Friedman test for classifier
comparisons, which is a nonparametric alternative to
ANOVA and relies on less restrictive assumptions [12].

Friedman’s test is based on ranked performances rather
than actual performance estimates and is therefore less
susceptible to outliers. All classifiers are ranked according
to their performance in ascending order for each data set
and the mean rank of a classifier i, ARi, is computed across
all data sets. With K representing the overall number of
data sets, L the number of classifiers, and rij the rank of
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1. Note that dedicated tests are applicable for comparing only two
classifiers over a single or multiple data sets [12].

Fig. 1. Exemplary ROC curve of three classifiers with dominating

classifier C1.



classifier i on data set j, the test statistic of the Friedman test

is calculated as

�2
F ¼

12K

LðLþ 1Þ
XL

i¼1
AR2

i �
LðLþ 1Þ2

4

" #
;

ARi ¼
1

K

XK

j¼1
rij;

ð3Þ

and is distributed according to the Chi-Square distribution

with L� 1 degrees of freedom [65].
If the value of the test statistic is large enough to reject

the null hypothesis, it may be concluded that performance

differences among classifiers are nonrandom. In this case, a

so-called post hoc test can be applied to detect which

specific classifiers differ significantly. Dem�sar recommends

the test of Nemenyi for this task [12]. For all pairs of

classifiers, it tests the null hypothesis that their respective

mean ranks are equal, which may be rejected if the

difference between their mean ranks exceeds the critical

difference CD:

CD ¼ qa;1;L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þ

12K

r
: ð4Þ

The value qa;1;L is based on the Studentized range statistic

and is tabulated in standard statistical textbooks.2

3 EMPIRICAL EVALUATION OF CANDIDATE

CLASSIFIERS ON NASA MDP DATA

In this section, we describe the setup of the benchmarking

study and elaborate on the experimental design. Subse-

quently, the empirical results are presented in detail,

together with a discussion of possible limitations and

threats to validity.

3.1 Data Set Characteristics

The data used in this study stems from the NASA MDP

repository [10]. Ten software defect prediction data sets are

analyzed, including the eight sets used in [44] as well as

two additional data sets (JM1 and KC1, see also Table 1).

Each data set is comprised of several software modules,

together with their number of faults and characteristic code

attributes. After preprocessing, modules that contain one or

more errors were labeled as fp, whereas error-free modules

were categorized as nfp. Besides LOC counts, the NASA

MDP data sets include several Halstead attributes as well

as McCabe complexity measures. The former estimates

reading complexity by counting operators and operands in

a module, whereas the latter is derived from a module’s

flow graph. The reader is referred to [26], [41], [44] for a

more detailed description of code attributes or the origin of

the MDP data sets. Individual attributes per data set,

together with some general statistics, are given in Table 1.

3.2 Experimental Design

The benchmarking experiment aims at contrasting the
competitive performance of several classification algo-
rithms. To that end, an overall number of 22 classifiers is
selected, which may be grouped into the categories of
statistical approaches, nearest-neighbor methods, neural
networks, support vector machines, tree-based methods,
and ensembles. The selection aims at achieving a balance
between established techniques, such as Naive Bayes,
decision trees, or logistic regression, and novel approaches
that have not yet found widespread usage in defect
prediction (e.g., different variants of support vector
machines, logistic model trees, or random forests). The
classifiers are sketched in Table 2, together with a brief
description of their underlying paradigms. A detailed
description of most methods can be found in general
textbooks like [14], [27]; specific references are given for less
known/novel techniques.

The merit of a particular classifier (in terms of the AUC)
is estimated on a randomly selected hold-out test set (so-
called split-sample setup). More specifically, all data sets
are randomly partitioned into training and test set using
2/3 of the data for model building and 1/3 for performance
estimation. Besides providing an unbiased estimate of a
classifier’s generalization performance, the split-sample
setup offers the advantage of enabling easy replication,
which constitutes an important part of empirical research
[2], [19], [49], [50]. Furthermore, its choice is motivated by
the fact that the split-sample setup is the prevailing
approach to assess predictive accuracy in software defect
prediction [15], [16], [23], [28], [32], [33], [34], [37].

Several classification models exhibit adjustable para-
meters, also termed hyperparameters, which enable an
adaptation of the algorithm to a specific problem. It is
known that a careful tuning of such hyperparameters is
essential to obtain a representative assessment of the
classifier’s potential (see, e.g., [3], [63]). For example, neural
network models require specification of network architec-
ture (number of hidden layers, number of nodes per layer),
whereas a pruning strategy has to be defined for tree-based
classifiers. We adopt a grid-search approach to organize
this model selection step. That is, a set of candidate values
is defined for each hyperparameter and all possible
combinations are evaluated empirically by means of 10-fold
cross validation on the training data. The parameter
combination with maximal cross-validation performance
is retained and a respective classification model is con-
structed on the whole training data set. Since we advocate
using the AUC for classifier comparison, the same metric is
used during model selection to guide the search toward
predictive parameter settings. The respective candidate
values are described in the Appendix to enable a replication
of our experiments.

3.3 Experimental Results

Next, we present the results of the empirical comparison in
terms of the AUC. The last column of Table 3 reports the
mean rank ARi (3) of each classifier over all MDP data sets,
which constitutes the basis of the Friedman test. The
classifier yielding the best AUC for a particular data set is
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highlighted in boldface. Note that all figures are based on

hold-out test data; results on training data are omitted for

brevity.
Most classifiers achieve promising AUC results of 0.7

and more, i.e., rank deficient modules higher than accurate

ones with probability > 70 percent. Overall, this level of

accuracy confirms Menzies et al.’s conclusion that “defect

predictors are demonstrably useful” for identifying fp modules

and guiding the assignment of testing resources [44].

Furthermore, one observes a concentration of novel and/

or sophisticated classifiers like RndFor, LS-SVMs, MLPs,

and Bayesian networks among the best performing algo-

rithms. While, e.g., analogy-based classification is a popular

tool for software defect prediction and has been credited for

its accuracy in several studies (e.g., [15], [23], [32], [34], [38],

[60]), Table 3 seems to suggest that analogy-based

approaches (kNN and K�) are outperformed when com-

pared against these state-of-the-art competitors.
However, to evaluate individual classification models and

verify if some are generally superior to others, it is important

to test whether the differences in AUC are significant. This is

confirmed when conducting the Friedman test: Its p-value
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of 2:1E � 009 indicates that it is very unlikely that the

observed performance differences among classifiers are just

random. Consequently, one may proceed with a post hoc

test to detect which particular classifiers differ significantly.

This is accomplished by applying Nemenyi’s post hoc test

ð� ¼ 0:05Þ, i.e., conducting all pairwise comparisons be-

tween different classifiers and checking which models’

performance differences exceed the critical difference (4).
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The results of the pairwise comparisons are depicted in
Fig. 2, utilizing a modified version of Dem�sar’s significance
diagrams [12]: The diagram plots classifiers against mean
ranks, whereby all methods are sorted according to their
ranks. The line segment to the right of each classifier
represents its corresponding critical difference. That is, the
right end of the line indicates from which mean rank
onward another classifier is outperformed significantly. For
illustrative purposes, this threshold is highlighted with a
vertical dotted line in three cases. The leftmost vertical line
is associated with RndFor. Therefore, all classifiers right to
this line perform significantly worse than RndFor. The
second line separates the MLP-1 classifier from RBF net,
VP, and CART. Hence, these are significantly inferior to
MLP-1 and any better-ranked method. Finally, the third
line indicates that the Bayes net classifier is significantly
better than CART.

The statistical comparison reveals an interesting finding:
Despite noteworthy differences in terms of the AUC among
competing classifiers, all methods—with few exceptions—
do not differ significantly. This result may be explained as
follows: The relationship between the code attributes and

the dependent variable y 2 ffpjnfpg is clearly present but
limited (e.g., AUC � 0:7). This relationship is disclosed by
almost all classifiers and seems to be predominantly linear.
This view is reinforced when considering that relatively
simple classifiers like LP, LogReg, LDA, and especially
L-SVM provide respectable results. These techniques
separate fp and nfp modules by means of a linear decision
function and are consequently restricted to merely account-
ing for linear dependencies among code attributes. In other
words, their competitive performance indicates that the
degree of nonlinearity within the MDP data sets is limited.
Following this reasoning, one may conclude that the choice
of classification modeling technique is less important than
generally assumed and that practitioners are free to choose
from a broad set of candidate models when building defect
predictors.

However, it should be noted that Nemenyi’s test checks
the null hypothesis that two classifiers give equal perfor-
mance. Failing to reject this H0 does not guarantee that it is
true. For example, Nemenyi’s test is unable to reject the null
hypothesis that RndFor and LARS have the same mean
rank. This can mean that the performance differences
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between these two are just due to chance. But, the result

could also be caused by a Type II error: Possibly the

Nemenyi test does not have enough power to detect a

significant difference at � ¼ 0:05. In other words, only

rejecting H0 allows the conclusion that it is very likely (with

probability 1� �) that two classifiers differ significantly.
With the former in mind, a general conclusion that may

be drawn from the benchmarking experiment is that

predictive performance alone does not suffice to appraise

the merit of a classification model and has to be augmented

by other criteria. For example, Vandecruys et al. [64] argue

in favor of comprehensible classifiers and propose an Ant-

Colony optimization based detection system. Similarly,

Menzies et al. point out that their preferred classifier, a

Naive Bayes model, is easy to interpret as well as

computationally efficient [44]. Clearly, computational effi-

ciency and transparency are desirable features of candidate

classifiers and it appears to be a promising area for future

research to formalize these concepts, e.g., by developing a

multidimensional classifier assessment system. Meanwhile,

the results observed here confirm previous findings

regarding the effectiveness of RndFor for software defect

prediction [24] and allow recommending this classifier for

future experiments or practical applications. It is fast to

train and requires only moderate parameter tuning, i.e., it is

robust toward parameter settings. Furthermore, RndFor

naturally assesses the relevance of individual code attri-

butes (see [7]) and thereby provides not just an accurate but

also an understandable model.

3.4 Threats to Validity

When conducting an empirical study, it is important to be
aware of potential threats to the validity of the obtained
results and derived conclusions. A possible source of bias
relates to the data used, e.g., its measurement accuracy and
representativeness if results are to be generalized. Using
public domain data secures the results in so far as that they
can be verified by replication and compared with findings
from previous experiments. Also, several authors have
argued in favor of the appropriateness and representative-
ness of the NASA MDP repository and/or used some of its
data sets for their experiments (e.g., [24], [35], [44], [64],
[67]). Therefore, we are confident that the obtained results
are relevant for the software defect prediction community.

Despite the general suitability of the data, the sampling
procedure might bias results and prevent generalization.
We consider a split-sample setup with randomly selected
test records (1/3 of the available data set). This is a well-
established approach for comparative classification experi-
ments and the size of the MDP data sets seems large
enough to justify this setting. Compared to cross validation
or bootstrapping, the split sample setup saves a consider-
able amount of computation time, which, in turn, can be
invested into model selection to ensure that the classifiers
are well tuned to each data set. It would be interesting to
quantify possible differences between a split-sample setup
and cross-validation/bootstrapping setups by means of
empirical experimentation. However, this step is left for
future research.

The selection of classifiers is another possible source of
bias. Given the variety of available learning algorithms,
there are still others that could have been considered. Our
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selection is guided by the aim of finding a meaningful
balance between established techniques and novel ap-
proaches. We believe that the most important representa-
tives of different domains (statistics, machine learning, and
so forth) are included.

Finally, it should be noted that classification is only a
single step within a multistage data mining process [18].
Especially, data preprocessing or engineering activities
such as the removal of noninformative features or the
discretization of continuous attributes may improve the
performance of some classifiers (see, e.g., [13], [25]). For
example, Menzies et al. report that their Naive Bayes
classifier benefits from feature selection and a log-filter
preprocessor [44]. Such techniques have an undisputed
value. However, a wide range of different algorithms for
feature selection, discretization, scaling, and so forth has
been proposed in the data mining literature. A thorough
assessment of several candidates seems computationally
infeasible when considering a large number of classifiers at
the same time. That is, each added individual preproces-
sing algorithm would multiply the computational effort of
the whole study. Our view is that simple classifiers like
Naive Bayes or decision trees would especially benefit from
additional preprocessing activities (see [13]), whereas
sophisticated techniques are well prepared to cope with,
e.g., large and correlated feature sets through inbuilt
regularization facilities [7], [27], [61]. As our results indicate
that most simple classifiers are already competitive with
more sophisticated approaches, i.e., not significantly infer-
ior, it seems unlikely that preprocessing activities would
alter our overall conclusion that most methods do not differ
significantly in terms of predictive accuracy.

4 CONCLUSIONS

In this paper, we have reported on a large-scale empirical
comparison of 22 classification models over 10 public
domain software development data sets from the NASA
MDP repository. The AUC was recommended as the
primary accuracy indicator for comparative studies in
software defect prediction since it separates predictive
performance from class and cost distributions, which are
project-specific characteristics that may be unknown or
subject to change. Therefore, the AUC-based evaluation has
the potential to significantly improve convergence across
studies. Another contribution along this line was the
discussion and application of statistical testing procedures,
which are particularly appropriate for contrasting classifi-
cation models.

The overall level of predictive accuracy across all
classifiers confirmed the general appropriateness of defect
prediction to identify fp software modules and guide the
assignment of testing resources [44]. In particular, previous
findings regarding the efficacy of RndFor for defect
prediction [24] were confirmed.

However, where the statistical comparison of individual
models is concerned, the major conclusion is that the
predictive accuracy of most methods does not differ
significantly according to a Nemenyi post hoc test
ð� ¼ 0:05Þ. This suggests that the importance of the

classification model may have been overestimated in the
previous research, hence illustrating the relevance of
statistical hypothesis testing. Given that basic models, and
especially linear ones such as LogReg, LP, and LDA, give
similar results to more sophisticated classifiers, it is evident
that most data sets are fairly well linearly separable. In
other words, simple classifiers suffice to model the relation-
ship between static code attributes and software defect.

Consequently, the assessment and selection of a classi-
fication model should not be based on predictive accuracy
alone but should be comprised of several additional criteria
like computational efficiency, ease of use, and especially
comprehensibility. Comprehensible models reveal the
nature of detected relationships and help improve our
overall understanding of software failures and their
sources, which, in turn, may enable the development of
novel predictors of fault-proneness. In fact, efforts to design
new software metrics and other explanatory variables
appear to be a particularly promising area for future
research and have the potential to achieve general accuracy
improvements across all types of classifiers. We hope that
the proposed framework will offer valuable guidance for
appraising the potential of respective advancements.

APPENDIX

MODEL SELECTION METHODOLOGY

This section reports hyperparameter settings that have been
considered for individual classifiers during model selec-
tion. These settings may be useful for other researchers
when trying to replicate the results observed within this
study. It should be noted that, since a hold-out test set of
1/3 is randomly selected and removed from the overall
data set, we employ 10-fold cross validation during model
selection to assess individual candidate hyperparameter
settings, to avoid bias because of a small training sample.
The overall experimental setup has been motivated in
Section 3.2 and is summarized in Fig. 3.

In general, most statistical classifiers do not require
additional model selection and are estimated directly from
the training data. This approach has been adopted for
LARS, NB, and RVM. However, some methods (LDA,
QDA, and LogReg) suffer from correlations among the
attributes and require additional feature selection to
produce a valid classification model. Consequently, model
selection for these classifiers consists of identifying a
suitable set of attributes by means of a backward feature-
elimination heuristic [25].

The BayesNet classifier is a directed acyclic graph that
represents the joint probability distribution of code attri-
butes and target variable, i.e., each node in the graph
represents an attribute and each arc represents a correlation
or dependency. Thus, learning a BayesNet can be con-
sidered an optimization problem where a quality measure
of the network structure has to be maximized. Therefore,
different search techniques (K2, simulated annealing, tabu
search, hill climbing, tree augmented Naive Bayes) im-
plemented in the YALE machine learning workbench [45]
have been evaluated.
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The K� classifier does not require model selection and
the number of neighbors has been varied in the range
½1; 3; 5; . . . ; 15� for k-NN.

Model selection for neural networks requires defining
the number of hidden layers as well as nodes per layer. A
single hidden layer of ½4; 5; . . . ; 28� nodes has been
considered for MLP networks whereby each individual
architecture is assessed with different weight decay
parameters of 0.1 and 0.2 to limit the influence of
noninformative features [5]. In addition, a Bayesian learn-
ing paradigm toward neural network construction (MLP-2)
has been appraised [39]. Finally, the number of cluster
centers per class has been varied from 1 to 10 for RBFnet.

The major degrees of freedom of an SVM-type model are
the kernel function as well as a regularization parameter,
commonly denoted by C. A radial basis function kernel has
been considered for SVM and LS-SVM, which is the most
popular choice in the literature. Consequently, the width of
the kernel function and C have been tuned by means of a
multilevel grid search with exponentially refined para-
meter grids to achieve a broad coverage of the parameter
space as well as an intensive exploration of promising
regions [63]. L-SVM is a linear classifier without kernel
function and requires tuning of the regularization para-
meter. A range from logðCÞ ¼ ½�6;�5; . . . ; 20� has been
evaluated. The LP classifier exhibits no additional para-
meters and does not require model selection, whereas VP
incorporates a polynomial kernel function for which degree
has to be determined. Values of 1 to 6 have been studied.

Model selection for C4.5 and CART involves deciding
upon a pruning strategy. We have considered unpruned
trees as well as pruned trees with varying confidence level
ð0:05; 0:1; . . . ; 0:7Þ, each time with and without Laplacian
smoothing [46] and subtree raising. The ADTree classifier is

trained by a boosting-based algorithm offering the number
of iterations as tuning parameter. Following [21], settings of
10 to 50 iterations have been evaluated.

With respect to ensemble classifiers, LMT generally
requires determination of the number of boosting itera-
tions. However, it has been reported that this setting is
irrelevant if the final classifier is augmented by pruning
[36]. Consequently, we have used the default pruning
strategy with an overall number of 100 boosting iterations.
Two hyperparameters have been considered for RndFor,
namely, the number of trees as well as the number of
attributes used to grow each individual tree. A range of
[10, 50, 100, 250, 500, 1,000] trees has been assessed, as well
as three different settings for the number of randomly
selected attributes per tree ½0:5; 1; 2� �

ffiffiffiffiffi
M
p� �

, whereby M
denotes the number of attributes within the respective data
set (see also [7]).
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