
Effort-Aware Defect Prediction Models

Thilo Mende, Rainer Koschke
Fachbereich Mathematik und Informatik

University of Bremen
Bremen, Germany

{tmende,koschke}@informatik.uni-bremen.de

Abstract—Defect Prediction Models aim at identifying error-
prone modules of a software system to guide quality assurance
activities such as tests or code reviews. Such models have been
actively researched for more than a decade, with more than
100 published research papers.

However, most of the models proposed so far have assumed
that the cost of applying quality assurance activities is the same
for each module. In a recent paper, we have shown that this
fact can be exploited by a trivial classifier ordering files just
by their size: such a classifier performs surprisingly good, at
least when effort is ignored during the evaluation. When effort
is considered, many classifiers perform not significantly better
than a random selection of modules.

In this paper, we compare two different strategies to include
treatment effort into the prediction process, and evaluate
the predictive power of such models. Both models perform
significantly better when the evaluation measure takes the effort
into account.

Keywords-Defect Prediction Models, Evaluation, Cost-
Benefits.

I. INTRODUCTION

Quality assurance activities, such as tests or code reviews,
are an expensive, but vital part of the software development
process. Any support that makes this phase more effective
may thus improve software quality or reduce development
costs. It has been observed that the distribution of defects
follows a Pareto-principle, that is, that most bugs are located
in only few files [1]. This lead to the development of defect
prediction models, aiming at identifying error-prone parts of
a system so that quality assurance activities can be focused.

This task is often seen as a classification problem with the
goal to label files (or modules) as defective or non-defective.
Since the prediction is most often based on data for files
or modules, the evaluation is then performed at the file or
module level as well.

As pointed out by Turney, different kinds of costs are
associated with such classification models [2]. First, there
are misclassification costs, when a non-defective file is
labeled as defective or vice versa. This type of costs has
already been considered for defect prediction models, e.g.,
by Khoshgoftaar et al. [3] and Jiang et al. [4].

Turney additionally identifies Cost of Intervention, in our
case the costs of additional quality assurance activities. We
refer to this type of cost as effort in the remainder of this

paper. It is safe to assume that the effort is not uniformly
distributed across files, so that some files are more expensive
to test or review than others.

This was also pointed out by Arisholm et al. [5]–[7],
who were interested in defect prediction models to support
unit testing and code reviews. They argue that the costs for
both activities are approximately proportional to the size of
the file. They conclude that defect prediction models should
always be evaluated with the amount of source code relative
to the expected treatment effort in mind, otherwise the
cost-effectiveness of such models are unclear. When defect
prediction models are evaluated solely on the file level, this
aspect is ignored and can be exploited by such a model: We
recently demonstrated that a trivial model ordering files just
by their size performs surprisingly well when evaluated on
the file level. [8]

Therefore, we have to include the notion of effort into
the evaluation. The measure CE introduced by Arisholm
et al. [6] does that by comparing the performance of a
defect prediction model with a random selection of files,
using lines of code as a surrogate measure for effort.
Many classification algorithms that were good according
to traditional performance measures are actually relatively
bad according to CE. [6]–[8] This is not too surprising,
since the algorithms are tuned to optimize one specific
measure, namely misclassification rate, that has only an
indirect influence on CE. It may thus may be possible that
the classifiers would perform better if they were aware of
the changed performance measure.

Contributions. We propose two strategies to include the
notion of effort awareness into defect prediction models and
evaluate these strategies on fifteen publicly available data
sets, twelve from the NASA Metrics Data Program (MDP)1

and three from the Eclipse IDE. Both strategies improve the
cost effectiveness of defect prediction models significantly,
in the statistical and a practical sense.

Overview. The remainder of this paper is organized
as follows: First, we discuss related work in Section II.
Afterwards, in Section III, we describe two strategies to
make defect prediction models effort-aware. Afterwards,
we describe the experimental setup in Section IV, and

1http://mdp.ivv.nasa.gov



present our results on fifteen publicly available data sets in
Section V. Finally, Section VI concludes.

II. RELATED WORK

Predicting defective parts of a software system has been
actively researched for more than a decade. The task can be
seen as a classification problem: The goal is to predict the
outcome of a dependent variable with a classification tech-
nique using several independent variables. The dependent
variable is often a binary classification whether a file or mod-
ule is defective within a certain time frame. Classification
techniques used for defect prediction vary from regression
models to data mining algorithms. Independent variables
include code complexity measures [9], complexity of code
changes [10], object-oriented metrics [11], dependencies
[12], [13], or organizational factors [14].

Instead of directly predicting class labels, many modeling
techniques can be used as probabilistic classifiers [15],
which assign scores to each file. These scores can be used to
build module-order models [16], where modules are ordered
by descending predicted error-proneness. This approach is
attractive in practice, as it enables project managers to select
a fixed percentage of files (determined by the available
budget) for further treatment. Such a model is, for instance,
used by Ostrand et al. [17]: they select 20 % of the files
for further treatment and thereby identify up to 84 % of the
defects, if the QA activity were perfect.

Module-order models are also used by Arisholm et al. [5],
[6], however, they point out that the comparison of defects
identified in n % of the files may be misleading. They assume
that treatment effort is roughly proportional to the size of a
file, and thus the percentage of defects found in n % percent
of the files should be compared to the relative amount
of source code contained in these files, since a random
selection of m % of the source code is able to identify
m % of the defects. We confirmed this recently by showing
how effective a trivial model — ordering files just by the
size — is, at least when evaluated on the file level. [8],
[18] Arisholm et al. proposed a performance measure for
classifiers taking the effort into account, which is described
in detail in Section IV.

If effort is related to lines of code, predicting defect densi-
ties is one way to make effort-aware predictions, as we will
see in Section III. Only a few studies so far have predicted
defect densities: Knab et al. [19] predict discretized defect
densities using decision trees, while Nagappan and Ball
build regression models to directly predict defect densities
[20], [21]. However, neither of them evaluated the influence
on the treatment effort. Ostrand et al. [17] also predict defect
density, and evaluate their prediction for one specific cutoff.
They conclude that a prediction using defect densities is
able to find more defects in a fixed percentage of code, but
argue that testing costs are, at least for system tests, not
related to the size of a file. In this paper, we replicate their

experiment and conduct a more thorough analysis over all
possible cutoff values.

Two recent papers specifically address the evaluation of
defect prediction models and are particularly important in
the following. Both compare different classifiers on data
sets from the NASA MDP repository. The methodology
to compare classifiers in both of them is based on work
by Demšar [22]: He describes a set of non-parametric
hypothesis tests to compare the performance of two or more
classifiers over multiple data sets. Demšar’s approach is
described in Section IV.

Lessmann et al. [23] identify the need for a common
evaluation framework for defect prediction models. They
propose to use Area under the ROC curve (AUC) — a
representation of a classifier’s performance independent of
thresholds — to assess the performance of prediction mod-
els, and to use the process described by Demšar to compare
the performance of different classification algorithms. They
conclude that sophisticated data mining techniques, such
as Random Forests, are performing best, although many
simpler algorithms are not significantly worse.

Jiang et al. [24] evaluate different classification techniques
on eight data sets from the NASA MDP. They compare
several performance measures, among them AUC and lift
charts, and conclude that different performance measures are
suitable for different application scenarios, that is, advocate
the choice of different classification techniques for different
data sets. In a subsequent study, they explore the perfor-
mance of defect prediction models from the perspective of
misclassification costs, that is, the ratio of costs for false
positives to the costs of false negatives [25]. They conclude
that different misclassification costs have a huge impact on
the selection of appropriate prediction models, but also point
out that they assume the same misclassification costs for
each module, which might be unreasonable in practice.

III. MAKING EFFORT-AWARE PREDICTIONS

The goal of a defect prediction model is to determine
modules for further quality assurance activities. As described
in the previous section, module-order models as defined by
Khoshgoftaar et al. [26] are most useful for this purpose.
Such a model assigns a score R(x) to each module rep-
resenting the predicted risk, i.e., relative error-proneness.
This score is then used to order modules, and the QA team
can select the modules with the highest score (representing
highest risk) for further treatment, such as code reviews or
unit tests.

The effort for this treatment depends on the type of
treatment. Even though it may be hard to quantify, the
assumption that treatment effort is the same for each file
is unreasonable. Arisholm et al. [7] prososed an effort-
aware performance measure for defect prediction models and
showed that many models which are quite good according to
confusion-matrix based metrics are in fact not cost-effective,



or offer only small cost-benefits when evaluated with an
effort-aware performance measure.

One reason for this may be that the classifiers did not
know about the changed evaluation criteria, i.e. are not
cost-sensitive. In the following, we present two ways to
incorporate treatment effort into a module-order model, and
evaluate both ways in Section V.

Cost-sensitive learning has been identified as an impor-
tant research topic in the machine learning community,
foundations are summarized by Elkan [27]. Most of the
resulting learning algorithms are based on misclassification
costs depending only on the class of an object, in our case
whether a file is defective or not. However, the costs of a
false positive, labeling a file as defective when it is in fact
not defective, vary from object to object. There are only
few learning algorithms that take such example-dependent
costs directly into account, and none of them is available in
off-the-shelf data mining toolkits.

A naı̈ve approach is to adjust the predicted risk R(x) of
a module by its relative treatment effort E(x)

Emax
as follows (let

E(x) be the effort required to treat a module and Emax be
the maximum effort among all modules within a project):

Radj (x) = R(x) · RAF

RAF =
(
1− E(x)

Emax

)
where RAF is a risk adjustment factor sensitive to the

treatment effort. If we rank modules according to Radj (x),
we want high-risk modules with less treatment effort—the
low-hanging fruits—to appear at the top to spend the effort
most cost-effective. Consequently, the role of the term 1 −
E(x)
Emax

is to rate less costly modules higher than more costly
modules.

One disadvantage of Radj (x) is that it does not take the
distribution of defects relative to the effort into account. If
the modelling technique used is able to perform regression,
i.e., predict numerical values instead of just class labels, we
can use the MetaCost [28] approach and directly predict the
relative risk Rdd(x), which is in our case

Rdd(x) =
#errors(x )

E (x )

where #errors(x ) is the number of errors in module x
and E(x) is defined as above. If lines of code is used as
a proxy for effort, this is equivalent to predicting defect-
density.

Both strategies consider only costs associated with false
positives and ignore the costs of false negative predictions.
The costs of false negatives appear as damages caused by
faults in the field experienced by the user. The above two
rankings are based solely on the budget available for testing.
If not all errors cause the same damage costs, a test engineer
can first use a risk-based testing strategy prioritizing the

modules to be tested based on likelihood and impact of
failure. This results in a partitioning of modules according
to their risks of damages. Then our technique can be used
to steer testing effort for modules at the same level of risk.
Because these damages are not known to us in our case
studies, we cannot take them into account in the evaluation.

In the following, we compare both strategies with a
regular classification algorithm using the experimental setup
described in the next section. But first of all, we have to
define a way to quantify treatment effort. Defect prediction
models can be used to support different quality assurance
activities, partly depending on the granularity of their pre-
dictions. File-based predictions are useful for unit testing
and code reviews, while other activities may require coarser
predictions, e.g. based on subsystems [29]. In this paper, we
use file-based predictions and thus focus on the effort for
unit testing and code reviews. For the latter, the effort is
probably approximately proportional to the size, as pointed
out by Arisholm et al. [5], [6].

Hence, we could use lines of code. An alternative is Mc-
Cabe’s cyclomatic complexity. McCabe’s cyclomatic com-
plexity [30] is a lower bound for the number of linear
independent paths through a program, and an upper bound
for the number of test cases required to achieve complete
branch coverage. It can thus serve as a proxy for unit-test
effort. The cyclomatic complexity has often been criticized,
especially because of its strong correlation to lines of code,
making it more of a size measure than a complexity measure.
This, however, is desirable to quantify testing effort, as
shown by Bruntink et al. [31], [32]. They investigate the
relationship between static code metrics and the effort for
unit tests, and also conclude that the size of a module has
a large influence on the testing effort.

To summarize, even though cyclomatic complexity is not
a direct measure of testing effort, we argue that it is a better
proxy for effort in case of unit testing and code reviews
than assuming equal treatment costs — and thus use it to
approximate effort in the following. Another advantage of
this measure is that it is available for publicly available data
sets, thus enabling independent reproduction of our results.

IV. EXPERIMENTAL SETUP

We assume that the inclusion of effort-awareness into
defect prediction models improve their performance, and
investigate this hypothesis with a comparison of three pre-
diction models on 15 publicly available data sets.

The experimental setup closely follows Lessmann et
al. [23] and Jiang et al. [24] in the selection of data sets
and evaluation methodology.

Datasets: We use fifteen data sets from the PROMISE
repository2 shown in Figure 1. This includes 12 data sets
from the NASA MDP, representing the union of data sets

2http://promisedata.org



Name Nr. of Modules % Defective
kc1 2107 0.15
kc3 458 0.09
kc4 125 0.49
jm1 10878 0.19
pc1 1107 0.07
pc2 5589 0.00
pc3 1563 0.10
pc4 1458 0.12
pc5 17186 0.03
cm1 505 0.10
mc2 161 0.32
mw1 403 0.08
Eclipse 2.0 6729 0.14
Eclipse 2.1 7888 0.11
Eclipse 3.0 10593 0.15

Figure 1. Data sets used for evaluation.

used by Lessmann et al. and Jiang et al.3 A detailed de-
scription of these systems can be found elsewhere [23], [24].
Additionally, we include the file-level data for three versions
of the Eclipse IDE4 provided by Zimmermann et al. [33].
We use all input attributes available for each data set as
independent variables, except module identifiers and metrics
related to error count and density. These attributes include
static code metrics, such as Halstead’s [34] or McCabe’s
[30] complexity measures. The size of each system and the
ratio of defective modules (i.e., modules with at least one
defect) can be found in Figure 1.

Modelling: We use the RandomForest algorithm proposed
by Breiman [35] as our underlying modelling technique.
This algorithm uses a majority voting of 500 decision trees
to generate classification (predicting, often binary, class
labels) or regression (predicting numerical values) results.
The algorithm offers good out-of-the-box performance and
has performed very good in different defect prediction
benchmarks, e.g., by Lessmann et al. [23]. We use the R
[36] package RandomForest [37] for all our experiments.

We use RandomForests for three different models: First,
to predict defective files without any effort-awareness, which
we refer to as RF. Second, a model to predict Radj using
the predictions of RF is abbreviated as AD, and third, a
model predicting Rdd as DD. RF is a binary prediction, i.e.,
the dependent variable is a binary one encoding whether a
module has either none or at least one defect. DD is based
on defect density and, thus, the only classifier (indirectly)
seeing the number of defects in each module during training.
We investigated whether the performance of RF is better or
worse when the number of defects is predicted instead of
the binary class label. When an effort-sensitive evaluation

3Dataset kc2 was excluded, since there is no version with error count
available at the Promise repository.

4http://eclipse.org

measure is used, the performance is either almost the same
or much worse on almost all data sets, so we use RF for
binary classification.

Performance Measures: Appropriate performance mea-
sures for defect prediction models are a long debated topic,
since each measure captures only certain aspects [7], [24],
[38], [39]. We have used the following criteria to select
appropriate measures for our comparison:

1) The measure should be sensitive to the treatment
effort.

2) The measure should be a single scalar value to make
comparisons between different classifiers on the same
data set feasible.

3) The measure should be easily interpretable from a
practical perspective, i.e., it should reflect the benefit
one could get by using a defect prediction model.

4) The measure should be independent of thresholds, i.e.,
represent all possible budgets available for treatment.

Unfortunately, requirement 3 and 4 are contradictory. We
therefore decided to evaluate two aspects separately: the
practical cost-benefits for one specific cutoff are discussed
in Section V-A, while a cutoff-independent measure is used
in Section V-B.

It is generally accepted that the most important aspect of
a defect prediction model is to determine what percentage of
defects could actually be found by the QA activities using
the prediction model. Therefore, one generally uses recall,
i.e., the percentage of defective modules that are detected,
out of all defective modules. A slight variation of this is to
use the defect detection rate (ddr), which measures the ratio
of number of detected defects compared to the total amount
of defects. We prefer ddr over recall, since it better captures
the cost-effectiveness of a model.

The values for ddr depends on a cut-off value, for an
ordering model, this means the relative effort one would be
able to spend for additional QA activities. The distribution
for a prediction model can then be depicted in a cumulative
lift-chart, as exemplified in Figure 2, where the ddr value
associated with 20 % of the code is, for this prediction
model, around 40 %.

However, by flagging all modules as defective, it is
easy to get recall or ddr of 1, so we have to take the
number of false positives—i.e., modules that are flagged
as defective but actually are non-defective—into account.
Measuring false positives is a more controversial topic [38],
[39]. Either one uses precision, which determines the ratio
of actually defective files compared to the number of files
flagged as defective, or we can use the false-positive ratio
(fpr) denoting the percentage of non-defective files flagged
as defective. The main problem of fpr is that, when the
data set is very imbalanced, that is, there are much more
non-defective files than defective ones, a low fpr may be
misleading, since the amount of false positives in the files



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Effort

D
e

fe
ct

s

Optimal Model
Prediction Model

CE

ddr

Figure 2. Example for the calculation of ddr and CE

flagged as defective is overwhelming. We therefore prefer
precision over fpr.

In the following, we use mainly ddr at a fixed percentage
of effort to evaluate the cost-effectiveness of a model. By
selecting a fixed percentage of code, an unreasonably high
ddr with an unacceptable high amount of false positives
is mitigated. Using ddr in this way has the advantage of
having a single scalar value that can be used to compare
classifiers. However, in Section V-A, we also provide and
analyze precision and recall for the selected cutoff to enable
a comparison with earlier studies.

The selection of a fixed cutoff value for the effort, in our
case 20 %, is somewhat arbitrary but allows a comparison
with earlier studies, in which this value was chosen. To
compare different models over the whole range of possible
cutoff values, we use the measure Cost Effectiveness (CE)
introduced by Arisholm et al. [6]. It is defined in a cumu-
lative, effort-based lift-chart as the area below the defect
predictors line, but above a line of slope 1. The line of slope
1 represents the random selection of source lines. This area
is shaded grey in the example in Figure 2.

Evaluation Procedure: We use ten-times ten-fold cross-
validation to train and test all algorithms on all data sets and
average results.

Comparing classifiers by just comparing scalar perfor-
mance measures may be misleading due to inherent variance,
so statistical hypothesis tests are necessary. One approach,
described by Demšar [22], uses non-parametric statistics to
evaluate whether the performance of several classifiers over
multiple data sets is significantly different. This approach is
used by both Lessmann et al. and Jiang et al., so we also
adopt it here.

Demšar uses the Friedman test [40] to check whether the

null hypothesis, namely, that all classifiers perform equal
on the selected data sets, can be rejected. The Friedman
test is a non-parametric statistical test using only relative
rankings, and not performance values directly, thus making
no assumptions on the distribution of performance values. It
can be calculated using the following formulas from Demšar
[22], where k denotes the number of classifiers, N the
number of data sets, and Rj the average rank of classifier j
on all data sets:

χ2
F =

12N
k(k + 1)

∑
j

R2
j −

k(k + 1)2

4


and

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

FF is distributed according to the F-Distribution with k−1
and (k−1)(N−1) degrees of freedom. Once computed, we
can check FF against critical values for the F-Distribution
and then accept or reject the null hypothesis.

When the Friedman test rejects the null hypothesis, we
can use the Nemenyi post-hoc test to check whether the
performance of two classifiers is significantly different. The
test uses the average ranks of each classifier and checks
for each pair of classifiers whether the difference between
their ranks is greater than the critical difference CD =

qα

√
k(k+1)

6N , where k and N are the same as above, and
qα is a critical value depending on the number of classifiers
and the significance level α. For our setup with k = 3 and
α = 0.05, q0.05 = 3.34.

We use Lessmann et al.’s [23] modified version of
Demšar’s significance diagrams to depict the results of
Nemenyi’s post-hoc test: For each classifier on the y-axis,
the average rank is plotted on the x-axis, together with a
line segment whose length encodes CD. All classifiers that
do not overlap in this plot perform significantly different.

V. EVALUATION

The evaluation of defect prediction models is, as already
mentioned, a difficult tasks. In this section, we evaluate our
results from two different perspectives: First, in Section V-A,
we investigate the practical usability of our models. After-
wards, in Section V-B, we compare the different models
from a statistical perspective. A discussion of our results
follows in Section V-C, and threats to validity are discussed
in Section V-D.

A. Effort Reduction

In this section, we assume that an organization has a fixed
budget for QA activities and wants to spend this as cost-
effective as possible, i.e., find as many bugs as possible.
Since QA is expensive, the budget is typically not sufficient
to investigate the whole code base, but only a fraction of it.



RF AD DD Optimal
kc1 0.32 0.37 0.45 0.92
kc3 0.34 0.47 0.50 0.98
kc4 0.32 0.39 0.51 0.76
jm1 0.24 0.27 0.42 0.88
pc1 0.59 0.61 0.69 1.00
pc2 0.66 0.69 0.69 1.00
pc3 0.50 0.52 0.51 1.00
pc4 0.85 0.88 0.84 1.00
pc5 0.44 0.53 0.69 0.98
cm1 0.21 0.34 0.45 1.00
mc2 0.28 0.39 0.49 0.86
mw1 0.40 0.39 0.44 0.99
Eclipse 2.0 0.31 0.36 0.39 0.86
Eclipse 2.1 0.26 0.29 0.37 0.95
Eclipse 3.0 0.27 0.29 0.35 0.87

Figure 3. ddr at 20 % cutoff

We use 20 % in the following investigations, simply because
this number has often been used in the past, e.g., by Ostrand
et al. [17]. Additionally, we expect that this number is a
realistic budget in practice.

By selecting 20 % of the code base at random, we can
assume that our QA activities should be able to find 20 %
of the bugs. This can serve as a baseline, no classifier should
perform worse. On the other hand, if the defects are spread
across files that require more than 20 % of the effort, our
file-based prediction model would not be able to catch all
bugs. In this case, an optimal ordering can serve as the upper
bound.

The results for our three models RF, AD and DD and
the optimal model for each data set by selecting 20 % of the
code according to the cyclomatic complexity in terms of ddr
can be found in Figure 3. Additionally, they are plotted in
Figure 4. As we can see, both AD and DD perform better
than RF on ten data sets, and DD performs only for two
data sets worse than AD. On average, AD is able to detect
5.3 % more defects than RF, with a minimum of -1.4 % and
a maximum of 13 %. DD improves, compared to RF, the
prediction by 11.9 % on average, with a minimum of -1.5 %
and a maximum of 24.9 %.

We can thus see that the difference between DD and
RF is large for many data sets, especially when we take
into account that a random selection of source code would
already find 20 % of the defects. For example, for dataset
jm1, RF offers only 4 % advantage over a random selection
of files, while DD is able to identify 22 % additional defects.

For some data sets, DD performs about the same or even
worse than RF, which is surprising to us. We investigate this
issue in Section V-C.

In Figure 5, we provide the results measured in precision
and recall for our three predictors on all data sets. As we
can see (and expect) the results for recall are very similar

to the ones measured with ddr; both AD and DD perform
better on most data sets. However, this comes at a price: the
values for precision are lower on most data sets. Whether
this is acceptable is a tradeoff between bugs not identified
during the treatment and the costs of treatment itself.

B. Statistical Comparison

The selection of a fixed cutoff threshold is obviously
somewhat arbitrary, therefore we compare all classifiers in
a cutoff-independent manner in this section. We use the
performance metric CE [6] explained in Section IV for all
comparisons in this section.

The detailed results of the three classifiers on our data sets
in terms of CE and the average rank of each classifier can
be found in Figure 6. As we can see, both effort-adjusted
classifiers outperform the traditional prediction model RF on
most data sets. This confirms our results from the previous
section, and shows that DD and AD outperform RF not only
for one specific cutoff.

For data sets pc3 and pc4, the CE values of RF are very
close to or better than the ones of AD and DD which we
already observed in the previous section. We investigate
these data sets in Section V-C.

We can now test whether the differences between the
three classifiers overall are statistically significant using the
procedure by Demšar: The Friedman test can be calculated
using the formula described above and yields FF = 45.43.
The critical value for the F-Distribution and α = 0.05
with 2 and 28 degrees of freedom is 3.34, so the null
hypothesis that all classifiers perform equally well can be
rejected. Nemenyi’s critical difference can be calculated as
CD = 0.856.

The results of the Nemenyi post-hoc test can be found in
Figure 7. Both effort-aware classifiers perform significantly
better than RF. Although DD is performing better in terms
of CE than AD, the difference is not statistically different,
according to the Nemenyi test.

C. Discussion

As we have seen in Section V-A and Section V-B,
both strategies to incorporate effort perform better than the
regular classifier RF on most data sets. Thus when the
type of treatment and approximate costs associated with it
are known when evaluating a defect prediction model, it
is beneficial to use one of these strategies. On some data
sets, the performance of RF is very close to a random
selection of modules, while DD is able to provide practically
valuable predictions. Nevertheless, on most data sets, the
difference between DD and the optimal prediction is still
large, leaving much room for improvements. Whether this
is feasible, especially when one is restricted to the currently
available metrics, is an open research question.

The difference between RF and DD is much larger than
the difference between RF and AD, both in terms of CE and



dd
r

kc1 kc3 kc4 jm1 pc1 pc2 pc3 pc4 pc5 cm1 mc2 mw1 2.0 2.1 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

RF
AD
DD
Optimal

Figure 4. ddr at 20 % cutoff, the Eclipse data sets are abbreviated by their version number.

RF AD DD
Re. Pr. Re. Pr. Re. Pr.

kc1 0.28 0.63 0.35 0.53 0.44 0.33
kc3 0.31 0.35 0.45 0.38 0.46 0.30
kc4 0.21 0.79 0.41 0.70 0.57 0.59
jm1 0.16 0.68 0.22 0.63 0.43 0.26
pc1 0.53 0.40 0.59 0.31 0.67 0.26
pc2 0.64 0.05 0.67 0.04 0.68 0.03
pc3 0.47 0.40 0.49 0.40 0.54 0.25
pc4 0.81 0.52 0.85 0.51 0.80 0.45
pc5 0.33 0.75 0.43 0.66 0.68 0.32
cm1 0.23 0.23 0.35 0.25 0.46 0.17
mc2 0.20 0.65 0.30 0.51 0.41 0.44
mw1 0.38 0.30 0.40 0.22 0.40 0.18
Eclipse 2.0 0.22 0.83 0.29 0.78 0.38 0.34
Eclipse 2.1 0.19 0.59 0.23 0.52 0.38 0.15
Eclipse 3.0 0.17 0.79 0.22 0.70 0.32 0.20

Figure 5. Recall (Re.) & Precision (Pr.) at 20 % cutoff

ddr. This is ignored by the non-parametric Nemenyi test, but
should be taken into account when choosing a strategy.

However, there are two data sets where the ddr perfor-
mance of RF is very close to or better than AD or DD,
namely pc3 and pc4. First of all, we have to keep in mind
that all data sets are from real-world projects, and for some
of them it is well known that they contain implausible data

RF AD DD
kc1 0.12 0.15 0.19
kc3 0.14 0.17 0.20
kc4 0.02 0.07 0.12
jm1 0.04 0.06 0.17
pc1 0.28 0.28 0.31
pc2 0.32 0.33 0.34
pc3 0.24 0.26 0.24
pc4 0.40 0.41 0.40
pc5 0.28 0.30 0.36
cm1 0.08 0.14 0.19
mc2 0.05 0.10 0.15
mw1 0.15 0.15 0.18
Eclipse 2.0 0.11 0.13 0.16
Eclipse 2.1 0.04 0.06 0.13
Eclipse 3.0 0.04 0.06 0.13
Average Rank 2.93 1.87 1.20

Figure 6. Performance of all classifiers on fifteen data sets measured using
CE and average rank per classifier.

for certain modules.5

When we take a closer look at the pc4 data set, we can
see such problems as well:

• There are 111 modules with a value 0 for lines of code,
and none of them contains an error.

• The two modules with the highest error count (25 and

5A discussion of one such issue, namely missing values for lines of code,
can be found at http://promisedata.org/?p=30.

http://promisedata.org/?p=30


1.0 1.5 2.0 2.5 3.0 3.5

Average Ranking

RF

AD

DD

Figure 7. Nemenyi’s Critical-Difference Diagram for the evaluation using
CE.

9 errors totalling 25 % of the errors) have a cyclomatic
complexity of 1, but the highest and third-highest values
for lines of code. This is either a long list of statements
with high error-proneness, or an error in the data. In
both cases, McCabe is not suitable to approximate the
testing effort, thus we have to use another surrogate
measure, such as lines of code.

When we remove all modules with lines of code of 0
and use lines of code as our surrogate measure for effort,
we get the following results with a 10-times 10-fold cross-
validation:

RF AD DD
ddr 0.69 0.71 0.75
CE 0.34 0.34 0.36

This results in the ordering between the classifiers observed
on most of the other data sets, although the differences
between our three classifiers are still small compared to the
other data sets.

This may be due to the good performance for the five pc
data sets, where all three classifiers offer relatively good
performance in terms of ddr and CE compared to the
remaining data sets. When we take a look at the cumulative
lift chart for pc4 in Figure 8, we can see that all three
classifiers are quite close to a perfect prediction, and thus it
is hard for one classifier to perform much better than one
of the other.6

Even though pc3 is the data set with the worst CE
results among the pc data sets, the performance of all three
classifiers is higher than any other CE value on the non-
pc data sets. This may be an explanation for the similar
performance of RF, AD and DD. However, when we look

6The results shown in Figure 8 and Figure 9 are for one 10-fold cross-
validation run, while the results in Figure 6 are averaged over 10 runs,
which explains the small differences in the performance of classifiers.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Effort

D
e
fe

ct
s

Optimal
RF
AD
DD

Figure 8. Cumulative Lift Chart for three classifiers and the optimal
prediction on pc4.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Effort

D
e
fe

ct
s

Optimal
RF
AD
DD

Figure 9. Cumulative Lift Chart for three classifiers and the optimal
prediction on pc3.

at the lift chart for pc3 in Figure 9, we can see that the
difference between all classifiers and the optimal prediction
is still large. Another possible explanation for the results on
pc3 and pc4 is the following: randomForest is an ensemble
technique, using a voting of several (500 in our case)
decision trees to predict Rdd . When we use rpart, which
is the classifier used by randomForest, to predict Rdd , we
were not able to achieve CE values above 0.0 for data sets
pc3 and pc4, so that we assume that regression seems to be,



at least for rpart, harder on these data sets.7 We did not yet
find a difference in the data sets that might explain this, but
assume that it is at least one of the reasons for the results
on the pc data sets.

D. Threats to Validity

As every empirical study, ours is subject to some threats
to validity. First of all, we cover only a small number of data
sets from two different source, namely, NASA MDP and the
Eclipse project. We cannot necessarily generalize to other
data sets from the current study, since the characteristics of
these data sets may not be representative. Additionally, we
use only one classification algorithm and only static code
metrics in this study. While Random Forest proved to be
effective in the past, other algorithms may lead to different
results. And previous work has shown that information about
the history of files can lead to better defect prediction
models. [33] Such data is not available for all data sets used
in this study, thus an investigation of this aspect, together
with a comparison of different classification algorithms, is
left for future work.

Another threat is the chosen proxy for effort: Cyclomatic
complexity may not be appropriate to measure the true effort
associated with QA activities. On the one hand, this can be
mitigated in future studies where detailed effort estimates for
testing is available. On the other hand, assuming a uniform
effort for all modules is even more unrealistic, and size plays
an important role for testing effort, as shown by Bruntink et
al. [31], [32].

When defect prediction models are used to optimize
activities other than unit testing, such as system tests, a
file-based effort estimation becomes less appropriate. Nev-
ertheless, even for these types of treatment it is safe to
assume that the effort is not uniformly distributed across
the system, although we are not aware of studies relating
file characteristics to testing effort in that case. Additionally,
as pointed out by Leszak [29], a subsystem-based prediction
model may be more appropriate for this usage scenario.

Finally, we have investigated defect data for single re-
leases, or treated the data that way in case of Eclipse. In
reality, for a multi-release software system, unit tests will
accumulate over time, so that an approximation of testing
effort based only on the cyclomatic complexity becomes less
appropriate.

VI. CONCLUSIONS

In this paper, we have presented and evaluated two
strategies to incorporate the treatment effort into defect
prediction models. The first strategy, AD, is applicable to
any probabilistic classifier, while DD is applicable only for
regression algorithms.

7We use the default parameters of rpart, so tuning of parameters might
improve the results.

In our evaluation we have shown that both strategies
improve the predictive performance on fifteen publicly avail-
able data sets, both from a practical and a theoretical point
of view. On some data sets, only our model DD offers a
practically significant improvement over a random selection
of modules.

In future work, we plan to investigate classifiers that
include example-dependent costs, in our case testing effort,
directly into the prediction process, such as the extensions
to support vector machines by Brefeld et al. [41] and
Geibel et al. [42]. Additionally, we want to combine our
notion of effort-awareness with misclassification-cost aware
classifiers. Finally, we are interested in investigating test-cost
metrics applicable to different test scenarios, such as system
or integration tests, to cover a broader usage area for defect
prediction models.

REFERENCES

[1] N. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,” IEEE Transactions on
Software Engineering, vol. 26, no. 8, pp. 797–814, 2000.

[2] P. D. Turney, “Types of cost in inductive concept learning,”
The Computing Research Repository, vol. cs.LG/0212034,
2002.

[3] T. M. Khoshgoftaar and E. B. Allen, “Classification of fault-
prone software modules: Prior probabilities, costs, and model
evaluation,” Empirical Software Engineering, vol. 3, no. 3,
pp. 275–298, 1998.

[4] Y. Jiang and B. Cukic, “Misclassification cost-sensitive fault
prediction models,” in Proc. of the 5th PROMISE. New York,
NY, USA: ACM, 2009, pp. 1–10.

[5] E. Arisholm and L. C. Briand, “Predicting fault-prone com-
ponents in a java legacy system,” in International Symposium
on Empirical Software Engineering. New York, NY, USA:
ACM, 2006, pp. 8–17.

[6] E. Arisholm, L. C. Briand, and M. Fuglerud, “Data mining
techniques for building fault-proneness models in telecom
java software,” in Proc. of the 18th ISSRE. IEEE Press,
2007, pp. 215–224.

[7] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A sys-
tematic and comprehensive investigation of methods to build
and evaluate fault prediction models,” Journal of Systems and
Software, vol. 83, no. 1, pp. 2–17, 2010.

[8] T. Mende and R. Koschke, “Revisiting the evaluation of defect
prediction models,” in Proc. of the 5th PROMISE, 2009.

[9] T. Menzies, J. Greenwald, and A. Frank, “Data mining static
code attributes to learn defect predictors,” IEEE Transactions
on Software Engineering, vol. 33, no. 1, pp. 2–13, 2007.

[10] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proc. of the 31st ICSE. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 78–88.



[11] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation
of object-oriented metrics on open source software for fault
prediction,” IEEE Transactions on Software Engineering,
vol. 31, pp. 897–910, 2005.

[12] T. Zimmermann, N. Nagappan, and A. Zeller, Predicting Bugs
from History. Springer, March 2008, ch. 4, pp. 69–88.

[13] T. Zimmermann and N. Nagappan, “Predicting defects using
network analysis on dependency graphs,” in Proc. of the 30th
ICSE. New York, NY, USA: ACM, 2008, pp. 531–540.

[14] C. Bird, N. Nagappan, P. T. Devanbu, H. Gall, and B. Murphy,
“Does distributed development affect software quality? an
empirical case study of windows vista,” in Proc. of the 31st
ICSE, 2009, pp. 518–528.

[15] T. Fawcett, “An introduction to ROC analysis,” Pattern Recog-
nition Letters, vol. 27, no. 8, pp. 861–874, 2006.

[16] T. M. Khoshgoftaar, B. Cukic, and N. Seliya, “An empir-
ical assessment on program module-order models,” Quality
Technology and Quantitative Management, vol. 4, no. 2, pp.
171–190, 2007.

[17] T. Ostrand, E. Weyuker, and R. Bell, “Predicting the location
and number of faults in large software systems,” IEEE Trans-
actions on Software Engineering, vol. 31, no. 4, pp. 340–355,
2005.

[18] T. Mende, R. Koschke, and M. Leszak, “Evaluating defect
prediction models for a large, evolving software system,” in
Proc. of the 13th CSMR. IEEE Press, 2009, pp. 247–250.

[19] P. Knab, M. Pinzger, and A. Bernstein, “Predicting defect
densities in source code files with decision tree learners,” in
Proc. of the Workshop on Mining software repositories. New
York, NY, USA: ACM, 2006, pp. 119–125.

[20] N. Nagappan and T. Ball, “Use of relative code churn
measures to predict system defect density,” in Proc. of the
27th ICSE, 2005, pp. 284–292.

[21] ——, “Static analysis tools as early indicators of pre-release
defect density,” in Proc. of the 27th ICSE. New York, NY,
USA: ACM, 2005, pp. 580–586.

[22] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine Learning Research, vol. 7, pp.
1–30, 2006.

[23] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Bench-
marking classification models for software defect prediction:
A proposed framework and novel findings,” IEEE Transac-
tions on Software Engineering, vol. 34, no. 4, pp. 485–496,
2008.

[24] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for evaluating
fault prediction models,” Empirical Software Engineering,
vol. 13, no. 5, pp. 561–595, 2008.

[25] Y. Jiang, B. Cukic, and T. Menzies, “Costs curve evaluation
of fault prediction models,” in Proc. of the 19th ISSRE. IEEE
Press, 2008, pp. 197–206.

[26] T. M. Khoshgoftaar and E. B. Allen, “Ordering fault-prone
software modules,” Software Quality Journal, vol. 11, no. 1,
pp. 19–37, 2003.

[27] C. Elkan, “The foundations of cost-sensitive learning,” in
Proceedings of the 17th international joint conference on
artificial intelligence, 2001, pp. 973–978.

[28] P. Domingos, “Metacost: A general method for making
classifiers cost sensitive,” in Proc. of the 5th International
Conference on Knowledge Discovery and Data Mining, 1999,
pp. 155–164.

[29] M. Leszak, “Software defect analysis of a multi-release
telecommunications system,” in Proc. of the 6th International
Conference on Product Focused Software Process Improve-
ment, 2005, pp. 98–114.

[30] T. J. McCabe, “A complexity measure,” IEEE Transactions
on Software Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[31] M. Bruntink and A. van Deursen, “Predicting class testability
using object-oriented metrics,” in Proc. of the 4th IEEE
International Workshop on Source Code Analysis and Ma-
nipulation, 2004, pp. 136–145.

[32] ——, “An empirical study into class testability,” Journal of
Systems and Software, vol. 79, no. 9, pp. 1219–1232, 2006.

[33] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting de-
fects for eclipse,” in Proc. of the 3rd PROMISE, May 2007.

[34] M. H. Halstead, Elements of Software Science. New York,
NY, USA: Elsevier Science Inc., 1977.

[35] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[36] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical Com-
puting, Vienna, Austria, 2008.

[37] A. Liaw and M. Wiener, “Classification and regression by
randomforest,” R News, vol. 2, no. 3, pp. 18–22, 2002.

[38] H. Zhang and X. Zhang, “Comments on ”data mining static
code attributes to learn defect predictors”,” IEEE Transactions
on Software Engineering, vol. 33, no. 9, pp. 635–637, 2007.

[39] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald,
“Problems with precision: A response to ”comments on ’data
mining static code attributes to learn defect predictors’”,”
IEEE Transactions on Software Engineering, vol. 33, no. 9,
pp. 637–640, 2007.

[40] M. Friedman, “The use of ranks to avoid the assumption of
normality implicit in the analysis of variance,” Journal of the
American Statistical Association, vol. 32, pp. 675–701, 1937.

[41] U. Brefeld, P. Geibel, and F. Wysotzki, “Support vector
machines with example dependent costs,” in 14th European
Conference on Machine Learning, 2003, pp. 23–34.

[42] P. Geibel, U. Brefeld, and F. Wysotzki, “Learning linear
classifiers sensitive to example dependent and noisy costs,”
in 5th International Symposium on Intelligent Data Analysis,
2003, pp. 167–178.


	Introduction
	Related Work
	Making Effort-Aware Predictions
	Experimental Setup
	Evaluation
	Effort Reduction
	Statistical Comparison
	Discussion
	Threats to Validity

	Conclusions
	References

