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Abstract. To improve software productivity, when constructing new software
systems, programmers often reuse existing libraries or frameworks by invoking
methods provided in their APIs. Those API methods, however, are often complex
and not well documented. To get familiar with how those API methods are used,
programmers often exploit a source code search tool to search for code snip-
pets that use the API methods of interest. However, the returned code snippets
are often large in number, and the huge number of snippets places a barrier for
programmers to locate useful ones. In order to help programmers overcome this
barrier, we have developed an API usage mining framework and its supporting
tool called MAPO (Mining API usage Pattern from Open source repositories) for
mining API usage patterns automatically. A mined pattern describes that in a cer-
tain usage scenario, some API methods are frequently called together and their
usages follow some sequential rules. MAPO further recommends the mined API
usage patterns and their associated code snippets upon programmers’ requests.
Our experimental results show that with these patterns MAPO helps program-
mers locate useful code snippets more effectively than two state-of-the-art code
search tools. To investigate whether MAPO can assist programmers in program-
ming tasks, we further conducted an empirical study. The results show that using
MAPO, programmers produce code with fewer bugs when facing relatively com-
plex API usages, comparing with using the two state-of-the-art code search tools.

1 Introduction

The modern software industry increasingly relies on third-party libraries and frame-
works provided by companies or open source organizations. Programmers often need
to cope with Application Programming Interfaces (APIs) of these libraries or frame-
works to accomplish their daily work. Unfortunately, most of the API libraries are
complex and difficult to use [30]. Typically, an API library or framework written in
object-oriented languages often provides a large number of classes and methods. For
example, the Eclipse 3.1 platform SDK provides more than 11,000 classes not to say
its large external plug-in projects. Furthermore, API libraries or frameworks provided
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by different companies and organizations follow different styles. As a result, even ex-
perienced programmers may encounter problems when they are to use unfamiliar API
libraries or frameworks.

Due to these issues, programmers often struggle with choosing proper methods pro-
vided by APIs (called API methods) and how to organize the API methods when invok-
ing them together to implement a certain feature. In fact, if the API classes and methods
have meaningful names, it might not be too difficult for the programmers to find use-
ful API methods for a given task. However, it is often difficult for the programmers
to pick out all the essential API methods and to organize these API methods properly
for the task. Some API libraries or frameworks such as the .NET framework are well
documented and have sample snippets, but for many API libraries or frameworks, no
code snippet is provided or the provided code snippets exhibit only one usage. As an
API method may have many usages, the provided usage may not be relevant to the task
at hand. Therefore, the associated documentation of an API library or framework is
insufficient for programmers.

Fortunately, as source files in open source projects contain various API usages, pro-
grammers can access code snippets of plenty of usages using code search engines such
as Google code search [12] or code snippet recommenders such as Strathcona [15].
However, given an API method, as there often exist many code snippets using the
method in various open source projects, it is challenging for existing code search tools
to rank the code snippets by putting the ones with relevant usage at the top of the re-
turned list. As a result, programmers may need to browse through a large number of
code snippets to locate snippets with relevant usage.

At the same time, data mining [13] provides various techniques to mine a large
volume of data into useful patterns. These techniques are potentially useful to help
programmers in locating useful code snippets. In this paper, we propose an API usage
mining framework and its supporting tool called MAPO to mine API usage patterns
from a large number of code snippets. With the mined patterns, MAPO further guides
programmers to locate useful code snippets.

This paper makes the following main contributions:

– Extraction strategy. A code analyzer and a set of strategies to extract API usage
information from code snippets that include usages of API methods.

– Mining technique. A technique to mine API usage patterns from the collected API
usage information, with the application of clustering on the collected API method
call sequences.

– Recommendation mechanism. A user interface to recommend the API usage pat-
terns and their associated code snippets to programmers.

– Experimental study. An experimental study on evaluating MAPO, where we ap-
plied MAPO on 20 open source projects (141K lines of code in total, which use
Eclipse Graphical Editing Framework (GEF) [17]) and acquired 93 patterns, which
include 157 API method call sequences and cover the usages of 856 API meth-
ods. We also compared MAPO with two state-of-the-art code search tools: Strath-
cona [15] and Google code search [12]. The experimental results show that the
patterns mined by MAPO are useful to help programmers locate useful code snip-
pets more effectively than Strathcona and Google code search.



public class DEditorActionContributor … {
public void contributeToMenu(IMenuManager menu) {

super.contributeToMenu(menu);
IMenuManager editMenu = menu.findMenuUsingPath(IWorkbenchActionConstants.M_EDIT);
if(editMenu != null ){

editMenu.add(new Separator());
editMenu.appendToGroup(“additions”, fToggleInsertModeAction);

}}
}
…

}

public class RubyEditorActionContributor … {
public void contributeToMenu(IMenuManager menuManager) {

…
IMenuManager gotoMenu = menu.findMenuUsingPath(“navigate/goTo”);
if(gotoMenu != null ){if(gotoMenu != null ){

gotoMenu.add(new Separator(“additions2”));
gotoMenu.appendToGroup(“additions2”, fGotoMatchingBracket);

}
}
…

}

Fig. 1. Code snippets of “appendToGroup” returned by Google code search

– Empirical study. An empirical study on evaluating MAPO, where we investigated
whether MAPO can assist programmers to complete programming tasks. The re-
sults show that comparing with Strathcona and Google code search, MAPO helps
programmers produce code with fewer bugs when API usages are relatively com-
plex and these usages exist in code repositories.

The rest of the paper is organized as follows. Section 2 presents an example to illus-
trate our approach. Section 3 discusses related work. Section 4 presents our approach.
Sections 5 and 6 describe our experimental study and empirical study, respectively.
Section 7 discusses issues in API usage mining. Section 8 concludes.

2 Example

To compare the effectiveness of locating useful code snippets, we use an example to il-
lustrate the situation when using Google code search [12] to locate some code snippets.
Suppose that we plan to add an action item to the menu of the Eclipse IDE platform.
After browsing Eclipse’s platform API documentation5, we find a potentially relevant
interface IContributionManager based on its description: “A contribution manager
organizes contributions to such UI components as menus, toolbars and status lines”.
By browsing methods defined in this interface, we find one method appendToGroup

potentially relevant based on its description: “Adds a contribution item for the given
action at the end of the group with the given name”. We then use “appendToGroup
lang:java” to query Google code search and it returns 151 code snippets6.

5 http://tinyurl.com/5ltogx
6 We used “appendToGroup lang:java” to query Google code search in January 2008. Note that
given the same key words, Google code search may return different numbers of code snippets
over time possibly due to the growth of Google code search’s crawled repositories. The sit-



public class ContextMenuProviderImpl … {
public void buildContextMenu(IMenuManager manager) {

GEFActionConstants.addStandardActionGroups(manager);
IAction action;
action = actionRegistry.getAction(CreateAttributeAction.ID);
if(action.isEnabled() )

manager.appendToGroup(GEFActionConstants.GROUP_REST, action);
…

}
…

}

public class LatticeContextMenuProvider … {
public void buildContextMenu (IMenuManager manager) {

GEFActionConstants.addStandardActionGroups(manager);
IAction action;
action = actionRegistry getAction(ShowMethodSignatureAction TEXT);action = actionRegistry.getAction(ShowMethodSignatureAction.TEXT);
if(action.isEnabled() )

manager.appendToGroup(GEFActionConstants.GROUP_VIEW, action);
…

}
…

}

Fig. 2. Code snippets of “appendToGroup” returned by Google code search (Cont.)

After browsing these code snippets, we find two relevant code snippets as shown
in Figure 1. Both snippets are put near the bottom of the returned list. In particu-
lar, the first snippet in Figure 1 is put as the 84th of the snippet list, and the second
snippet in Figure 1 is put as the 104th of the snippet list. We further investigate the
returned 151 snippets, and we find that there are many different usages of the API
method appendToGroup. For example, the snippets in Figure 2 exhibit another usage
of appendToGroup. The two snippets are put as the 11th and the 27th of the returned
list. The snippets with different usages interlace with each other, and none of the four
snippets are ranked as top 10 snippets by Google code search. As a result, in this par-
ticular example, we need to check 84 snippets to locate the first relevant code snippet.
We next illustrate how MAPO addresses the preceding situation.

Pattern mining. To mine patterns, MAPO first clusters code snippets according to
their similarities of each other (Section 4.2). The aim of the clustering is to cluster code
snippets exhibiting different usages (such as the snippets in Figures 1 and 2) into differ-
ent clusters. In Figure 1, the two snippets come from two methods with the same name
(i.e., contributeToMenu), and the two methods belong to two classes with similar
names (i.e., DEditorActionContributor and RubyEditorActionContributor).
Similarly, we make the same observation in Figure 2. Although the four code snippets
are from four different projects, they all follow the convention of using similar names
for similar usages. In MAPO, the similarity metric used in clustering is mainly based
on this convention. Here, if MAPO does not use these names for clustering and uses
only method call sequences, it cannot mine patterns that are sensitive to programming
contexts such as class names and method names.

uation of using it for the described purpose becomes even worse with the growth of Google
code search’s crawled repositories. From more crawled repositories, Google code search re-
turns more code snippets with more API usages for a given query. Code snippets of interest
may be pushed to an even lower position by code snippets exhibiting other usages.



Fig. 3. Pattern index of “appendToGroup”

For each cluster, MAPO adopts a frequent subsequence miner [7] to mine usage
patterns from the code snippets in the cluster (Sections 4.2). For example, from each
of the two clusters, MAPO acquires one usage pattern as shown in Figure 3. A mined
pattern may have one or more frequent sequences of API method calls, and one frequent
sequence describes one common usage exhibited by the snippets. For example, the fre-
quent sequence under “Pattern1” in Figure 3 shows that in this usage, appendToGroup

is often used with findMenuUsingPath and add, and when the three API methods are
used together, they follow the sequential rule of findMenuUsingPath→add→append-

ToGroup (i.e., the usage exhibited in the snippets of Figure 1).
Pattern recommendation. MAPO uses mined patterns as an index for their asso-

ciated code snippets (Section 4.3). As mined patterns are usually much fewer than code
snippets, programmers are able to locate their code snippets more effectively with the
pattern index. For example, MAPO associates “Pattern1” in Figure 3 to the code snip-
pets in Figure 1, and “Pattern2” in Figure 3 to the code snippets in Figure 2. When a
programmer clicks a pattern, MAPO returns all the code snippets associated with the
pattern to the programmer. In this example, as the second pattern exhibits the API usage
of interest, a programmer needs to check only 2 snippets for the first relevant snippet.
In addition, from a mined pattern, a programmer is able to find which methods are used
together with appendToGroup and how to call these methods correctly. Code search
engines such Google code search do not provide such a benefit directly to program-
mers. This example illustrates how MAPO is more effective than Google code search
in helping write API client code.

3 Related Work

To our knowledge, our MAPO is the first approach that mines API usage patterns and
uses mined patterns as an index for recommending associated code snippets to aid pro-
gramming. Our approach is related to existing work on recommending code snippets
since MAPO recommends code snippets organized according to API usage patterns
mined from them. MAPO is also related to existing work on mining API properties
since API usage patterns mined by MAPO have similar forms as API properties mined



by existing work. We next discuss the major differences between MAPO and these ex-
isting related approaches.

Recommending code snippets. Strathcona developed by Holmes and Murphy [15]
locates a set of relevant code snippets from a code snippet repository by matching the
structure of the code under development with the code snippets in the repository. As
MAPO returns code snippets given an API method name, it is more convenient to lo-
cate useful code snippets if a programmer wants to know the usages of a particular API
method. In addition, like other code search engines, Strathcona returns a list of relevant
code snippets, whereas MAPO extracts common patterns among the list of relevant
code snippets returned by a code search engine or Strathcona. Our evaluation (Sec-
tion 5) shows that the mined patterns help programmers locate useful code snippets
more effectively than approaches that recommend raw code snippets (such as Strath-
cona and Google code search).

Prospector developed by Mandelin et al. [22] synthesizes solution jungloids from
a jungloid query. A jungloid query is a pair (Tin, Tout) where Tin and Tout are source
and target object types, respectively. The retrieval is accomplished by traversing a set of
paths (API method call sequences) from Tin to Tout. XSnippet developed by Tansalarak
and Claypool [32] extends Prospector and adds additional queries, ranking heuristics,
and mining algorithms to query a code snippet repository for code snippets relevant
to the programming task at hand. Instead of finding code snippets from a repository
(with a limited set of snippets), PARSEWeb developed by Thummalapenta and Xie [33]
uses Google code search for collecting relevant code snippets and mines the returned
code snippets to find solution jungloids. These tools require programmers to translate
a programming task into the form of a jungloid query (source and target object types),
whereas MAPO returns ranked relevant patterns and code snippets given a query such
as an API method name, complementing these existing tools.

Saul et al. [29] proposed an approach to find API methods that are closely related
to a query API method of interest, by discovering API methods that share a caller or
a callee with the query API method. Their approach recommends only a set of API
methods without temporal information among them whereas MAPO recommends both
API usage patterns with temporal information and their associated code snippets.

Mining API properties. Mining API properties has long been a research focus.
Previous related approaches fall into categories as follows.

The first category is to mine association rules among software artifacts. Some ap-
proaches [19,20,24,37]mine association rules among method calls. Some approaches [25]
mine association rules among class inheritances. Some approaches [8] mine association
rules among class collaborations. These previous approaches mine properties without
temporal information, whereas MAPO mines more complicated API usage patterns in-
volving multiple methods and temporal information.

The second category is to mine frequent call sequences from API client code or
traces. To mine these frequent method calls, some approaches [27, 34] use existing
sequence mining techniques [3], and other approaches [1,10,35,39] adopt various cus-
tomized techniques. MAPO also mines frequent call sequences, but there are two major
differences between MAPO and the preceding approaches. One is that most of these
preceding approaches mine patterns related to one or two API method calls, whereas
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Fig. 4. Overview of MAPO

MAPO mines patterns related to multiple API method calls. The other is that these ap-
proaches do not take programming contexts into consideration, whereas MAPO com-
bines the frequent subsequence mining technique with the clustering technique, and
thus MAPO alleviates the interlacement among different usages that are sensitive to
programming contexts.

The third category is to mine automata from API client code or traces. To mine
automata, some approaches [4, 5, 21] use the Angluin’s algorithm [6], and other ap-
proaches [9, 11, 14, 28, 31, 36] adopt various customized techniques. These approaches
are not as robust to noise (either an anomalous or buggy API method call) in traces as
MAPO, because their underlying finite automaton learner is not as robust to noise as
the frequent subsequence miner used by MAPO.

MAPO is extended from its previous version [38], and the main differences are
as follows. First, we choose an offline mechanism to improve user experiences as it
takes less time to query a mined pattern than to mine a pattern on demand. Second, we
combine clustering with sequence mining to mine API usage patterns that are sensi-
tive to programming contexts. Consequently, MAPO is now able to mine patterns that
are useful under particular programming contexts. Finally, we further conduct various
experiments to evaluate the effectiveness of our new approach.

4 Approach

MAPO (as shown in Figure 4) consists of a source code analyzer, an API usage miner,
and an API usage recommender. The source code analyzer (Section 4.1) extracts the
API usage information from code snippets (referred to as client code in the rest of this
paper) that call API methods, and organizes the information according to the methods
from which the information is collected. The API usage miner (Section 4.2) groups the
API usage information into clusters and mines API usage patterns from each cluster
separately. The mined API usage patterns are stored and fed to the recommender. The
recommender (Section 4.3) is an Eclipse plug-in that recommends proper API usage
patterns and their associated code snippets to programmers upon their requests.



4.1 Source Code Analyzer

Client code from open source projects provides valuable scenarios on how to use API
methods. To extract API usage information from client code, we have developed a
source code analyzer based on Eclipse’s JDT compiler [2]. In MAPO, we consider
the following program locations as API method calls:

– A super constructor call when the super class is provided by a third-party library or
framework such as the Eclipse Graphical Editing Framework (GEF) [17].

– A class cast expression when the associated class is provided by a third-party library
or framework.

– A method call when the declared class of the method is provided by a third-party
library or framework.

– A class instance creation when the associated class is provided by a third-party
library or framework.

As a practical matter, there are also some in-house API libraries or frameworks
whose source files are available. Here, our definition emphasizes on third-party libraries
or frameworks, and if an API library or framework is in-house, we can ignore its source
code to treat it the same as third-party libraries or frameworks. We next present the
details of extracting API method call sequences from method m.

Collecting third-party API method calls. We consider only method calls of third-
party API methods (i.e., API methods from third-party libraries or frameworks) in m.
As a single statement may call more than one API method, MAPO performs a post-
order traversal to collect API method call sequences. For example, the correspond-
ing call sequence of statement getGraphicalViewer().setRootEditPart( new

ScalableRootEditPart()) is as follows:
@new org.eclipse.gef.editparts.ScalableRootEditPart
@org.eclipse.gef.ui.parts.GraphicalEditor#getGraphicalViewer
@org.eclipse.gef.EditPartViewer#setRootEditPart

In the sequence, the representation of each method call starts with @. A method’s
name is separated from its declaring class with #. When an API method call is a con-
structor call, the representation consists of new followed by the class name (e.g., the
first call in the preceding sequence).

Dealing with conditional statements. As there may be conditional statements in
m, MAPO considers all the possible API method call sequences induced by these state-
ments. Consider the following method body containing three if -statements.

public void fun(boolean cond1, boolean cond2, boolean cond3){
i1;
i2;
if(cond1)

if(cond2) i3
else i4;
if(cond3) i5;

else i6;
}
Let {i1, . . ., i6} be the API method calls in method fun. There are six possible

API method call sequences in fun: 〈i1, i2, i5〉, 〈i1, i2, i6〉, 〈i1, i2, i3, i5〉, 〈i1, i2, i3, i6〉,
〈i1, i2, i4, i6〉, and 〈i1, i2, i4, i5〉. Here we do not consider the dependency among cond1,
cond2, and cond3 for simplicity (thus infeasible paths/sequences may be produced like



those produced by many other static analysis techniques). Similarly, we acquire pos-
sible API method call sequences for methods containing switch-statements. For loop
statements such as for-statements, while-statements, and do-while-statements, as we
do not know how many times they are to be executed at runtime, we treat them as con-
ditional statements for simplicity (later we shall use conditional statements to refer to
statements involving branching points for simplicity). That is to say, we view a loop
statement as containing two branches: one for executing the loop once, and the other
for not executing the loop at all. Once again, this simplification may also cause impre-
cision. However, we believe that it should not make a big difference for MAPO to mine
patterns, since no matter whether we include the API method calls in the loop statement
once or more than once in the sequence, the mined pattern tells the programmer only
that these API methods are often used together. The programmer still needs to explore
the associated code snippets to understand whether these API methods can be called
many times.

Selecting a subset of sequences. After we acquire all the possible API method call
sequences of m, we select a subset of sequences (that covers all API method calls)
as the representative API method call sequences for each m. The reason for select-
ing a subset of sequences is to address the following two issues. The first issue is
method overweight. As different methods may contain different numbers of (nested)
conditional statements, we generate different numbers of possible API method call se-
quences for these methods. If we choose all the possible API method call sequences for
each method, the methods with more sequences may have undesirable bigger impact
on the mining process. The other issue is common-path overweight. In the preceding
piece of source code, 〈i1, i2〉 appears in all the six sequences, because 〈i1, i2〉 is on the
common path of execution, not because 〈i1, i2〉 is a frequent usage pattern. However,
if we pass all the six sequences to the miner, 〈i1, i2〉 will be given a biased weight and
may be recognized as a frequent pattern. To reduce this bias, we use a greedy strategy
to select sequences. The strategy first selects the longest sequence. From the remain-
ing sequences, the strategy iteratively selects the sequence that covers (i.e., involves)
the most un-covered API method calls until all the API methods are covered. We feed
selected sequences to our pattern miner where the selection order does not have impact
on the mined patterns.

Inlining non-third-party methods. As programmers may scatter their implemen-
tation of a feature into different (non-third-party) methods especially when using API
frameworks, a single method may not contain all the involved third-party API methods
of an API usage scenario. To address this issue, we employ a method inlining strategy.
Our method inlining strategy is a recursive process. When constructing the API method
call sequences of m, we need to inline the API method call sequences of each non-
third-party method m′ called by m. This strategy is also applied to construct the API
method call sequences of m′. When m and m′ are within the same class, MAPO tra-
verses the parser tree of the class for m′’s API method call sequences. When m and m′

are not within the same class, MAPO resolves the declaring class of m′ and then finds
the declaring class’s source file for m′’s method body. After that, MAPO constructs
m′’s API method call sequences from its found method body. The iterations go on in
the call graph till no non-third-party methods need to be inlined. Note that we deal with



recursions among methods and repeating methods by avoiding inlining any method that
has been inlined before. As MAPO analyzes client code statically, it ignores polymor-
phic method calls because these calls are determined at runtime. Here, we choose not
to extract all possible sequences from a polymorphic call to avoid a similar overweight
problem as common-path overweight.

4.2 API Usage Miner

Although the extracted API method call sequences contain valuable usage scenarios
of API methods, it is difficult to mine patterns directly from these sequences because
these sequences may include quite different API usage scenarios. If we mine all the
sequences together, these different API usage scenarios may interfere with each other
and thus impact the mining process negatively. As shown in Figure 4, to reduce the
interference between different API usage scenarios, we first cluster the extracted API
method call sequences and then mine patterns separately from each cluster.

Clustering API method call sequences. Clustering techniques [18] are to group a
given collection of unlabelled items into meaningful clusters. Clustering is data-driven
and the category labels are obtained solely from the similarities among data. Therefore,
before we use existing techniques to cluster API method call sequences, we need to first
define their quantified similarities. We next present the details of our similarity metric.

Names: In both code snippets in Figure 1, appendToGroup is used with findMenu-

UsingPath and add, and the API method call order is findMenuUsingPath→ add→
appendToGroup. To effectively mine this pattern in MAPO, we need to cluster API
method call sequences from these two code snippets and other similar snippets into
one cluster. When we examine the names used in the two code snippets, we make
the following observation. The first snippet illustrates the code for a method named
contributeToMenu in a class named DEditorActionContributor, while the sec-
ond snippet illustrates the code for a method named contributeToMenu in a class
named RubyEditorActionContributor. The method names are the same, and the
class names are very similar. Similarly, in both snippets in Figure 2, appendToGroup is
used with getAction, isEnabled, and addStandardActionGroups. The method
and class names used in the first snippet are buildContextMenu and ContextMenu-

ProviderImpl, while the method and class names used in the second snippet are
buildContextMenu and LatticeContextMenuProvider. Once again, the method
names are the same, and the class names are very similar. We further study some more
snippets, and we confirm the preceding observation: when two snippets have similar
method names and similar class names, the two snippets often exhibit the same usage.
The convenance comes partly from copy-paste programming and partly from class in-
heritances. In particular, although the classes named DEditorActionContributor

and RubyEditorActionContributor are from two different projects, they both ex-
tend the class named org.eclipse.ui.editors.text.TextEditorActionCon-

tributor. The programmers of the two code snippets may refer to the extended class
for naming their extending classes, so the two classes have similar names. The preced-
ing observation forms our design rationale of choosing the similarities between method
names and the similarities between class names as two sources for the definition of the
similarities between API method call sequences.



When calculating the similarity between a pair of names, we split the names into
words according to the capital letters in the names. MAPO chooses the Levenstein
measure provided by Simmetrics7 to calculate the similarity between two words. Then
we calculate the similarity between two names as the average of the similarities of their
pairwise split words.

Called API methods: Besides method names and class names, we choose called
API methods as the third source for the definition of the similarities between API
method call sequences. This design decision aims to deal with the following situation.
When different programmers implement a similar feature, they may use a different set of
API methods. For example, to parse XML files, programmers may use Jdom8, Dom4j9,
or other API libraries to accomplish their task.

For two sequences (s1 and s2), we define their similarity metric as follows.

sim(s1, s2) =
# of API calls in I1 ∩ I2

# of API calls in I1 ∪ I2
(1)

Here, I1 and I2 are the corresponding sets of API methods appearing in the two
sequences. The number of API method calls appearing in both sets of called API meth-
ods is represented as “# of API calls in I1 ∩ I2”. The number of API method calls
appearing in either set of called API methods is represented as “# of API calls
in I1 ∪ I2”.

Based on the preceding definitions of similarities, given two API method call se-
quences, we calculate one similarity value based on the method names, one similarity
value based on the class names, and one similarity value based on the called API meth-
ods. Using the three similarity values, we calculate the similarity of the two API method
call sequences as the average of the three similarity values. Based on the similarity of
any two API method call sequences, MAPO uses a classical hierarchical clustering
technique [13] provided by the toolbox of Matlab10.

Mining API patterns. Agrawal and Srikant [3] propose to mine sequential patterns
in transaction databases and time-series databases. In these databases, transactions are
ordered by transaction time and each transaction is a set of items. Here, the mining
problem is to find all sequential patterns with a minimum user-defined support, which
is the number of API method call sequences that contain the patterns. As shown in Fig-
ure 4, the API method call sequences in each cluster are fed into a frequent subsequence
miner for mining frequent sequences. From each cluster, MAPO combines the mined
frequent call sequences to produce a pattern.

In particular, to produce frequent API method call sequences, MAPO first encodes
the call sequences of a cluster into the form of a transaction database and then feeds the
database to an existing frequent subsequence miner [7]. In each cluster (C), the support
of an API method call sequence (s) is defined as follows:

support(s) =
# of API call sequences with s

# of API call sequences in C
(2)

7 http://www.dcs.shef.ac.uk/∼sam/simmetrics.html
8 http://www.jdom.org
9 http://www.dom4j.org

10 http://www.mathworks.com/matlabcentral/fileexchange/7486
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This definition is adapted from the classical definition of frequent sequences that is
used by existing frequent subsequence miners. A frequent subsequence miner automat-
ically mines the frequent sequences whose support values are greater than a threshold.
After mining the frequent sequences, MAPO decodes each mined sequence into a fre-
quent API method call sequence.

4.3 API Usage Recommender

This section presents the mechanism of MAPO to recommend associated snippets us-
ing the mined patterns as an index. Figure 5 shows MAPO’s API usage recommender,
which is a plug-in that integrates with the Eclipse IDE.

Instead of requiring programmers to check the snippets one by one, the recom-
mender provides programmers with the capability to use the mined patterns as an in-
dex to locate snippets. For example, if a programmer wants to know the usages of
appendToGroup, the programmer needs to type in “appendToGroup” into the method
body under development. After that, the programmer selects “appendToGroup” and
clicks “Query API patterns” of the context menu for the usages of “appendToGroup”.
Figure 5 shows an annotated screen snapshot of the preceding query. The returned rel-
evant patterns with the pattern ranks are shown in the pattern view on the right side of
Figure 5. The rank of a pattern is the average similarity of the supporting snippets to
the current programming task. Here, we use the method names and the class names to
calculate the similarity. For example, supposing that the programmer is implementing a
method named m in class c, m and c will be compared with the method name and the
class name of each supporting snippet to calculate a similarity value. The similarity def-
inition is the same as the one in Section 4.2. From each pattern, MAPO lists its frequent



Table 1. Projects used to mine patterns

Project Project source LOC #classes #methods
Work flow TU Berlin 10125 101 1017
Net Editor TU Berlin 2867 35 359

Sequence Editor TU Berlin 3921 46 486
Visual OCL TU Berlin 11967 134 1077
PetriEditor TU Berlin 3248 44 375

jLibrary (Client) SourceForge 46213 503 3455
Green UML SourceForge 10652 146 1151
Quantum SourceForge 2380 33 225
GanttRCP SourceForge 3760 72 510

OpenWFE (IDE) SourceForge 9952 178 954
Jupe SourceForge 8100 109 665

Schema Viewer SourceForge 3358 48 338
Janus SourceForge 1952 19 132

ZEN-kit University of California 3991 151 314
SimpleGEF Bonevich 851 20 120
cvsgrapher Bonevich 1706 29 179
GEF tutorial EclipseTeam 837 19 122
GEF example EclipseTeam 1299 22 155
Hello GEF EclipseTeam 1042 18 144

OAW sample Eclipse GMT 12777 203 1196
Total 140998 1930 12974

method call sequences. One pattern may have more than one sequence, and MAPO
recommends only sequences containing the API method of interest to the programmer.

The programmer can use the returned patterns as an index to locate snippets. In
particular, the programmer can exploit a pattern’s associated snippets by clicking on
the pattern. The brief summaries of the associated snippets are listed in the “details
view” on the bottom of Figure 5, and the snippets with the call sequence of interest are
highlighted. Here, every entry in the “details view” denotes a snippet. The programmer
can further exploit the source code of each snippet by clicking an entry with highlighted
patterns. The source code is also highlighted with relevant API methods.

5 Experimental Study

We conducted an experimental study on MAPO, Strathcona [15], and Google code
search [12]. The experimental study aims to investigate whether MAPO can help pro-
grammers locate code snippets of interest faster than the other two tools.

5.1 Setup

The Graphical Editing Framework (GEF) [17] is one of the sub-projects under Eclipse’s
tool project. Programmers can use GEF to develop graphical editors for Eclipse plug-in
applications. In our experimental study, we focus on patterns of APIs provided by GEF.
To mine the patterns of GEF, we used 20 open source projects that use GEF to develop



graphical editors as a code repository. Table 1 lists the details of these projects, includ-
ing project sources, Lines of Code (LOC), and the number of classes and methods. The
total number of LOC of the 20 projects is about 141K.

From the source code of these 20 projects, MAPO extracted API method call se-
quences and built clusters of these sequences using the technique presented in Sec-
tion 4.2. As our study focuses on patterns of APIs provided by GEF, MAPO auto-
matically filtered out clusters that did not call any GEF APIs by checking whether a
called method was from the package org.eclipse.gef. After filtering, MAPO used
SPAM [7] to mine frequent patterns of the API method call sequences in each cluster
separately, and the support value was set to 0.7. We choose the support value based
on our initial experience. From the clusters, MAPO produced 93 patterns. The mined
93 patterns include 157 frequent API method call sequences and cover the usages of
856 API methods. In particular, in the 93 patterns, 26.9% patterns have more than one
frequent API method call sequence. In the 157 frequent API method call sequences,
61.8% frequent sequences describe usages of more than two API methods, and 70.7%
frequent sequences describe usages of more than one class.

Strathcona is able to locate a set of relevant code snippets from a code repository.
The returned snippets have a similar structure with the code under development. Strath-
cona can be installed through the instructions from its website11. From its repository
information12, we find that Strathcona covers all relevant APIs of GEF.

Google code search uses a much larger repository than MAPO. To make the study
comparable, we restrict its search scope to the same projects as MAPO using Google
code search’s keyword, package13. As all our 20 projects are from the open source
community, these projects can be crawled by Google code search. That is to say, in
our experimental study, both MAPO and Google Code search use exactly the same
code repository. For Google code search, we also tried to use class and method names
presented in Section 4.2 to build the queries for the examples of Table 2. From these
queries, no snippet is returned because Google code search uses these names as key-
words to retrieve the exactly matched snippets and such snippets can hardly be found.
As a result, in our experimental study, Google code search does not use these names
to refine its results whereas MAPO does. This comparison may be somewhat unfair to
Google code search, but using Google code search without these names reflects how it
is actually used by its users in practice.

For a given query, MAPO returns its relevant patterns and snippets within only a
few seconds because it does offline mining (i.e., mining patterns before a programmer
makes a request on specific API methods). As these patterns are already mined, MAPO
achieves good user experiences for programmers. As far as their runtime performances
are concerned, all the three tools are comparable.

5.2 Quantitative Comparison

To compare the three tools quantitatively, we exploit a GEF book titled as Eclipse De-
velopment using the Graphical Editing Framework and the Eclipse Modeling Frame-
11 http://tinyurl.com/6h2ybq
12 http://tinyurl.com/5w56ye
13 http://www.google.com/intl/en/help/faq codesearch.html



Table 2. Comparison of Strathcona, Google code search, and MAPO

Example
First matched snippet Second matched snippet Total num. of items
Strat. Google MAPO Strat. Google MAPO Strat. Google MAPO

example 1 5 1 1 n/a 2 2 10 8 (2)
example 2 1 1 1 2 n/a 2 10 7 (1)
example 3 1 3 1 5 4 2 10 12 (4)(2)
example 4 n/a 4 n/a n/a 10 n/a 10 11 n/a
example 5 1 7 2 3 13 3 10 33 (2)
example 6 n/a 9 n/a n/a 11 n/a 10 33 n/a
example 7 2 4 2 n/a 10 3 10 39 (2)
example 8 n/a n/a n/a n/a n/a n/a 10 18 (1)
example 9 n/a 3 1 n/a 4 2 10 28 (2)
example 10 1 1 1 2 2 2 10 16 (1)
example 11 2 10 1 n/a 15 2 10 39 (2)
example 12 n/a 1 1 n/a 2 2 10 27 (1)
example 13 2 2 2 3 5 3 10 70 (2)(1)

work. This book is an IBM redbook14 and is recommended by the GEF project as the
first book on GEF15. In this book, the examples relevant to GEF are densely listed in
its Chapter 4 titled as GEF examples and these examples cover many aspects of the us-
ages of GEF. Based on all the 13 examples in the chapter, we prepared 13 programming
tasks. In each task, we use the first API method call and the programming context in
the example to query the three tools16. After that, we check the returned snippets for the
matched one. Here, a matched snippet of an example should use the same set of API
methods and the same API method call sequence as exhibited in the example.

Effectiveness of locating the 1st matched snippet. Table 2 shows the results of the
three tools to locate the 1st matched snippet. Column “Total num. of items” lists the re-
turned items from each query. For its sub-columns, sub-columns “Strat.” and “Google”
list the number of snippets returned by Strathcona and Google code search, respectively;
sub-column “MAPO” lists the returned patterns where a bracket pair denotes a pattern,
and the number enclosed by a bracket pair denotes the number of frequent sequences
(associated with the pattern) that contain the API method of interest.

Strathcona always returns 10 snippets, and its developers described that the limit of
10 was chosen informally [16]. Google code search returns much fewer snippets than
expected due to two factors. One is that we restrict the search scope of Google code
search for a fair comparison as explained in Section 5.117. The other is that Google
code search may have some techniques to filter out some snippets that match the given
keywords, because when we restrict the search scope to Jlibrary and Quantum, it returns
3 snippets, but when we expand the search scope to all our 20 projects, the preceding

14 http://www.redbooks.ibm.com/abstracts/sg246302.html
15 http://www.eclipse.org/gef/reference/articles.html
16 For the sixth example, we use the third API method call because its first and second API

method calls overlap with the third example. In addition, as discussed before, we do not use
the programming contexts to build queries for Google code search.

17 Note that we do not restrict the search scope of Google code search for the example in Sec-
tion 2.



3 snippets are not returned. Google code search may use this filtering technique to
control the number of returned snippets. Unlike Google code search, MAPO relies on
mined patterns to achieve a similar goal. Generally, as MAPO mines patterns from raw
snippets, MAPO returns fewer items to be checked than Strathcona and Google code
search.

Column “First matched snippet” lists the numbers of snippets that need to be checked
to find the first matched snippets among the snippets returned by Strathcona, Google
code search, and MAPO. For Strathcona and Google code search, we check the snip-
pets by their orders returned by these two tools. For MAPO, we check its returned
snippets by the ranking order of the patterns. As MAPO highlights the snippets with a
frequent call sequence automatically, only one highlighted snippet needs to be checked
for each call sequence because all the highlighted snippets follow a similar usage.

From the results of MAPO and Strathcona, we find that in four examples, MAPO
requires programmers to check fewer snippets for the first match than Strathcona, and
in one example, MAPO requires to check more snippets for the first match than Strath-
cona. The results of Strathcona sometimes suffer from noisy snippets (i.e., snippets that
are not relevant but are matched based on search criteria used by the used code search
tool). In particular, in Examples 9 and 12, many returned snippets from Strathcona have
no method bodies, and these snippets can hardly show any correct API usage. We fur-
ther check the snippets returned by MAPO, and we find that some snippets also contain
noises but these noises do not affect the results of MAPO much. As it is rare that many
snippets follow a similar noisy pattern, these noises are rarely mined as a pattern. As a
result, the snippets with noises are rarely highlighted when we use patterns as an index
for snippets.

From the results of MAPO and Google code search, we find that in five examples,
MAPO requires programmers to check fewer snippets for the first match than Google
code search, and in two examples, MAPO fails to find a match while Google code search
succeeds. Strathcona also fails to find a match for these two examples. We investigate
these two examples. We find that the usages of relevant API methods are quite complex,
and a method call sequence cannot describe these API usages sufficiently. In Section 7,
we further discuss this issue. In Example 8, all the three tools fail to find a match. The
usage in this example may be rare and does not occur in any snippet in the 20 projects
being mined.

In summary, generally, as MAPO uses patterns as an index for snippets, it requires
less effort to locate the first match than the other two tools. In addition, as patterns are
mined from raw snippets, these patterns are more robust to noises than raw snippets.
The comparison also helps us understand cases where MAPO needs improvements in
our future work to handle complex API usages.

Effectiveness of locating the 2nd matched snippet. For a critical programmer, it
may be essential to recommend snippets with a similar usage of the first matched snip-
pet’s so that the programmer can have high confidence that the selected snippet embeds
a common usage pattern. Table 2 shows the results of these tools to locate the second
matched snippets. Column “Second matched snippet” lists the number of snippets to be
checked to find the second match among the snippets returned by Strathcona, Google
code search, and MAPO, respectively.



For Strathcona and Google code search, we still need to check the returned snippets
one by one. For MAPO, as we can highlight the snippets with a particular pattern, after
we find the first match, we need to check only the next highlighted snippet associated
with the same pattern for the second match. From the results of MAPO and Strathcona,
we find that in eight examples Strathcona fails to find the second match, while only in
three examples MAPO fails to find the second match. In addition, for the five examples
where both MAPO and Strathcona are able to find the second match, MAPO requires
to check fewer or the same number of snippets for the second match than Strathcona.
As Strathcona returns a limited set of snippets, Strathcona seems difficult to provide
rematched snippets for critical programmers. From the results of MAPO and Google
code search, we find that in seven examples, MAPO requires to check fewer snippets
for the second match than Google code search.

As MAPO groups code snippets of a similar API usage into one cluster, program-
mers can easily find the the 2nd matched code snippet if they already find a matched
code snippet. We do not further compare the effectiveness of these tools to locate the
third code snippet and so on, although we anticipate to get similar results from the
comparison.

In summary, MAPO requires less effort of a critical programmer to search for re-
matched snippets than the other tools. The rematched snippets provided by MAPO in-
crease a programmer’s confidence that a usage is correct and common because it is
relatively rare that snippets from different projects all follow a similar noisy or buggy
pattern to use API methods.

In fact, a code snippet recommending tool often faces the following dilemma. To
help programmers find the first matched snippet as soon as possible, a code search
engine may need to put the snippets with different usages on the top of its returned
snippet list, but the rematched snippets may thus be put near the bottom of the snippet
list. To help programmersfind the rematched snippets as soon as possible, a code search
engine may need to put the rematched snippets near the top of the returned snippet list,
but the snippets with different usages may thus be put near the bottom of the returned
snippet list. MAPO solves this dilemma, as MAPO clusters snippets and uses the mined
patterns as an index for these snippets. From our experiences, in some extreme cases,
MAPO returns about 20 patterns given a single query. However, it is still much fewer
than the code snippets returned by a code search engine.

5.3 Significance of MAPO’s Design Decisions

We next show the impacts of MAPO’s design decisions on MAPO’s effectiveness in
locating the first and the second matches. For each task, we turn off MAPO’s individual
internal techniques and compare the results with “All” where all techniques are turned
on, and Table 3 shows the results. Column “First matched snippet” lists the number
of snippets that require to be checked for the first match. Column “Second matched
snippet” lists the number of snippets that require to be checked for the second match.
Column “Total num. of items” lists the number of the total frequent sequences. For their
sub-columns, sub-columns “×S”, “×I”, and “×C” show the results when we turn off
the corresponding technique, respectively. Based on these results, we find the impacts
of MAPO’s design decisions on its effectiveness as follows.



Table 3. Impacts of MAPO’s design decisions

Example
First matched snippet Second matched snippet Total num. of items
All ×S ×I ×C All ×S ×I ×C All ×S ×I ×C

example 1 1 1 n/a 1 2 2 n/a 2 (2) (2) n/a (2)
example 2 1 1 1 1 2 2 2 2 (1) (1) (1) (1)
example 3 1 1 1 n/a 2 2 2 n/a (4)(2) (4)(2) (3)(1) (2)
example 4 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
example 5 2 2 2 n/a 3 3 3 n/a (2) (2) (2) n/a
example 6 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
example 7 2 2 2 n/a 3 3 3 n/a (2) (2) (2) n/a
example 8 n/a n/a n/a n/a n/a n/a n/a n/a (1) (1) (1) (1)
example 9 1 1 1 1 2 2 2 2 (2) (2) (2) (2)
example 10 1 1 1 1 2 2 2 2 (1) (1) (1) (1)
example 11 1 1 1 n/a 2 2 2 n/a (2) (2) (2) n/a
example 12 1 1 1 1 2 2 2 2 (1) (1) (1) (1)
example 13 2 n/a n/a n/a 3 n/a n/a n/a (2)(1) (1) (1)(1) (1)

In this table, we highlight those affected values with the bold font.

Selection. We find that the result of Example 13 is affected by the selection tech-
nique. In this example, the related API methods are called within a branching statement.
Let us use |With(s)| to denote “# of API method call sequences with s” in Equation 2,
and we use |C| to denote “# of API method call sequences in cluster C”. If we turn
off the selection technique and extract all possible call sequences, |C| increases while
|With(s)| does not change much. Consequently, s’s support value decreases and s may
not be mined as a frequent call sequence. From the observation, we find that the selec-
tion technique helps MAPO mine frequent API method call sequences when the API
method of interest is often used within branches in conditional statements.

Inlining. We find that the results of Examples 1 and 13 are affected by the inlin-
ing technique. We further investigate the two examples’ usages, and we find that API
methods of the mined sequence from “All” are actually scattered in different meth-
ods of client code. Consequently, when we turn off inlining, these API method call
sequences cannot be extracted and thus cannot be mined as frequent API method call
sequences. From the observation, we find that the inlining technique helps MAPO mine
API method calls from different methods of client code into frequent API method call
sequences.

Clustering. We find that the results of Examples 3, 5, 7, 11, and 13 are affected by
the clustering technique. For the ease of discussing this technique, let s1 and s2 be two
mined frequent call sequences from clusters C1 and C2, respectively, and from Equa-
tion 2, their support values are |With(s1)|

|C1| and |With(s2)|
|C2| . When we turn off clustering,

C1, C2, and other clusters are merged into one. As a result, the support of s1 changes to
|With(s1)|

|C1|+|C2|+|N |−|C1|∩|C2| where N is the set of sequences that also call API methods in
s1 from other clusters. For simplicity, we next focus only on cases for s1. If s1 and s2

belong to the same pattern, C1 and C2 are the same cluster. After we turn off clustering,
s1’s support value changes to |With(s1)|

|C1|+|N | . If |N | is small, s1’s support value does not
decrease much, and can still be mined as a frequent sequence. We find that Examples 1,
2, 9, 10, and 12 fall into this situation and their results are not affected. If |N | is large,



s1’s support value may decrease too much to be mined as a frequent sequence. We find
that Examples 5, 7, and 11 fall into this situation and their results are affected. If s1

and s2 belong to two different patterns, C1 and C2 are two different clusters. After we
turn off clustering, s1’s support value changes to |With(s1)|

|C1|+|C2|+|N | . We see that the support
value may decrease more than in previous examples. We find that Examples 3 and 13
fall into this situation and their results are affected. Based on these observations, we find
that the clustering technique helps MAPO alleviate the interlacement among different
usages that are sensitive to programming tasks.

As for the results of Examples 2, 10, and 12, their results are not affected by any the
MAPO’s internal techniques. We investigate these examples, and we find that their API
usages are quite simple and straightforward. For example, after we investigate the re-
lated snippets of Example 10, we find the following facts regarding the call sequence of
addRetargetAction. It is seldom used in different programming usages. Its relevant
API methods are seldom scattered in different methods. It is even seldom used within
branches of conditional statements. Consequently, its results are not affected by these
techniques in MAPO.

In summary, MAPO’s techniques help handle complex usages of API methods. In
particular, the selection technique helps MAPO mine API frequent sequences when
the API method of interest is often used within branches in conditional statements. The
inlining technique helps MAPO mine API method calls from different methods of client
code into frequent API method call sequences. The clustering technique helps MAPO
alleviate the interlacement among different usages that are sensitive to programming
contexts.

5.4 Threats to Validity

The threats to external validity primarily include the degree to which the projects being
mined, the programming tasks being constructed, and existing code search tools being
compared are representative of true practice. Although GEF is one of the popular sets of
Eclipse APIs, only one set of APIs is used, and the recommendations are all on the use
of GEF. Although we tried to be as objective as possible by exploiting all code snippets
from a book to construct programming tasks, these code snippets are limited in number,
and code snippets from books may omit rare usages that are also useful to programmers.
Although Strathcona and Google code search are the publicly available tools related to
MAPO in code searching with API method queries, some other code search engines or
tools may perform better than these two tools. These threats could be reduced by more
experiments on wider types of subjects and tools in future work. The threats to internal
validity are instrumentation effects that may bias our results. To reduce these threats,
we manually inspected all snippets returned by MAPO and Strathcona as well as most
snippets returned by Google code search.

6 Empirical Study

Our empirical study aims to investigate whether MAPO can assist programmers to
complete programming tasks. In general, the development time and the number of in-
troduced bugs (reflecting the quality of completed code) are two major metrics for the



Table 4. Tasks used in the empirical study

Task Description Essential API calls
1 Factor an incoming request 3
2 Start monitoring property changes 4
3 Update the name and the bounds of a figure 5
4 Add a context menu to an editor 5
5 Add a tool bar to an editor 5
6 Save the content of a editor 8

Table 5. Background of the subjects

Group 1 Group 2
subject 1 subject 2 subject 3 subject 4 subject 5 subject 6

Java (Years) 4 3 2 3 1 3
GEF (Years) 2 0 0 0 0 1

evaluation of tools aiming at assisting programming activities. However, these two met-
rics can impact each other. Intuitively, given a tool, the more time a programmer spends
for a given programming task, the more likely the programmer produces code with
fewer bugs. Therefore, in our empirical study, we give the programmers a fixed time
(one hour) and use the number of introduced bugs as the metric for the tools’ useful-
ness of assisting programming. As all the tools aim at facilitating programming tasks
concerning APIs, we focus on API-related bugs such as missing essential API methods
and improper orders of these API methods.

To conduct the study, we prepared six programming tasks listed in Table 4. The de-
tailed descriptions of these tasks can be found in another GEF book titled as SWT/JFace
in Action [23], which is also recommended by the GEF project18. As GEF is a frame-
work to create graphical editors, it is difficult to use it to implement an independent task.
To prepare each task, we first implemented the task in a code base and then took out
the code that is related to the task from the code base to form an incomplete code base.
The code base had 2383 LOC. Here, to simulate the real usage of these tools, we did
not choose an existing GEF project because the source code of an existing GEF project
might be found in existing repositories. We chose these tasks because they cover many
aspects of GEF’s usages and they vary in their difficulties to implement. Column 3 of
Table 4 lists the number of API methods that are essential to implement the tasks. These
tasks are relatively small in size. Even for the 6th task that contains the most essential
APIs, a programmer needs to write only less than one hundred lines of code.

We invited six graduate students (subjects) majoring in computer science from
Peking University to complete the six tasks. None of the invited subjects was familiar
with MAPO. All of them were shown a short demonstration on using the three tools just
before the study. Table 5 shows the background of these subjects. Most of the subjects
have some programming experience of Java but little experience of GEF. We divided
these subjects into two groups with the goal of making each group to have comparably
similar mixture of background.

To reduce the possible imbalance between the two groups, we introduced a crossover
comparison that is used in existing empirical studies [26]. In particular, our study has
two stages, and in each stage, the two groups exchange their roles as the MAPO group

18 http://www.eclipse.org/gef/reference/articles.html



Table 6. Results of the empirical study

Control Group MAPO Group
subject 1 subject 2 subject 3 total subject 4 subject 5 subject 6 total

Task 1 0 0 0 0 0 1 0 1
Task 2 0 1 1 2 0 1 1 2
Task 3 2 0 5 7 2 4 0 6

MAPO Group Control Group
subject 1 subject 2 subject 3 total subject 4 subject 5 subject 6 total

Task 4 0 0 0 0 5 4 0 9
Task 5 0 0 0 0 0 4 0 4
Task 6 0 2 3 5 4 3 3 10

and the control group. In particular, in the first stage, Group 1 was asked to complete
Tasks 1, 2, and 3 using Google code search and Strathcona, whereas Group 2 was asked
to complete Tasks 1, 2, and 3 using MAPO. In the second stage, Group 1 was asked
to complete Tasks 4, 5, and 6 using MAPO, whereas Group 2 was asked to complete
Tasks 4, 5, and 6 using Google code search and Strathcona. The tasks and the copies
of the incomplete code were assigned to the subjects just before the study began. These
subjects worked on the tasks separately and were free to test and execute the programs
when completing these tasks. In each stage, the subjects were allowed to use one hour
to finish the incomplete code according to the assigned tasks.

After the subjects of the two groups finished the preceding tasks using the assigned
tools, we checked the code written by these subjects. We did not classify their submitted
tasks as complete or incomplete for comparison of these tools, as the classification may
not be sufficiently objective. Instead, we prepared a test suite for each task, and if a
completed program fails to pass a test case of a task, we count the failure as one found
bug of the task. The test suites are carefully prepared for two goals. One is that the test
suites should be designed to contain no redundant tests (i.e., no two test cases cover
the same behavior or expose the same bug), so that one bug will be less likely to be
exposed (and thus counted) repeatedly by multiple test cases. The other is that a test
suite of a task should try to cover comprehensive behaviors of the task. We carefully
checked the failed test cases to ensure that they reveal difference defects, and Table 6
shows the results. Column “subject x” lists the numbers of failed test cases in completed
projects of the xth subject. Column “total” lists the numbers of total failed test cases.
From “total” of Table 6, in the first task, the MAPO group produced code with more
bugs than the control group. In the second task, the MAPO group produced code with
the same number of bugs with the control group. In all the remaining four tasks, the
MAPO group produced code with fewer bugs than the control group.

Our observation confirms that MAPO is able to assist programmers to produce code
with fewer bugs when implementing their programming tasks. After inspection of the
introduced bugs, we find the impacts of these tools as follows. In Tasks 1 and 2, there is
a little difference in performance between the MAPO group and the control group. We
find that in the two tasks, the essential API methods are from the same package of an
API framework, and their usages are relatively straightforward. The number of bugs is
small, and the bugs are introduced because the subjects are unfamiliar to the incomplete
code. As the subjects of the two groups have comparable background, almost the same
number of bugs are introduced. In Task 3, there is also a little difference in performance



between the MAPO group and the control group. We find that the API usage of this
task is relatively complex and cannot be found in existing snippets or patterns. As a
result, all the three tools cannot give the subjects much help, and the subjects of the two
groups both introduce many bugs. In Tasks 4, 5, and 6, there is a significant difference
in performance between the MAPO group and the control group. We find that in these
tasks, the API usages are relatively complex. For example, in Task 4, before the API
method appendToGroup is called to add an action to the menu, another API method
isEnable should be called to check whether the action is enabled. As shown in Fig-
ure 3, MAPO mines this usage into a pattern. As a result, all the subjects of the MAPO
group called this API method call, whereas only one subject of the control group did
so. In Task 6, the API method getEditorInput is essential to be called to get the
content of the editor, and another API method markSaveLocation is also essential
to be called to mark the saved status of the editor after its content is saved. Two sub-
jects of the MAPO group used both API method calls to complete their code because
MAPO mines these API method calls into a pattern and highlights them in the recom-
mended snippets, whereas no subjects of the control group used both API method calls
in their code. It is tricky because the former API method getEditorInput is declared
by the class org.eclipse.ui.part.EditorPart, whereas the latter API method
markSaveLocation is declared by another class org.eclipse.gef.commands.

CommandStack. As MAPO mines this API usage into a pattern, it helps the subjects of
the MAPO group understand this usage better than the subjects of the control group.

In summary, in the three tasks of our empirical study, as API usages are straightfor-
ward or cannot be found in existing snippets, the three tools do not show many differ-
ences in effectiveness. In the other three tasks, as API usages are relatively complicated,
MAPO successfully helps programmers produce code with fewer bugs than the other
two tools. MAPO helps programmers understand complicated usages of APIs and thus
assist programmers to complete programming tasks.

Threats to validity. As our empirical study shares the settings with the experimental
study in Section 5, our empirical study shares the threats with the study in Section 5 as
well. Besides these threats, our empirical study has four other threats to internal valid-
ity. First, our empirical study involves human subjects, and the particular programming
capabilities of the human subjects may bias results. To reduce this threat, we invited
as many human subjects as possible and used a crossover design. Second, the results
observed in the empirical study may not be applicable to programming tasks other than
those considered in the study, being a threat to the external validity. We can conduct em-
pirical studies involving more subjects and more programming tasks to further reduce
these threats. Third, due to the limit of human resources, we assign the six subjects into
two groups, one of which is a control group. In the control group, we allow the subjects
to use both Google code search and Strathcona, which may have negative impacts on
the two tools. To reduce the threat, we plan to involve more subjects and to assign these
subjects into three groups with one tool for each group. Fourth, the learning curve of the
these subjects may affect the results. To reduce the threat, we balance the two groups
with similar background. To further reduce the threat, we plan to give detailed training
to the subjects.



7 Discussion and Future Work

Tuning the MAPO approach. Our MAPO approach chooses some data mining
techniques and their parameters based on our initial experiences. We still need further
investigations to confirm whether these selected techniques and parameters are the best
choice. For mining techniques, we plan to try other clustering techniques such as K-
means and DBSCAN, or to try some classifiers such as K-nn in the clustering stage19;
we plan to try other miners such as Acharya et al. [1]’s partial order miner in the mining
stage; and we plan to take other features such as class structure into consideration for
clustering. For parameters, we plan to evaluate the significances of the selected weights
and thresholds.

Quality of mined patterns. In the experiment, we do not show the quality of mined
patterns directly. As most libraries do not provide usage patterns, there is no off-the-
shelf golden standard for real patterns. We plan to conduct more experiments to show
the quality of mined patterns when such a golden standard is available in future work.

Other object-oriented languages. Although the current implementation of MAPO
analyzes only Java code, our MAPO approach may be generally applicable for other
object-oriented languages since our approach relies on some common object-oriented
features. We plan to adapt MAPO to other object-oriented languages in future work.

Mining uncommon API usages. As most existing mining approaches extract API
usages from only API client code, these approaches may fail to mine API usage patterns
that are not common among client code (but can be potentially inferred from API im-
plementation code). In future work, we plan to develop techniques to mine API patterns
based on both API client code and implementation code.

8 Conclusion

To help a programmer understand API usages and write API client code more effec-
tively, we have developed a tool called MAPO. It mines API usage patterns from open
source repositories automatically and recommends the mined patterns and their asso-
ciated snippets on a programmer’s requests. In particular, MAPO implements a mech-
anism that combines frequent subsequence mining with clustering to mine API usage
patterns from code snippets. In addition, MAPO provides a recommender that inte-
grates with the existing Eclipse IDE. Through MAPO’s recommender, a programmer
can retrieve patterns to help navigate their associated snippets to find the code snip-
pet of interest effectively. We have conducted an experimental study on MAPO as well
as Strathcona and Google code search, two state-of-the-art code searching tools. The
results show that MAPO helps a programmer to locate useful code snippets more effec-
tively than these two existing tools. To explore whether MAPO can assist programmers
in programming tasks, we further conducted an empirical study. The results show that
comparing with Strathcona and Google code search, MAPO helps programmers pro-
duce code with fewer bugs when API usages are relatively complex and these usages
can be found in existing code snippets.

19 Please refer to Data Mining: Concepts and Techniques [13] for the details of these techniques.
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