
Identifying Reasons for Software Changes Using Historic Databases

Audris Mockus
Bell Laboratories

Software Production Research Department
263 Shuman Blv. Rm. 2F-319

Naperville, IL 60566
audris @research.bell-1abs.com

Abstract

Large scale software products must constantly change
in order to adapt to a changing environment. Studies of
historic data from legacy software systems have identified
three specific causes of this change: adding new features;
correcting faults; and restructuring code to accommodate
future changes.

Our hypothesis is that a textual descriptionjeld of a
change is essential to understanding why that change was
performed. Also, we expect that dificulty, size, and interval
would vary strongly across different types of changes.

To test these hypotheses we have designed a program
which automatically classi$es maintenance activity based
on a textual description of changes. Developer surveys
showed that the automatic classijication was in agreement
with developer opinions. Tests of the classifer on a differ-
ent product found that size and interval for difSerent types
of changes did not vary across two products.

We have found strong relationships between the type
and size of a change and the time required to carry it out.
We also discovered a relatively large amount of perfective
changes in the system we examined.

From this study we have arrived at several suggestions
on how to make version control data usejid in diagnosing
the state of a software project, without significantly increas-
ing the overhead for the developer using the change man-
agement system.

1 Introduction

The traditional approaches to understanding the software
development process define specific questions, experiments
to answer those questions, and instrumentation needed to
collect data (see, e.g., the GQM model [2]). While such
an approach has advantages (i.e., in some cases defines a

Lawrence G. Votta
Senior Member of Technical Staff

High Availability Platform Development
Motorola, Inc.

Arlington Heights, IL 60004 USA
lvotta 1 @email.mot.com

controlled experiment), we believe that a less intrusive and
more widely applicable approach would be to obtain the
fundamental characteristics of a process from the exten-
sive data available in every software development project.
To ensure that our methods could be easily applied to any
such project, we used data from a version control system.
Besides being widely available, the version control system
provides a data source that is consistent over the duration
of the project (unlike many other parts of the software de-
velopment process). Our model of a minimal version con-
trol system (VCS) associates date, time, size, developer, and
textual description with each change.

Implicit in our approach is the assumption that we con-
sider only software process properties observable or deriv-
able from the common source - VCS. Because VCSs are
not designed to answer questions about process properties
(they are designed to support versions and group develop-
ment), there is a risk that they may contain minimal amounts
of useful process information despite their large size. There
may be important process properties that can not be ob-
served or derived from VCSs and require more specialized
data sources.

The quantitative side of our approach focuses on finding
main factors that contribute to the variability of observable
quantities: size, interval, quality, and effort. Since those
quantities are interdependent, we also derive relationships
among them. We use developer surveys and apply our meth-
ods on different products to validate the findings.

This work exemplifies the approach by testing the hy-
pothesis that a textual description field of a change is essen-
tial to understand why that change was performed. Also,
we hypothesize that difficulty, size, and interval would vary
across different types of changes.

To test our hypotheses, we analyzed a version control
database of a large telecommunications software system
(System A). We designed an algorithm to classify automat-
ically changes according to maintenance activities based on
the textual description field. We identified three primary

1063-6773lOO $10.00 0 2000 IEEE
120

mailto:research.bell-1abs.com
mailto:email.mot.com

reasons for change: adding new features (adaptive), fixing
faults (corrective), and restructuring the code to accommo-
date future changes (perfective), consistent with previous
studies, such as, [22] . It should be noted that our charac-
terizations of adaptive and perfective maintenance are not
entirely consistent with the literature (see, e.g., [9]), where
new features requested by a user are considered to be per-
fective maintenance, while new features required by new
hardware or new software interfaces are considered to be
adaptive maintenance.

We discovered a high level of perfective activity in the
system, which might indicate why it has been so long on
the market and remains the most reliable among compara-
ble products. We also discovered that a number of changes
could not be classified into one of the primary types. In
particular, changes to implement the recommendations of
code inspections were numerous and had both perfective
and corrective aspects. The three primary types of changes
(adaptive, corrective, perfective), as well as inspection re-
work, are easily identifiable from textual description and
have strikingly different size and interval. The types of
changes and frequency of changes have been found to be
related to the age and size of a software module in [141.

To verify the classification we did a survey where we
asked developers of System A to classify their own recent
changes. The automatic classification was in line with de-
veloper opinions. We describe methods and results used to
obtain relationships between the type of change and its size
or interval.

We then applied the classifier to a different product (Sys-
tem B) and found that the change size and interval varies
much less between products than between types of changes.
This indicates that size and interval might be used to iden-
tify the reason for a change. It also indicates that this clas-
sification method is applicable to other software products
(i.e., it has external validity). We conclude by suggesting
new ways to improve the data collection in the configura-
tion management systems.

Sections 2 describes the System A software product.
Section 3 introduces the automatic classification algorithm
and Section 4.1 describes the developer validation study.
We illustrate some of the uses of the classification by in-
vestigating size, interval, and difficulty for different types
of changes in Section 5. In Subsection 5.2 the classifier is
applied to System B. Finally, we conclude with recommen-
dations for new features of change control systems to allow
analysis of the changes and hence the evolution of a soft-
ware product.

2 Software product data

Our database was version control and maintenance
records from a multi-million line real-time software system

that was developed over more than a decade. The sourc2
code is organized into subsystems with each subsystem fur-
ther subdivided into a set of modules. Each module con-
tains a number of source code files. The change history
of the files is maintained using the Extended Change Man-
agement System (ECMS) [161, for initiating and tracking
changes, and the Source Code Control System (SCCS) [191,
for managing different versions of the files. Our data con-
tained the complete change history, including every mod-
ification made during the project, as well as many related
statistics.

Description

Time Date File, Module

Developer #lines add., del

Figure 1. Changes to the code (bold boxes)
and associated attributes. Each modification
request contains a number of deltas.

Each logically distinct change request is recorded as a
Modification Request (MR) by the ECMS (see Figure 1).
Each MR is owned by a developer, who makes changes to
the necessary files to implement the MR. The lines in each
file that were added, deleted and changed are recorded as
one or more “deltas” in SCCS. While it is possible to imple-
ment all MR changes restricted to one file by a single delta,
but in practice developers often perform multiple delta on
a singe file, especially for larger changes. For each delta,
the time of change, the login of the developer who made
the change, the number of lines added and deleted, the as-
sociated MR, and several other pieces of information are all
recorded in the ECMS database. This delta information is
then aggregated for each MR. Each MR has associated En-
glish text describing reasons for the change and the change
itself. There is no protocol on how and what information is
entered, but the text is sufficient for other developers to un-
derstand what changes were made and why. A detailed de-
scription of how to construct change measures is provided
in [17].

In the analysis that follows we use the following mea-
sures of size: the number of deltas, numbers of lines of
code added, deleted, and unmodified by the change. To ob-
tain these measures we simply count all deltas in a change
and add the last three measures over all deltas in a change
(each SCCS delta records numbers of lines of code added,
deleted, and unmodified). We measure interval of a change
by the time lag between the first and the last delta in a
change.

We selected a subsystem (System A) for our analysis.

12 1

The subsystem contains approximately 2M source lines,
3000 files, and 100 modules. Over the last decade it had
33171 MRs, each having an average of 4 deltas. Although
it is a part of a larger system, the subsystem functionality is
sold as a separate product to customers.

3 Classification of Maintenance Activities

Although the three primary maintenance activities (adap-
tive, corrective, and perfective) are well known, it is not
clear what portion of the total number of changes resulted
from each type of activity, or whether additional types of
maintenance activities exist. Since the version control data
generally does not keep an attribute that would identify the
purpose of a change, we looked for this information by an-
alyzing the textual abstract of the change. Information re-
trieval literature (see [20, 18, 131) deals with text catego-
rization problems focusing on information retrieval, i.e., ob-
taining a set of documents relevant to user query, large text
documents (change abstracts have only 4 to 20 words), and
extensive training collections. Since we are not interested
in retrieving abstracts that match a particular user query, but
instead in discovering purposes, amounts, and locations (in
time and within the source code) of different maintenance
activities, we had to design an algorithm that is fine-tuned
for this kind of classification of change abstracts.

The classification proceeds in five steps:

1. cleanup and normalization;

2. word frequency analysis;

3. keyword clustering and classification and simple clas-
sification rules;

4. MR abstract classification;

5. repetition of the analysis starting from step two on un-
classified MR abstracts.

3.1 Normalization Step

In the nomialization step, the abstracts were cleaned by
removing non-alphanumeric symbols, converting all words
to lower case, and obtaining the stem of each word using
publicly available WordNet [3] software, This step was
done to reduce the number of keywords; for example, fix,
fixing, andfixes are all mapped to a single termfix. We did
not use the synonym capability of WordNet since the re-
lationship between concepts used in software maintenance
might differ from the relationships found in the natural lan-
guage.

3.2 Word Frequency Analysis

The next step consists of word frequency and semantic
analysis. We obtained frequencies of all the words in the
textual description of maintenance requests and manually
classified the most frequent terms as being neutral (e.g., the,
for, to, code, etc.), or reflecting a particular type of mainte-
nance activity. We envisioned three primary types of main-
tenance: fault fixes for keywords such as@, problem, in-
correct, correct; new code development for keywords add,
new, mod@, update; and code improvement for keywords
cleanup, unneeded, remove, rework.

3.3 Keyword Clustering

Since some of the words (especially frequent words)
might be used in abstracts describing types of changes not
associated with the primary meaning of the keyword, we
ensured that keywords have enough discriminating power
by using the following procedure:

1. For each selected teim we read the description of 20
randomly selected changes that contained the term to
see if the abstract describes the change of the same
type as that assigned to the keyword.

2. If a term matched less than three fourths of the ran-
domly selected abstracts, the term was deemed to be
neutral.

The described decision rule is designed to reject the null
hypothesis at 0.05 level that half or less of the MR abstracts
containing the term belong to the type assigned to the key-
word.

As a result of this activity, we discovered that the term re-
work is frequently used in conjunction with code inspection.
The development process in this environment requires for-
mal code inspections for any changes in excess of 50 lines
of source code. Code inspection is performed by a team of
experts who review the code and recommend changes [7,8].
Typically, those changes are then implemented by a devel-
oper in a separate MR. The purpose of such changes is both
corrective and perfecting, reflecting errors found and minor
code improvements recommended in a typical code inspec-
tion. Since code inspection changes are an essential part
of the new code development and contain a mixture of pur-
poses, we chose to place code inspection changes in a sepa-
rate class to be able better to discern the patterns of changes
that have a single purpose. As it turned out, the developer
perception of change difficulty and the size of code inspec-
tion changes were distinct from other types of changes.

After keyword classification, we looked at keywords and
designed simple rules to resolve some of the conflicts when
keywords of several types are present in one abstract. For

122

example, the presence of code inspection terms would as-
sign an abstract to the inspection category, independent of
the presence of other terms like new, orfix. The rules were
obtained based on our knowledge of the change process (to
interpret the meaning of the keyword) and the knowledge
obtained from classifying the keywords.

3.4 MR Classification Rules

MR classification rules are applied in sequence and each
rule is applied only if no class has already been assigned by
a previous rule.

1. Any inspection keyword implies code inspection class.
Since the inspection change usually has both perfec-
tive and corrective aspects, that is often reflected by
appropriate keywords in the abstract. The rule, in ef-
fect, ignores such keywords to identify the inspection

the change as a fault fix. The resulting classification is pre4
sented in Table 1. It is worth noting that the unclassified
MRs represent fewer delta than the classified MRs (1 2% of
MRs were unclassified but less than 10% of delta, added,
deleted, or unmodified lines).

A number of change properties are apparent or can be
derived from this table.

1. Adaptive changes accounted for 45% of all MRs, fol-
lowed by corrective changes that account for 34%
(46% if we consider the fact that most unclassified
changes are corrective).

2. Corrective changes add and delete few lines (they ac-
count for 34% to 46% of all changes and only for 18%
to 27% of all added and deleted lines).

3. Inspection changes are largest in delta, deleted lines,
and unchanged lines.

change. 4. Perfective changes delete most lines per delta (we can

2. If fix, bug, errol; jixup, fail are present, the change
is classified as corrective. In the keyword classifica-

see that by looking at the ratio of percentages in the
deleted lines row divided by percentages in the delta

tion step, all changes with such keywords in their ab-
stracts had been corrective, indicating that the presence
of such keyword strongly increases the probability that
the change is corrective. This rule reflects that knowl-
edge.

row).

5. Adaptive changes changed smallest files (ratio of per-
centages in the unchanged lines row divided by per-
centages in the MR row). This is not too surprising,
since new files are often created to implement new
functionality and problems are fixed in larger, mature
files. 3. Presence of a keyword determines the type, but if more

than one type of keyword is present, the type with most
keywords in the abstract prevails, with ties resolved in
favor of perfective and then corrective types.

A more detailed analysis of size and interval relation-
ships is presented in Section 5.1.

Following examples illustrate the three rules (the actual
module, function, and process names have been replaced
by three letters). The abstract “Code inspection fixes for
module XXX’ will be classified as an inspection because of
keyword inspection. The abstract “Fix multiple YYY prob-
lem for new ZZZ process” will be classified as corrective
because of keywordfix. The abstract “Adding new func-
tion to cleanup LLL” will be classified as adaptive because
there are two adaptive keywords add and new and only one
perfective keyword cleanup.

The MRs abstracts where none of the rules applied, were
subjected to classification step 2 (word frequency analysis)
and then step 3. There were 33 171 MRs of which 56 percent
were classified (one of the rules did apply) in the first round
and another 32 percent in the second round leaving 12 per-
cent unclassified after the second round. As we later found
from developer survey, the unclassified MRs were mostly
corrective. One of the possible reasons is that adaptive,
perfective, and inspection changes need more explanation,
while corrective activity is mostly implied and the use of
corrective keywords is not considered necessary to identify

4 Validation

The automatic algorithm described above performs clas-
sification based solely on textual abstract. To validate the
results we collected additional data via the developer sur-
vey described in the next section. We also used change size
and interval (Section 5.1) to validate the algorithm on a dif-
ferent product (Section 5.2).

4.1 Developer Survey

To calibrate our automatic classification with the devel-
oper opinions, we asked a sample of developers to classify
their recent MRs. To minimize respondent time and to max-
imize respondent recall, the survey was done in two stages.
In the preliminary stage, a questionnaire containing 10 MRs
was given to two developers who were asked to “debug”
the survey process and to fine-tune the questions. In the
second stage, five other developers were asked to classify
30 of their MRs. The sampling of MRs and the number of

123

Table 1. Result of the MR Classification Algorithm.

NOTE: Percentages and totals are presented for MRs, delta, and for lines added, deleted, or unmodified by an MR. In the totals column the number of

Dev. Clsfn.
Corrective

unmodified lines are added over all changes and is much higher than the total number of lines in any version of the source code.

Automatic Classification
Corr. I Adapt. I Perf. I Insp. I Uncl.

6 1 0 1 1 1 0 1 0

classes was changed in accordance with the results from the
preliminary survey.

Adaptive
Other

4.1.1 Survey Protocol

First we have randomly selected 20 candidate developers
who had been working in the organization for more than 5
years and completed most 50 MRs over the last two years.
The developer population at the time was stable for the last
six years so most developers were not novices.

The subsystem management then selected 8 developers
from the list of candidates. The management chose them
because they were not on tight deadline projects at the time
of the survey. We called the developers to introduce the
goals, format, and estimated amount of developer time (less
than 30 minutes) required for the survey and asked for their
commitment. Only one developer could not participate.

After obtaining developer commitment we sent the de-
scription of the survey and the respondents’ “bill of rights”:

0 5 2 4 1
0 0 1 0 0

The researchers guarantee that all data collected
will be only reported in statistical summaries or in
a blind foimat where no individual can be identi-
fied. If any participants at any time feel that their
participation in this study might have negative ef-
fects on their performance, they may withdraw
with a full guarantee of anonymity.

None of the developers withdrew from the survey.
The survey forms are described in Appendix.

4.2 Survey design and results

All of the developers surveyed have completed many
more than 30 hlIRs in the past two years, so we had to sam-
ple a subset of the MRs to limit their number to 10 in the
preliminary phase and 30 in the secondary phase.

In the first stage we sampled uniformly from each type of
MR. The results of the survey (see tables below) indicated
almost perfect correspondence between developer and au-
tomatic classification. The MRs classified as other by the

developer were typical perfective MRs, as was indicated
in the response comment field and in the subsequent in-
terview. We discovered that perfective changes might be
classified both as corrective or adaptive, while all four in-
spection changes were classified as adaptive.

Table 2. Classification Correspondence Ta-
ble.

NOTE: This table compares labels for 20 MRs between the program doing
automatic classification (columns) and developer classification in the pre-
liminary study. Consider the cell with the row labeled ”Adaptive” and the
column labeled ”Perfective”. There are 2 MRs in this cell indicating that
the developer classified the MRs as ”Adaptive” and the program classified
them as ”Perfective”.

To get a full picture in the second stage we also sampled
from unclassified MRs and from the perfective and inspec-
tion classes. To obtain better discrimination of the perfec-
tive and inspection activity we sample with higher proba-
bility from from the perfective and inspection classes than
from other classes. Otherwise we might have ended with
one or no MRs per developer in these two classes.

The survey indicates that automatic classification is
much more likely to leave corrective changes unclassified.
Hence we assigned all unclassified changes to the type cor-
rective. In the results that follow we assume that all unclas-
sified changes are corrective. This can be considered as the
last rule of the automatic classification in Section 3.4.

The overall comparison of developer and automatic clas-
sification is in Table 4.

We discussed the two MRs in the row “Other” with the
developers. Developers indicated that both represented a
perfective activity, however we excluded the two MRs from
the further analysis.

124

Table 3. Comparison Between Automatic and
Developer Classification in Follow-up Study
of 150 MRs.

Perf.
InsD.

Automatic Classification

10 8 21 9
1 0 0 21

Table 4. Comparison Between Automatic
(columns) and Developer Classification in
Both Studies

C
ai

Automatic Classification
Dev. Clsfn. Corr. Adapt. Perf. Insp.

AdaDt.

15 157
3 9.4 12 147

, _ I

7
7; ;

I I I I

Other I 0 1 0 1 2 1 0

1 104.4 8 26.5
1 17.4 7 9.16 More than 61% of the time, both the developer and the

program doing the automatic classification put changes in
the same class. A widely accepted way to evaluate the
agreement of two classifications is Cohen’s Kappa (K) [4]
which can be calculated using a statistics package such as
SPSS. The Kappa coefficient for Table 4 is above 0.5 indi-
cating moderate agreement [6].

To investigate the structure of the agreement between
the automatic and developer classifications we fitted a log-
linear model (see [151) to the counts of the two-way com-
parison table. The factors included margins of the table as
well as coincidence of both categories.

Let mij be counts in the comparison table, i.e., mij

is the number of MRs placed in category i by automatic
classification and category j by developer classification.
We modeled mi,j to have Poisson distribution with mean
C + ai + /3j + Cif=a, c , p, i I (i = j)yij, where C is the
adjustment for the total number of observations; ai adjusts
for automatic classification margins (E j mij); /3j adjusts
for developer classification margins (xi mij); I (i = j) is
the indicator function; yij represents interactions between
the classifications; and indexes a, c , p, i denote adaptive,
corrective, perfective, and inspection classes.

In Table 5 we compare the full model to simpler models.
The low residual deviance (RD) of the second model indi-

cates that the model explains the data well. The differen&
between the deviances of the second and the third models
indicates that the extra factor 7;; (that increases the degrees
of freedom (DF) by 1) is needed to explain the observed
data.

Table 5. Model Comparison

Model formula I DF I RD I

NOTE: Model comparison shows that inspection changes are much more
likely to have automatic and developer classifications match than are the
other types of changes (estimates in the second model are y;; = 1.7, y =
0.65).

ANOVA table for the second model (Table 6) illustrates
the relative importance of different factors.

Table 6. ANOVA Table for the Second Model
I Factor I DF I Deviance I Resid. DF I RD I

I 0; I 3 1 16.5 I 9 I 131 1

NOTE: This table shows that the similarity between two classifications
is the most important factor in explaining count distribution, followed by
even stronger similarity for the inspection class.

The fact that the coefficient y is significantly larger than
zero shows that there is a significant agreement between the
automatic and developer classifications. The fact that the
coefficient yii is significantly larger than zero shows that in-
spection changes are easier to identify than other changes.
This is not surprising, since for the less frequent types of
changes, developers feel the need to identify the purpose,
while for the more frequent types of changes the purpose
might be implied and only a more detailed technical de-
scription of the change is provided.

5 Profiles of Maintenance Types

This section exemplifies some of the possibilities pro-
vided by the classification. After validating the classifica-
tion using the survey, we proceeded to study the size and
interval properties of different types of changes. Then we
validated the classification properties by applying them to a
different software product.

125

The change interval is important to track the time it takes
to resolve problems (especially since we determined which
changes are corrective), while change size is strongly re-
lated to effort, see, e.g. [13.

5.1 How purpose influences size and interval

Figure 2 compares empirical distribution functions of
change size (numbers of added and deleted lines) with
change interval for different types of changes. Skewed dis-
tribution, large variances, and integer values make more tra-
ditional summaries, such as boxplots and probability den-
sity plots, less effective. Because of a large sample size,
the empirical distribution functions had small variance and
could be reliably used to compare different types of main-
tenance activities.

Change Interval

I 10 50 am
D a y s

Lines Added

0 I
t 5 I" so tm 5a) ,MO 5"

Numbrr of Liner

Lines Deleted

0 I
3 5 I" so Iuo 5uo I-

Numbcr of Liner

Figure 2. The three plots compare empiri-
cal distribution functions of change interval,
added lines, and deleted lines for corrective
(solid line), adaptive (dotted line), perfective
(dashed line), and inspection (long-dashed
line) types of changes. Adaptive changes
add the most code and take the most time
to complete. Inspection changes delete the
most code, and corrective changes take the
least time to complete.

The empirical distribution functions in Figure 2 are in-
terpreted as follows: the vertical scale defines the observed

probability that the value of a quantity is less than the valuz
of the corresponding point on the curve as indicated on the
horizontal axis. In particular, the curves to the right or
below other curves indicate larger quantities, while curves
above or to the left indicate smaller quantities.

The interval comparison shows that corrective changes
have the shortest intervals, followed by perfective changes.
The distribution functions for inspection and adaptive
changes intersect at the 5 day interval and 65th percentile.
This shows that the most time consuming 35 percent of
adaptive changes took much longer to complete than the the
most time consuming 35 percent of inspection changes. On
the other hand, the least time consuming 60 percent of in-
spection changes took longer to complete than correspond-
ing portion of adaptive changes. This is not surprising, since
formal inspection is usually done only for changes that add
more than 50 lines of code. Even the smallest inspections
deal with relatively large and complex changes so imple-
menting the inspection recommendations is rarely a trivial
task.

As expected, new code development and inspection
changes add most lines, followed by perfective, and then
corrective activities. The inspection activities delete much
more code than does new code development, which in turn
deletes somewhat more than corrective and perfective activ-
ities.

All of those conclusions are intuitive and indicate that
the classification algorithm did a good job of assigning each
change to the correct type of maintenance activity.

All the differences between the distribution functions are
significant at the 0.01 level using either the Kruskal-Wallis
test or the Smirnov test (see [121). Traditional ANOVA also
showed significant differences, but we believe it is inappro-
priate because of the undue influence of extreme outliers
in highly skewed distributions that we observed. Figure 3
shows that even the logarithm of the number of deleted lines
has a highly skewed distribution.

5.2 Variation across products

This section compares the size and interval profiles be-
tween changes in different products to validated the clas-
sification algorithm on a different software product. We
applied the automatic classification algorithm described in
Section 3 to a different software product (System B) devel-
oped in the same company.

Although System B was developed by different people
and in a different organization, both systems have the same
type of version control databases and both systems may
be packaged as parts of a much larger telecommunications
product. We used the keywords obtained in the classifica-
tion of System A, so there was no manual input to the auto-
matic classification algorithm. System B is slightly bigger

126

Change Interval

Deleted Lines t 1

Figure 3. The histogram for the numbers of
lines deleted by a delta. Even the logarithm
has a highly skewed distribution.

and slightly older than System A and implements different
functionality.

Figure 4 checks whether the types of changes are differ-
ent between the two products in terms of the empirical dis-
tribution functions of change size (numbers of added and
deleted lines), and change interval.

The plots indicate that the differences between prod-
ucts are much smaller than the differences between types
of changes. This suggests that the size and interval charac-
teristics can be used as a signature of change purpose across
different software products. However, there are certain dif-
ferences between the two systems:

1. all types of changes took slightly less time to complete
in System B;

2. all types of changes added more lines in System B;

3. corrective changes deleted slightly more lines in Sys-
tem B.

We can not explain the nature of these small differences ex-
cept that they might be due to the different functionality and
developer population in System B.

5.3 Change difficulty

This section illustrates a different application of the
change classification by a model relating difficulty of a
change to its type. In the survey (see Section 4.1) developers
matched purpose with perceived difficulty for 170 changes.
To check the relationship between type and difficulty we
fitted a log-linear model to the count data in a two-way ta-
ble: type of changes (corrective, adaptive, perfective, or in-
spection) versus difficulty of the change (easy, medium, and
hard). Table 7 shows that corrective changes are most likely
to be rated hard, followed by perfective changes. Most in-
spection changes are rated as easy.

- I
I 5 1 0 5 0 1 0 0 500

D r y s

Lines Added

- I
1 5 1 0 5 0 100 5 0 0 1000 5000

Number of Lines

Lines Deleted

- I
I 5 1 0 5 0 1 0 0 5 w I O 0 0

Number of Lines

Figure 4. Comparison of two products in
terms of empirical distribution functions of
change interval and numbers of added or
deleted lines for corrective, adaptive, perfec-
tive, and inspection changes.

Table 7. Difficulty versus Type of Change.

I Easy I Medium I Hard
corrective I 18 I 21 I 12 11
inmection

NOTE: Corrective changes tend to be the hardest while inspection changes
are almost always easy.

127

In the next step we fitted a linear model to find the re-
lationship between difficulty and other properties of the
change. Since the difficulty might have been perceived dif-
ferently by different developers, we included a developer
factor among the predictors. To deal with two outliers in
the interval (the longest three MRs took 112, 91, and 38
days to complete); we used a logarithmic transformation on
the intervals.

We started with the full model:

D i f f i c u l t y = Size + Zog(1ntervaZ + 1)+
isAdaptive + isCorrective + i sPer f ective +
idnspec t ion + Developer + ETTOT.

Using stepwise regression we arrived at a smaller model:

D i f f i c u l t y = S i ze + log(IntervaZ + 1)+
iscorrective + i s p e r f ective + Developer + ETTOT.

Because numbers of delta, numbers of added or deleted
lines, and numbers of files touched were strongly correlated
with each other, any of those change measures could be
used as a change size predictor in the model. We chose
to use the number of delta because it is related to the num-
ber of files touched (you need at least one delta for each file
touched) and to the number of lines (many lines are usually
added over several days often resulting in multiple check-
ins). As expected, the difficulty increased with the numbers
of deltas, except for the corrective or perfective changes,
which may be small but are still very hard. Not surprisingly,
developers had different subjective scales of difficulty. Ta-
ble 8 gives an analysis of variance (ANOVA) for the full
model and Table 9 gives ANOVA for the model selected by
stepwise regression. Since R values are so similar, the sec-
ond model is preferable because it is simpler, having three
fewer parameters. We see that the three obvious explana-
tory variables are size, corrective maintenance, and devel-
oper identity. The other two explanatory variables (interval
and perfective type), although present in the final model,
are not as strong because their effect is not clearly differ-
ent from zero. This may appear surprising, because interval
seems like an obvious indicator of difficulty. However, this
is in line with other studies where the change interval (in
addition to size) does not appear to help predict change ef-
fort [l , 11, 211. One possible explanation is that the size
might account for the difficult adaptive changes, while cor-
rective changes have to be completed in a short time, no
matter how difficult they might be.

6 Summary

We studied a large legacy system to test the hypothesis
that historic version control data can be used to determine

Table 8. The Full Model with R = 0.642

Factor
S i ze

log(1ntervaZ + 1)
iscorrective 11.8 +
is Adaptive
isperfective
isInspection
Developer 10.3
Residuals 156 43.6

I I I I

Table 9. The Full Model with R = 0.633

factor I DF I Sumof Sq. I p-Val. 1 dir.
S i ze I 1 1 7 1 0 1 +

isperfective
DeveloDer

t Residuals I 159 I 45.8 I

the purpose of software changes. The study focused on the
changes, rather than the source code. To make results ap-
plicable to any software product, we assume a model of a
minimal VCS so that any real VCS would contain a super-
set of considered data.

Since the change purpose is not always recorded, and
when it is recorded the value is often not reliable, we
designed a tool to extract automatically the purpose of a
change from the textual description. (The same algorithm
can also extract other features). To verify the validity of the
classification, we used the developer surveys and we also
applied the classification to a different product.

We discovered four identifiable types of changes: adding
new functionality, repairing faults, restructuring the code to
accommodate future changes, and code inspection rework
changes that represent a mixture of corrective and perfec-
tive changes. Each has a distinct size and interval profile.
The interval for adaptive changes is the longest, followed
by inspection changes, with corrective changes being the
smallest.

We discovered a strong relationship between the diffi-
culty of a change and its type: corrective changes tend to be
the most difficult, while adaptive changes are difficult only
if they are large. Inspection changes are perceived as the
easiest. Since we were working with large non-Gaussian
samples, we used non-parametric statistical methods. The
best way to understand size profiles was to compare empir-

128

ical distribution functions.
In summary, we were able to use data available in a ver-

sion control system to discover significant quantitative and
qualitative information about various aspects of the soft-
ware development process. To do that we introduced an
automatic method of classifying software changes based
on their textual descriptions. The resulting classification
showed a number of strong relationships between size and
type of maintenance activity and the time required to make
the change.

7 Conclusions

Our summaries of the version control database can be
easily replicated on other software development projects
since we use only the basic information available from any
version control database: time of change, numbers of added,
deleted, and unchanged lines, and textual description of the
change.

We believe that software change measurement tools
should be built directly into the version control system to
summarize fundamental patterns of changes in the database.

We see this work as an infrastructure to answer a num-
ber of questions related to effort, interval, and quality of
the software. It has been used in work on code fault poten-
tial [101 and decay [5]. However, we see a number of other
important applications. One of the questions we intend to
answer is how perfective maintenance reduces future effort
in adaptive and corrective activity.

The textual description field proved to be essential to
identify the reason for a change, and we suspect that other
properties of the change could be identified using the same
field. We therefore recommend that a high quality tex-
tual abstract should always be provided, especially since we
cannot anticipate what questions may be asked in the future.

Although the purpose of a change could be recorded as
an additional field there are at least three important reasons
why using textual description is preferable:

The description of the
change is essential for other purposes, such as inform-
ing other developers about the content of the change;

2. to reduce process influences. The development process
often specifies deadlines after which no new function-
ality may be contributed, but in practice there are ex-
ceptions that result in relabeling of the true purpose of
the change according to process guidelines;

1. to reduce developer effort.

3. to minimize developer bias. Developers opinions may
vary and thus influence the labeling of MRs. Us-
ing textual description avoids this problem (however
it may introduce a different bias due to differences in
vocabulary different developers use to describe their
MRs.

Acknowledgments

We thank the interview subjects and their management
for their support. We also thank Dave Weiss and IEEE TSE
reviewers for their extensive comments.

References

[11 D. Atkins, T. Ball, T. Graves, and A. Mockus. Using
version control data to evaluate the effectiveness of
software tools. In 1999 International Conference on
Software Engineering, Los Angeles, CA, May 1999.
ACM Press.

[2] V. R. Basili and D. M. Weiss. A methodology for
collecting valid software engineering data. IEEE
Transactions on Software Engineering, 10(6):728-
737,1984.

[3] R. Beckwith and G. A. Miller. Implementing a lexi-
cal network. International .Journal of Lexicography,
3(4):302-312, 1990.

[4] J. Cohen. A coefficient of aggreement for nominal
scales. Educational and Psychological Measurement,
20137-46, 1960.

[5] S. G. Eick, T. L. Graves, A. E Karr, J. S. Marron, and
A. Mockus. Does code decay? Assessing the evidence
from change management data. IEEE Transactions on
Software Engineering, 2000. To appear.

[6] K. El Emam. Benchmarking kappa for software pro-
cess assessment reliability studies. Technical Re-
port ISERN-98-02, International Software Engineer-
ing Network, 1998.

[7] M. E. Fagan. Design and code inspections to reduce
errors in program development. IBM Systems Journal,
15(3):182-211, 1976.

[8] M. E. Fagan. Advances in software inspections. IEEE
Trans. on Software Engineering, SE- 12(7):744-75 1 ,
July 1986.

[9] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Software
Engineering. Prentice Hall, Englewood Cliffs, New
Jersey, 199 1.

[IO] T. L. Graves, A. E Karr, J. S. Marron, and H. P. Siy.
Predicting fault incidence using software change his-
tory. IEEE Transactions on Software Engineering,
2000. to appear.

129

Type (N/B/I/C/O) Effort (E/M/H) Project I MR Opened
wx4862 18aF Foo52f 1 1/9/95

[111 T. L. Graves and A. Mockus. Inferring change effort
from configuration management databases. Metrics
98: Fijth International Symposium on Software Met-
rics, November 1998.

[121 M. Hollander and D. A. Wolfe. Nonparametric Statis-
tical Methods. John Willey, New York, 1973.

[131 P. S. Jacobs. Text-Based Intelligent Systems. Lawrence
Erlbaum, 1992.

[14] C. F. Kemerer and S. A. Slaughter. Determinants of
software maintenance profiles: An empirical investi-
gation. Software Maintenance: Research and Prac-
tice, 9(4):235-251, 1997.

[151 P. McCullagh and J. A. Nelder. Generalized Linear
Models, 2nd ed. Chapman and Hall, New York, 1989.

[161 A. K. Midha. Software configuration management for
the 21st century. Bell Labs Technical Joumal, 2(1),
Winter 1997.

[171 A. Mockus, S. G. Eick, T. L. Graves, and A. F. Karr.
On measurement and analysis of software changes.
Technical Report BLOll3590-99040 1 -06TM, Lucent
Technologies, 1999.

[181 C. J. Van Rijsbergen. Information Retrieval. Butter-
worths, London, 1979.

[I91 M. J. Rochkind. The source code control system.
IEEE Trans. on Software Engineering, 1 (4):364-370,
1975.

Last Delta
1 / 17/95

[20] G. Salton. Automatic text processing: the transfor-
mation, analysis, and retrieval of information by com-
puter. Addison-Wesley, Reading, Mass., 1989.

[21] H. P. Siy and A. Mockus. Measuring domain engi-
neering effects on software coding cost. In Metrics
99: Sixth International Symposium on Software Met-
rics, pages 304-3 1 1, Boca Raton, Florida, November
1999.

Modules: uhdr/wx

[22] E. B. Swanson. The dimensions of maintenance. In
Proc. 2nd Con$ on Software Engineering, pages 492-
497, San Francisco, 1976.

Files: I WXd5ac2.G

Appendix

7.0.1 Survey Form

The preliminary survey form asked the developers to limit
their time to 20 minutes and presented a list of MRs to be
classified. (Table 10 shows the classification information
for one MR requested from the developer.) The list was
preceded by the following introduction.

Listed below are 10 MRs that you have worked
on during the last two years. We ask you to please
classify them according to whether they were (1)
new feature development, (2) software fault or
"bug" fix, (3) other. You will also be asked to
rate the difficulty of carrying out the MR in terms
of effort and time relative to your experience and
to record a reason for your answer if one occurs
to you.
For each MR, please mark one of the types (N =
new, B = bug, 0 = other), and one of the levels of
difficulty (E = easy, M = medium, H = hard). You
may add a comment at the end if the type is 0 or
if you feel it is necessary.

The second stage survey form began with the following
introduction.

Listed below are 30 MRs that you have worked
on during the last two years. We ask you to please
classify them according to whether they were (1)
new feature development, (2) software fault or
"bug" fix, (3) the result of the code inspection, (4)
code improvement, restructuring, or cleanup, (5)
other. You will also be asked to rate the difficulty
of carrying out the MR in terms of effort and time
relative to your experience, and to record a reason
for your answer if one occurs to you.
For each MR, please mark one of the type options
(N = new, B = bug, I = inspection, C = cleanup,
0 = other), and one of the levels of difficulty (E
= easy, M = medium, H = hard), You may add a
comment at the end if the type is 0 or if you feel
it is necessary.

130

