
4

Predicting Bugs from History

Thomas Zimmermann1, Nachiappan Nagappan2, and Andreas Zeller1

1 University of Calgary, Alberta, Canada
2 Microsoft Research, Redmond, Washington, USA
3 Saarland University, Saarbrücken, Germany

Summary. Version and bug databases contain a wealth of information about software fail-
ures—how the failure occurred, who was affected, and how it was fixed. Such defect infor-
mation can be automatically mined from software archives; and it frequently turns out that
some modules are far more defect-prone than others. How do these differences come to be?
We research how code properties like (a) code complexity, (b) the problem domain, (c) past
history, or (d) process quality affect software defects, and how their correlation with defects
in the past can be used to predict future software properties—where the defects are, how to fix
them, as well as the associated cost.

4.1 Introduction

Suppose you are the manager of a large software project. Your product is almost
ready to be released—where “almost ready” means that you suspect that a number
of defects remain. To find these defects, you can spend some resources for quality
assurance. Since these resources are limited, you want to spend them in the most
effective way, getting the best quality and the lowest risk of failure. Therefore, you
want to spend the most quality assurance resources on those modules that need it
most—those modules which have the highest risk of producing failures.

Allocating quality assurance resources wisely is a risky task. If some non-
defective module is tested for months and months, this is a waste of resources. If
a defective module is not tested enough, a defect might escape into the field, caus-
ing a failure and potential subsequent damage. Therefore, identifying defect-prone
modules is a crucial task for management.

During the lifetime of a project, developers remember failures as well as suc-
cesses, and this experience tells them which modules in a system are most frequently
associated with problems. A good manager will exploit this expertise and allocate re-
sources appropriately. Unfortunately, human memory is limited, selective, and some-
times inaccurate. Therefore, it may be useful to complement it with findings from
actual facts—facts on software defects as found after release.

In most quality-aware teams, accessing these facts requires no more than a sim-
ple database query. This is so because bug databases collect every problem reported

T. Mens, S. Demeyer (eds.), Software Evolution.
DOI 10.1007/978-3-540-76440-3, © Springer 2008



70 T. Zimmermann, N. Nagappan, A. Zeller

Fig. 4.1. Michael Ogawa’s visualisation of the Eclipse Bug Data [401], inspired by Martin
Wattenberg’s “Map of the Market” [536]. Each rectangle stands for a package; the brighter the
rectangle, the more post-release defects it has

about a software product. For a system that already has a large user community, bug
databases are central to the development process: new bugs are entered into the sys-
tem, unresolved issues are tracked, and tasks are assigned to individual developers.
However, as a bug database grows, it can also be used to learn which modules are
prone to defects and failures. This is so because as the problems are fixed, the fixes
apply to individual modules—and therefore, one can actually compute how many de-
fects (or reported failures) some module is associated with. (How to establish these
mappings between bug reports, fixes, and locations is described in Chapter 3 of the
present book.)

Figure 4.1 visualises defect data in the modules of the Eclipse programming en-
vironment. As the picture shows, the distribution of defects across modules is very
uneven. For instance, compiler components in Eclipse have shown 4–5 times as many
defects as user interface components [455]. Such an uneven distribution is not at all
uncommon; Pareto’s law [160, p. 132], for instance, already stated in 1975 that ap-
proximately 80 % of the defects are found in 20 % of the modules. Still, this uneven
distribution calls for our first research question:

Why are some modules more defect-prone than others?

Answering this question helps in understanding the nature of defects—starting
with the symptoms, and then following the cause-effect chain back to a root cause—
and will help avoiding defects in the future.



4 Predicting Bugs from History 71

Unfortunately, at the present time, we have no universal answer for this question.
It appears that every project has its own individual factors that make specific mod-
ules prone to defects and others unlikely to fail. However, we can at least try to cap-
ture these project-specific properties—for instance, by examining and summarising
the common symptoms of defect-prone modules. Coming back to our original set-
ting, knowing these common properties will also help in allocating quality assurance
resources. This will answer the second, more opportunistic, but no less important
question:

Can we predict how defect-prone a component will be?

At first glance, this question may seem absurd. Did we not just discuss how to mea-
sure defect-proneness in the past? Unfortunately, the number of defects in the past
may not be a good indicator of the future:

• Software evolves, with substantial refactorings and additions being made all the
time. Over time, this invalidates earlier measurements about defects.

• The defects we measure from history can only be mapped to components be-
cause they have been fixed. Given that we consider defects that occur after re-
lease, by definition, any measurement of defect-prone components applies to an
already obsolete revision.

For these reasons, we need to devise with predictive methods that can be applied
to new as well as evolved components—predictions that rely on invariants in peo-
ple, process, or structure that allow predicting defects although the code itself has
changed. In the next section, we discuss how to find some of such invariants, and
how they may impact the likelihood of defects.

4.2 What Makes a Module Defect-Prone?

If software needs to be fixed, it needs to be fixed because it does not satisfy a require-
ment. This means that between the initial requirement and the actual deployment of
the software system, some mistake has been made. This mistake manifests itself as
an error in some development artefact, be it requirements, specification, or a design
document. Ultimately, it is the source code that matters most, since it is the realisa-
tion of the software system; errors in source code are called defects. If an error in
some earlier stage does not become a defect, we are lucky; if it becomes a defect, it
may cause a failure and needs to be fixed.

The defect likelihood of some module thus depends on its history—not only its
code history, but the entire history of activities that led to its creation and mainte-
nance. As the code evolves, this earlier history still stays unchanged, and the history
may well apply to other modules as well. Therefore, when trying to predict the error-
proneness of modules, we must look for invariants in their history, and how these
invariants might manifest themselves in modules. In this chapter, we discuss the fol-
lowing invariants:



72 T. Zimmermann, N. Nagappan, A. Zeller

Complexity. In general, we assume that the likelihood of making mistakes in some
artefact increases with
1. the number of details, and
2. the extent of how these details interact and interfere with each other.

This is generally known as complexity, and there are many ways complexity
manifests itself in code. More specifically, complexity metrics attempt to mea-
sure the complexity of code, and therefore, it may be useful to check whether
it is possible to predict defect-proneness based on complexity metrics. This is
discussed in Section 4.3.

Problem domain. As stated initially, software fixes come to be because require-
ments are unsatisfied. This implies that the more likely it is to violate a require-
ment, the higher the chances of making a mistake. Of course, a large number
of interfering requirements results in a higher problem complexity—and should
thus manifest itself in complex code, as described above. However, we assume
that specific problem domains imply their own set of requirements. Therefore,
one should be able to predict defect-proneness based on the domain alone. How
does one determine the problem domain? By examining the modules another
module interacts with, as shown in Section 4.4.

Evolution. Requirements can be unsatisfied for a simple reason: They may be
changing frequently. Modified requirements result in changed code—and there-
fore, code that is frequently changed indicates frequently changing requirements.
The same applies for imprecise requirements or requirements that are not well
understood, where trial-and-error approaches may also cause frequent fixes. Fi-
nally, since changes may introduce new defects [160], a high change rate implies
a higher defect likelihood. Relying on the change rate to predict defects is dis-
cussed in Section 4.5.

Process. Every defect that escapes into the field implies a failure of quality assur-
ance—the defect simply should have been caught during checking, testing, or
reviewing. A good software process can compensate many of the risks described
above; and therefore, the quality of the development process should also be con-
sidered when it comes to predicting defects. We discuss these open issues in
Section 4.6.

The role of these invariants in software development has been analysed before, and
a large body of knowledge is available that relates complexity, the problem domain,
or evolution data to defects. What we see today, however, is the automation of these
approaches. By having bug and change databases available for automated analysis,
we can build tools that automatically relate defects to possible causes. Such tools
allow for product- and project-specific approaches, which may be far more valuable
than general (and therefore vague) recommendations found in software engineering
textbooks. Our results, discussed in the following sections, all highlight the necessity
of such goal-oriented approaches.

Related to this is the notion of software reliability. Software reliability is defined
as the probability that the software will work without failure under specified con-
ditions and for a specified period of time [388]. A number of software reliability



4 Predicting Bugs from History 73

models are available. They range from the simple Nelson model [392] to more so-
phisticated models using hyper-geometric coverage [248] and Markov chains [540].

4.3 Metrics

A common belief is that the more complex code is, the more defects it has. But is
this really true? In order to investigate this hypothesis, we first must come up with
a measure of complexity—or, in other words, a complexity metric. A metric is defined
as quantitative measure of the degree to which a system, component or process pos-
sesses a given attribute [238]; the name stems from the Greek work metron (µέτρoν),
meaning “measure”. Applied to software, a metric becomes a software metric.

Software metrics play an essential part in understanding and controlling the over-
all software engineering process. Unfortunately, metrics can be easily misinterpreted
leading to making poor decisions. In this section, we investigate the relationships
between metrics and quality, in particular defects:

Do complexity metrics correlate with defect density?

4.3.1 Background

We begin this section by quickly summarising some of the more commonly used
complexity metrics in software engineering in Table 4.1. These metrics can be ex-
tracted from the source code information of projects.

Software engineering research on metrics has examined a wide variety of topics
related to quality, productivity, communication, social aspects, etc. We briefly survey
studies investigating the relationship between metrics and software quality.

Studies have been performed on the distribution of faults during development
and their relationship with metrics like size, complexity metrics, etc. [172].

From a design metrics perspective, there have been studies involving the Chi-
damber/Kemerer (CK) metric suite [111]. These metrics can be a useful early internal
indicator of externally-visible product quality [39, 479]. The CK metric suite consist
of six metrics (designed primarily as object oriented design measures):

• weighted methods per class (WMC),
• coupling between objects (CBO),
• depth of inheritance (DIT),
• number of children (NOC),
• response for a class (RFC), and
• lack of cohesion among methods (LCOM).

The CK metrics have also been investigated in the context of fault-proneness.
Basili et al. [39] studied the fault-proneness in software programs using eight stu-
dent projects. They observed that the WMC, CBO, DIT, NOC and RFC metrics were



74 T. Zimmermann, N. Nagappan, A. Zeller

Table 4.1. Commonly used complexity metrics

Metric Description

Lines of code The number of non-commented lines of code
Global variables The number of global variables in a module
Cyclomatic complexity The Cyclomatic complexity metric [479] measures the

number of linearly-independent paths through a program
unit

Read coupling The number of global variables read by a function. (The
function is thus coupled to the global variable through the
read operation)

Write coupling The number of global variables written by a function. (The
function is thus coupled to the global variable through the
write operation)

Address coupling The number of global variables whose address is taken by
a function and is not read/write coupling. (The function is
coupled to the global variable as it takes the address of the
variable)

Fan-in The number of other functions calling a given function in
a module

Fan-out The number of other functions being called from a given
function in a module

Weighted methods per class The number of methods in a class including public, private
and protected methods

Depth of inheritance For a given class the maximum class inheritance depth
Class coupling Coupling to other classes through (a) class member vari-

ables, (b) function parameters, (c) classes defined locally in
class member function bodies. (d) Coupling through imme-
diate base classes. (e) Coupling through return type

Number of subclasses The number of classes directly inheriting from a given par-
ent class in a module

correlated with defects while the LCOM metric was not correlated with defects. Fur-
ther, Briand et al. [82] performed an industrial case study and observed the CBO,
RFC, and LCOM metrics to be associated with the fault-proneness of a class.

Structure metrics take into account the interactions between modules in a prod-
uct or system and quantify such interactions. The information-flow metric defined
by Henry and Kafura [230], uses fan-in (the number of modules that call a given
module) and fan-out (the number of modules that are called by a given module) to
calculate a complexity metric, Cp = (fan-in× fan-out)2. Components with a large
fan-in and large fan-out may indicate poor design. Such modules have to be decom-
posed correctly.



4 Predicting Bugs from History 75

4.3.2 Case Study: Five Microsoft Projects

Together with Thomas Ball we performed a large scale study at Microsoft to inves-
tigate the relation between complexity metrics and defects [390]. We addressed the
following questions:

1. Do metrics correlate with defect density?
2. Do metrics correlate universally with defect density, i.e., across projects?
3. Can we predict defect density with regression models?
4. Can we transfer (i.e., reuse) regression models across projects?

For our study, we collected code complexity metrics and post-release defect data
for five components in the Windows operating system:

• the HTML rendering module of Internet Explorer 6 (IE6)
• the application loader for Internet Information Services (IIS)
• Process Messaging Component—a Microsoft technology that enables applica-

tions running at different times to communicate across heterogeneous networks
and systems that may be temporarily offline.

• Microsoft DirectX—a Windows technology that enables higher performance in
graphics and sound when users are playing games or watching video on their
PC.

• Microsoft NetMeeting—a component for voice and messaging between different
locations.

To protect proprietary information, we have anonymised the components and refer
to them as projects A, B, C, D, and E.

In our study, we observed significant correlations between complexity metrics
(both object oriented (OO) and non-OO metrics) and post-release defects. The met-
rics that had the highest correlations are listed in Table 4.2. The interesting part
of this result is that across projects, different complexity metrics correlated signifi-
cantly with post-release defects. This indicates that none of the metrics we researched
would qualify as universal predictor, even in our closed context of only Windows op-
erating system components.

When there is no universal metric, can we build one by combining existing met-
rics? We tried by building regression models [282] using complexity metrics. In or-
der to avoid inter-correlations between the metrics, we applied principal component

Table 4.2. Metrics with high correlations

Project Correlated Metrics

A Number of classes and five derivations
B Almost all metrics
C All except depth of inheritance
D Only lines of code
E Number of functions, number of arcs, McCabe complexity



76 T. Zimmermann, N. Nagappan, A. Zeller

Table 4.3. Transferring predictors across projects

Project predicted for
Project learned from A B C D E

A – no no no no
B no – yes no no
C no yes – no yes
D no no no – no
E no no yes no –

analysis [246] first. For our regression models, we used the principal components as
independent variables. As a result of this experiment, we obtained for every project
a predictor that was capable of accurately predicting defect-prone components of the
project [390].

Next, we applied these predictors across projects. The results in Table 4.3 show
that in most cases, predictors could not be transferred. The only exceptions are be-
tween projects B and C and between C and E, where predictors are interchange-
able. When comparing these projects, we observed that they had similar development
processes.

A central consequence of this result would be to reuse only predictors that were
generated in similar environments. Put another way: Always evaluate with history be-
fore you use a metric to make decisions. Or even shorter: Never blindly trust a metric.

Key Points

✏ Complexity metrics indeed correlate with defects.
✏ There is no universal metric and no universal prediction model.
✏ Before relying on a metric to make predictions, evaluate it with a true defect

history.

4.4 Problem Domain

The chances of making mistakes depend strongly on the number and complexity of
the requirements that some piece of code has to satisfy. As discussed in the Sec-
tion 4.3, a large number of interfering requirements can result in a higher code com-
plexity. However, this may not necessarily be so: an algorithm may have a very sim-
ple structure, but still may be difficult to get right. Therefore, we expect that specific
requirements, or more generally, specific problem domains, to impact how defect-
prone program code is going to be:

How does the problem domain impact defect likelihood?



4 Predicting Bugs from History 77

Table 4.4. Good and bad imports (packages) in Eclipse 2.0 (taken from [455], ©ACM, 2006)

Packages imported into a component C Defects Total p(Defect |C)

org.eclipse.jdt.internal.compiler.lookup.* 170 197 0.8629
org.eclipse.jdt.internal.compiler.* 119 138 0.8623
org.eclipse.jdt.internal.compiler.ast.* 111 132 0.8409
org.eclipse.jdt.internal.compiler.util.* 121 148 0.8175
org.eclipse.jdt.internal.ui.preferences.* 48 63 0.7619
org.eclipse.jdt.core.compiler.* 76 106 0.7169
org.eclipse.jdt.internal.ui.actions.* 37 55 0.6727
org.eclipse.jdt.internal.ui.viewsupport.* 28 42 0.6666
org.eclipse.swt.internal.photon.* 33 50 0.6600
. . .
org.eclipse.ui.model.* 23 128 0.1797
org.eclipse.swt.custom.* 41 233 0.1760
org.eclipse.pde.internal.ui.* 35 211 0.1659
org.eclipse.jface.resource.* 64 387 0.1654
org.eclipse.pde.core.* 18 112 0.1608
org.eclipse.jface.wizard.* 36 230 0.1566
org.eclipse.ui.* 141 948 0.1488

4.4.1 Imports and Defects

To demonstrate the impact of the problem domain on defect likelihood, let us come
back to the distribution of defects in Eclipse, as shown in Figure 4.1. Let us assume
we want to extend the existing code by two new components from different problem
domains: user interfaces and compiler internals. Which component is more likely to
be defect-prone?

Adding a new dialog box to a GUI has rather simple requirements, in most cases
you only have to extend a certain class. However, assembling the elements of the
dialog box takes lots of additional complicated code. In contrast, using a parser to
build an abstract syntax tree requires only a few lines of code, but has many rather
complicated requirements such as picking the correct parameters. So which domain
more likely leads to defects?

In the context of Eclipse, this question has been answered. Together with Adrian
Schröter, we examined the components that are used as an implicit expression of the
component’s domain [455]. When building an Eclipse plug-in that works on Java
files, one has to import JDT classes; if the plug-in comes with a user interface, GUI
classes are mandatory. Therefore, what a component imports determines its problem
domain.

Once one knows what is imported, one can again relate this data to measured de-
fect densities. Table 4.4 shows how the usage of specific packages in Eclipse impacts
defect probability. A component which uses compiler internals has a 86% chance to
have a defect that needs to be fixed in the first six months after release. However,
a component using user interface packages has only a 15% defect chance.



78 T. Zimmermann, N. Nagappan, A. Zeller

This observation raises the question whether we can predict defect-proneness by
just using the names of imported components? In other words: “Tell me what you
import, and I’ll tell you how many defects you will have.”

4.4.2 Case Study: Eclipse Imports

Can one actually predict defect likelihood by considering imports alone? We built
statistical models with linear regression, ridge regression, regression trees, and sup-
port vector machines. In particular, we addressed the following questions:

Classification. Can we predict whether a component will have defects?
Ranking. Can we predict which components will have the most defects?

For our experiments, we used random splits: we randomly chose one third of the
52 plug-ins of Eclipse version 2.0 as our training set, which we used to build our
models. We validated our models in versions 2.0 and 2.1 of Eclipse. Both times we
used the complement of the training set as the validation set. We generated a total of
40 random splits and averaged the results for computing three values:

• The precision measures how many of the components predicted as defect-prone
actually have been shown to have defects. A high precision means a low number
of false positives.

• The recall measures how many of the defect-prone components are actually pre-
dicted as such. A high recall means a low number of false negatives.

• The Spearman correlation measures the strength and direction of the relation-
ship between predicted and observed ranking. A high correlation means a high
predictive power.

In this section, we discuss our results for support vector machines [132] (which per-
formed best in our evaluation).

Precision and Recall

For the validation sets in version 2.0 of Eclipse, the support vector machines obtained
a precision of 0.67 (see Table 4.5). That is, two out of three components predicted
as defect-prone were observed to have defects. For a random guess instead, the pre-
cision would be the percentage of defect-prone packages, which is only 0.37. The
recall of 0.69 for the validation sets in version 2.0 indicates that two third of the
observed defect-prone components were actually predicted as defect-prone. Again,
a random guess yields only a recall of 0.37.

In practice, this means that import relationships provide a good predictor for
defect-prone components. This is an important result since relationships between
components are typically defined in the design phase. Thus, defect-prone compo-
nents can be identified early, and designers can easily explore and assess design
alternatives in terms of predicted defect risk.



4 Predicting Bugs from History 79

Table 4.5. Predicting defect-proneness of Eclipse packages with Support Vector Machines and
import relations (taken from [455], ©ACM, 2006)

Precision Recall Spearman Correlation

training in Eclipse v2.0 0.8770 0.8933 0.5961

validation in Eclipse v2.0 0.6671 0.6940 0.3002

—top 5% 0.7861
—top 10% 0.7875
—top 15% 0.7957
—top 20% 0.8000

validation in Eclipse v2.1 0.5917 0.7205 0.2842
—top 5% 0.8958
—top 10% 0.8399
—top 15% 0.7784
—top 20% 0.7668

Ranking vs. Classification

The low values for the Spearman rank correlation coefficient in Table 4.5 indicate
that the predicted rankings correlate only little with the observed rankings. However,
the precision values for the top 5% are higher than the overall values. This means that
the chances of finding defect-prone components increase for highly ranked compo-
nents.

In practice, this means that quality assurance is best spent on those components
ranked as the most defect-prone. It is therefore a good idea to analyse imports and
bug history to establish appropriate rankings.

Applying Models Across Versions

The results for the validation sets of Eclipse version 2.1 are comparable to the ones
of version 2.0; for the top 5% and 10% of the rankings, the precision values are even
higher. This indicates that our models are robust over time.

For our dataset, this means that one can learn a model for one version and apply it
to a later version without losing predictive power. In other words, the imports actually
act as invariants, as discussed in Section 4.2.

4.4.3 Case Study: Windows Server 2003

At Microsoft, we repeated the study by Schröter et al. [455] on the defect data of
Windows Server 2003. Instead of import relationships, we used dependencies to de-
scribe the problem domain between the 2252 binaries. A dependency is a directed
relationship between two pieces of code such as expressions or methods. For our ex-
periments, we use the MaX tool [473] that tracks dependency information at the func-
tion level and looks for calls, imports, exports, RPC, and Registry accesses. Again,



80 T. Zimmermann, N. Nagappan, A. Zeller

the problem domain was a suitable predictor for defects and performed substan-
tially better than random (precision 0.67, recall 0.69, Spearman correlations between
0.50 and 0.60).

In addition to the replication of the earlier study (and its results), we also ob-
served a domino effect in Windows Server 2003. The domino effect was stated
in 1975 by Randell [430]:

Given an arbitrary set of interacting processes, each with its own private
recovery structure, a single error on the part of just one process could cause
all the processes to use up many or even all of their recovery points, through
a sort of uncontrolled domino effect.

Applying the domino effect on dependencies, this would mean that defects in
one component can increase the likelihood of defects in dependent components. Fig-
ure 4.2 illustrates this phenomenon on a defect-prone binary B. Out of the three
binaries that directly depend on B (distance d = 1), two have defects, resulting in
a defect likelihood of 0.67. When we increase the distance, say to d = 2, out of the
four binaries depending on B (indirectly), only two have defects, thus the likelihood
decreases to 0.50. In other words, the extent of the domino effect decreases with
distance—just like with real domino pieces.

In Figure 4.3 we show the distribution of the defect likelihood, as introduced
above, when the target of the dependency is defect-prone (d = 1). We also report
results for indirect dependencies (d = 2, d = 3). The higher the likelihood, the more
dependent binaries are defect-prone.

To protect proprietary information, we anonymised the y-axis which reports the
frequencies; the x-axis is relative to the highest observed defect likelihood which was

Fig. 4.2. Example of a domino
effect for a binary B



4 Predicting Bugs from History 81

Fig. 4.3. The domino effect in
Windows Server 2003

greater than 0.50 and is reported as X . The likelihood X and the scale of the x-axis
are constant for all bar charts. Having the highest bar on the left (at 0.00), means that
for most binaries the dependent binaries had no defects; the highest bar on the right
(at X), shows that for most binaries, their dependent binaries had defects, too.

As Figure 4.3 shows, directly depending on binaries with defects, causes most
binaries to have defects, too (d = 1). This effect decreases when the distance d in-
creases (trend towards the left). In other words, the domino effect is present for most
defect-prone binaries in Windows Server 2003. As the distance d increases, the im-
pact of the domino effect decreases. This trend is demonstrated by the shifting of the
median from right to left with respect to the defect likelihood.

Key Points

✏ The set of used components is a good predictor for defect proneness.
✏ The problem domain is a suitable predictor for future defects.
✏ Defect proneness is likely to propagate through software in a domino effect.



82 T. Zimmermann, N. Nagappan, A. Zeller

4.5 Code Churn

Code is not static; it evolves over time to meet new requirements. The way code
evolved in the past can be used to predict its evolution in the future. In particular,
there is an often accepted notion that code that changes a lot is of lower quality—
and thus more defect-prone than unchanged code.

How does one measure the amount of change? Lehman and Belady [320] intro-
duced the concept of code churn as the rate of growth of the size of the software. But
measuring the changes in the size of the software does not necessarily capture all
changes that have occurred during the software development, this is especially true
if the software has been re-architected. More generally, code churn can be defined
as a measure of the amount of code change taking place within a software unit over
time. [389]. The primary question we address in this section is:

Does code churn correlate with defects?

4.5.1 Background

Several researchers have investigated how evolution relates to defects. Ostrand et
al. [408] use information of file status such as new, changed, unchanged files along
with other explanatory variables such as lines of code, age, prior faults etc. to pre-
dict the number of faults in multiple releases of an industrial software system. The
predictions made using binomial regression model were of a high accuracy for faults
found in both early and later stages of development.

Munson et al. [384] studied a 300 KLOC (thousand lines of code) embedded real
time system with 3700 modules programmed in C. Code churn metrics were found
to be among the most highly correlated with problem reports.

Graves et al. [209] predicted fault incidences using software change history. The
most successful model they built computed the fault potential by summing contribu-
tions from changes to the module, where large and/or recent changes contribute the
most to fault potential.

4.5.2 Case Study: Windows Server 2003

In addition to the above research results, we now summarise in detail the results of
a case study performed on Windows Server 2003 [389]. We analysed the code churn
between the release of Windows Server 2003 and the release of the Windows Server
2003 Service Pack 1 (Windows Server 2003-SP1) to predict the defect density in
Windows Server 2003-SP1.

As discussed in Section 4.5.1, there are several measures that can be used to
explain code churn. In our study, we used the following churn measures [389]:

• Total LOC is the number of lines of non-commented executable lines in the files
comprising the new version of a binary.



4 Predicting Bugs from History 83

• Churned LOC is the sum of the added and changed lines of code between a base-
line version and a new version of the files comprising a binary.

• Deleted LOC is the number of lines of code deleted between the baseline version
and the new version of a binary.

• File count is the number of files compiled to create a binary.
• Weeks of churn is the cumulative time that a file was opened for editing from the

version control system.
• Churn count is the number of changes made to the files comprising a binary

between the two versions (Windows Server 2003 and Windows Server 2003-
SP1).

• Files churned is the number of files within the binary that churned.

The overall size of the analysed code base was around 40 million lines of code from
more than 2000 binaries. Using the above extracted metrics from the version control
system, we use a relative approach (as shown in Figure 4.4) to build our statistical
regression models to predict system defect density. Our rationale for relative metrics
is that in an evolving system, it is highly beneficial to use a relative approach to
quantify the change in a system. A more detailed discussion of the experiment is
available in [389].

Using random splitting techniques we used the above “relative” code churn mea-
sures as predictor variables in our statistical models. We selected two-thirds of the
binaries to build our statistical prediction models (multiple regression, logistic re-
gression) to predict overall system defect density/fault-proneness. Based on our sta-

Fig. 4.4. Relative churn measures (taken from [389], ©ACM, 2005)



84 T. Zimmermann, N. Nagappan, A. Zeller

Fig. 4.5. Plot of actual versus estimated defect density (taken from [389], ©ACM, 2005)

tistical analysis we were able to predict system defect density/fault-proneness at high
levels of statistical significance. Figure 4.5, for example, shows the results of the one
of the random split experiments to predict the actual system defect density.

Key Points

✏ The more a component has changed (churned), the more likely it is to have
defects.

✏ Code churn measures can be used to predict defect-prone components.

4.6 Open Issues

We have seen how complexity, the problem domain, or the change rate can be used to
learn from history and to predict the defect density of new and evolved components.
We can thus indeed predict bugs from history, and even do so in a fully automatic
way. This is a clear benefit of having a well-kept track of earlier defects: avoiding
future defects by directing quality assurance efforts.

The examples in this chapter all rely on code features to predict defects. By no
means have we analysed all possible code features that might turn out to be good
defect predictors. We expect future research to come up with much better predictors;
Table 4.6 lists several data sets that are publicly available such that anyone can test
her or his favourite idea.



4 Predicting Bugs from History 85

Table 4.6. Datasets for empirical studies

Promise Data Repository The Promise Data Repository contains data sets for effort estima-
tion, defect prediction, and text mining. Currently, it comprises 23
datasets, but this number is constantly growing (free).
http://promisedata.org/

NASA Metrics Data The repository of the NASA IV&V Facility Metrics Data Program
contains software metrics (such as McCabe and Halstead) and the
associated error data at the function/method level for 13 projects
(free).
http://mdp.ivv.nasa.gov/

Eclipse Bug Data This data contains the pre-release and post-release defects for three
versions of the Eclipse IDE (free).
http://www.st.cs.uni-sb.de/softevo/

ISBSG The repository of ISBSG contains empirical data for software esti-
mation, productivity, risk analysis, and cost information (commer-
cial).
http://www.isbsg.org/

Finnish Data Set This dataset is collected by STTF to support benchmarks of
software costs, development productivity, and software processes
(commercial).
http://www.sttf.fi/

FLOSSmole FLOSSmole is a “collaborative collection and analysis of free/li-
bre/open source project data.”
http://ossmole.sourceforge.net/

Another common feature of the approaches discussed so far is that they all predict
the number of defects. In general, though, managers not only want to minimise the
number of defects, but minimise the overall damage, which involves the impact of
each defect—that is, the number of actual failures, and the damage caused by each
failure.

Finally, all the predictions discussed in this chapter require a history of defects to
learn from. Over history, we can learn which features of the code or the development
process are most likely to correlate with defects—and these very features can thus be
used to predict defect-prone components. Of course, the more detailed this history of
failures is, the more accurate our predictions will be. However, having a long history
of failures is something we would like to avoid altogether. At least, we would like to
learn enough from one project history to avoid repeating it in the next project:

• Is there a way to make predictions for new products with no known history yet?
• How can we leverage and abstract our knowledge about defects from one project

to another one?
• Are there any universal properties of programs and processes that invariably

result in a higher defect density?

We believe that such universal properties indeed do exist. However, it is very unlikely
that these properties are code properties alone. Remember that we focus on defects



86 T. Zimmermann, N. Nagappan, A. Zeller

that occur after release, that is, at a time where people already have taken care of
quality assurance. It is reasonable to assume that the more (and better) quality as-
surance is applied, the fewer defects will remain. However, none of our predictor
models takes the extent or effectiveness of quality assurance into account—simply
because code does not tell how it has been tested, checked, reviewed, or verified.

The effectiveness of quality assurance is a feature of the software process, not
the software itself. There are ways to characterise and evaluate quality assurance
techniques—for instance, one can check the coverage of a test suite or its effective-
ness in uncovering mutations. These are important features of the software process
that may help predicting defects.

Besides quality assurance, there are further process features to look into. The
qualification of the programmer, combined with the time taken to write a compo-
nent; the quality of the specification; the quality of the design; the competence of
management; continuity of work flow—all these, and many more, are factors which
contribute to people making mistakes (or avoiding them). In some way, looking for
universal properties that cause defects is like looking for a universal way to write
software. As an intermediate goal, it may already be helpful to choose between mul-
tiple “good” ways.

Whatever features future predictors will be based upon—there is one invariant
that remains: Any predictor will eventually turn out to be wrong. This is because if
a predictor predicts a higher number of defects (or failures, or damage, for that mat-
ter), the component will be checked more carefully—which will, of course, reduce
density. Any defect predictor will thus produce self-defeating prophecies—and this
is a good thing.

Key Points

✏ So far, all defect predictors require a history of earlier defects.
✏ Automated predictors do not yet directly leverage process data.
✏ The quest for universal (e.g. history-less) defect predictors is still open.

4.7 Threats to Validity

As with all empirical studies drawing general conclusions from case studies in soft-
ware engineering is difficult because any process depends to a large degree on a po-
tentially large number of relevant context variables. For this reason, we cannot as-
sume a priori that the results of a study generalise beyond the specific environment
in which it was conducted [40]. Some of the threats to validity of our studies are
discussed below.

• There could have been errors in measurement. In general, all the measurement
of software data in our studies was done using automated tools. This alleviates to
a certain degree errors in measurement. But it is possible that these tools could
have had design errors that could have led to errors in measurement



4 Predicting Bugs from History 87

• Our case studies were performed for two large systems namely Windows Server
2003 and Eclipse. It is possible that these results may not be observed for smaller
or other systems. Further these systems have possibly several million users.
Hence it is possible that other systems which do not have such an active usage
profile may not have most of its field defects found equally.

• At least one of the three authors were part of each case study described in this
chapter. Unknowingly it would have been possible to introduce experimenter
bias into the case studies.

• All the analysis in our studies was done after-the-fact, i.e., all the field defects
had been reported back and we had used it for our prediction models. It is diffi-
cult for us to gauge how our prediction made before hand would have influenced
the development team behaviour effectively benefiting them to identify problem-
prone components early.

• The statistical models built for the software systems may apply only for the
particular family of systems for which they are built for [61]. For example it
may not be useful to use a model built on Eclipse to predict bugs in small toy
programs.

• Though our case studies predict defects significantly other information such as
severity, impact of failure information etc. are missing from our predictions. This
type of predictions would be part of future investigations in this research area.

Basili et al. state that researchers become more confident in a theory when similar
findings emerge in different contexts [40]. Towards this end we hope that our case
study contributes towards building the already existing empirical body of knowledge
in this field [275, 274, 384, 402, 172, 209, 408, 326].

4.8 Conclusion and Consequences

Learning from history means learning from successes and failures—and how to make
the right decisions in the future. In our case, the history of successes and failures is
provided by the bug database: systematic mining uncovers which modules are most
prone to defects and failures. Correlating defects with complexity metrics or the
problem domain is useful in predicting problems for new or evolved components.
Likewise, code that changes a lot is more prone to failures than code that is un-
changed.

Learning from history has one big advantage: one can focus on the aspect of
history that is most relevant for the current situation. In our case, this means that
predictions will always be best if history is taken from the product or project at
hand. But while we can come up with accurate predictors, we need more work in
understanding the root causes for software defects—and this work should take into
account the roles of quality assurance and the general software process.

In this light, we feel that our work has just scratched the surface of what is possi-
ble, and of what is needed. Our future work will concentrate on the following topics:



88 T. Zimmermann, N. Nagappan, A. Zeller

More process data. As stated above, code features are just one factor in producing
software defects; process features may be helpful in finding out why defects
are not caught. We plan to tap and mine further data sources, notably quality
assurance information, to cover more process data.

Better metrics and models. Right now, the metrics we use as input for predictors
are still very simple. We plan to leverage the failure data from several projects
to evaluate more sophisticated metrics and models that again result in better
predictors.

Combined approaches. So far, the approaches described in this chapter all have
examined specific features in isolation. Combining them, as in “I have a complex
module importing internal.compiler, which has had no defects so far” should
yield even better predictions.

Increased granularity. Rather than just examining features at the component level,
one may go for more fine-grained approaches, such as caller-callee relationships.
Such fine-grained relationships may also allow predictions of defect density for
individual classes or even individual methods or functions.

Overall, these steps should help us not only to predict where defects will be, but
also to understand their causes, such that we can avoid them in the future. Version
archives play a key role in telling which hypotheses apply, and which do not—for
the project at hand, or universally.

Acknowledgement. Christian Lindig, Rahul Premraj, and Andrzej Wasylkowski provided
helpful comments on earlier revisions of this chapter. The work of Andreas Zeller and
Thomas Zimmmermann on mining software archives was supported by Deutsche Forschungs-
gemeinschaft, grant Ze 509/1-1. Thomas Zimmermann is additionally supported by the DFG
Graduiertenkolleg “Leistungsgarantien für Rechnersysteme”. We would like to acknowledge
the Eclipse developers as well as the product groups at Microsoft for their cooperation in these
studies.



http://www.springer.com/978-3-540-76439-7




