API Change and Fault Proneness:
A Threat to the Success of Android Apps

Mario Linares-Vasquez', Gabriele Bavota?, Carlos Bernal-Cardenas?
Massimiliano Di Penta?, Rocco Oliveto?, Denys Poshyvanyk!
'The College of William and Mary, Williamsburg, VA, USA
2University of Sannio, Benevento, ltaly
3Universidad Nacional de Colombia, Bogota, Colombia

“University of Molise, Pesche (IS), ltaly

mlinarev@cs.wm.edu, gbavota@unisannio.it, cebernalc@unal.edu.co,
dipenta@unisannio.it, rocco.oliveto@unimol.it, denys@cs.wm.edu

ABSTRACT

During the recent years, the market of mobile software appli-
cations (apps) has maintained an impressive upward trajec-
tory. Many small and large software development companies
invest considerable resources to target available opportuni-
ties. As of today, the markets for such devices feature over
850K+ apps for Android and 900K+ for iOS. Availability,
cost, functionality, and usability are just some factors that
determine the success or lack of success for a given app.
Among the other factors, reliability is an important criteria:
users easily get frustrated by repeated failures, crashes, and
other bugs; hence, abandoning some apps in favor of others.

This paper reports a study analyzing how the fault- and
change-proneness of APIs used by 7,097 (free) Android apps
relates to applications’ lack of success, estimated from user
ratings. Results of this study provide important insights into
a crucial issue: making heavy use of fault- and change-prone
APIs can negatively impact these apps success.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms

Measurement

Keywords

Mining Software Repositories, Empirical Studies, Android,
APIT changes

1. INTRODUCTION

According to a recent study by VisionMobile [27], the mo-
bile handset industry has been growing at 23% Compound

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEC/FSE *13, August 18-26, 2013, Saint Petersburg, Russia

Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

Annual Growth Rate (CAGR) in revenues since 2009. The
“App” economy is a tremendous success: iOS, BlackBerry,
and Android were the most lucrative software platforms in
2012, with average monthly revenue of over $4,800, $3,700,
and $3,300 per app, respectively [26]. Additionally, the de-
velopers’ mindshare index during the last three years (2010-
2012) shows that iOS and Android are the top two software
platforms being used by developers worldwide [26, 27].

What are the hidden forces that contribute to the app
economy’s success? Typical answers are: ubiquitous com-
puting, low cost of handsets (especially, the Android de-
vices), monetization models, customers’ loyalty to brands
such as iPhone or BlackBerry, etc. However, beyond ex-
plaining the “hidden forces” that drive consumer/developer
decisions and define the reasons for the success of the apps,
that success can be influenced by the software infrastructure
that developers use to build apps (i.e., Application Program-
ming Interfaces - APIs). APIs encapsulate the complexity of
low-level programming details, and provide developers with
a high-level model for using the underlying hardware. How-
ever, the ease-of-use of these APIs is impacted by factors re-
lated to API design and quality. For instance, top categories
of API learning obstacles are related to learning resources
(e.g., documentation, or code examples) and API structure
(e.g., design or name of API elements) [19]. Also, APIs
not ensuring backward compatibility support are typically
hard to use because their instability [28], and API breaking-
changes could introduce bugs in the client code. Moreover,
since developers often assume correctness behind underlying
APIs, faults in APIs can drastically impact the client code
quality as perceived by the end-users. For example, Zibran
et al. [29] found that among 1,513 bug reports related to
various components of Eclipse, GNOME, MySQL, Python
3.1, and Android projects, 562 bug-reports were related to
API usability issues; and about 175 (31.1%) of those issues
were related to API correctness. Although one can possibly
assume that API instability (change-proneness) and fault-
proneness may impact the success of software applications,
to the best of our knowledge such relations have not been
empirically investigated yet.

The goal of this paper is to provide solid empirical evi-
dence and shed some light on the relation between the suc-
cess of apps (in terms of user ratings), and the change- and
fault-proneness of the underlying APIs. The study has been
conducted on a set of 7,097 Android free apps belonging

Table 1: Android API Versions.

Level Version Release date A

1 1.0 Base Oct. 2008 -
2 1.1 Base Feb. 2009 4 m.
3 1.5 Cupcake May. 2009 3 m.
4 1.6 Donut Sep. 2009 4 m.
5 2.0 Eclair Nov. 2009 2 m.
6 2.0.1 Eclair Dec. 2009 1 m.
7 2.1 Eclair Jan. 2010 1 m.
8 2.2 Froyo Jun. 2010 5 m.
9 2.3 Gingerbread Nov. 2010 5 m.
10 2.3.3 Gingerbread Feb. 2011 3 m.
11 3.0 Honeycomb Feb. 2011 -
12 3.1 Honeycomb May 2011 3 m.
13 3.2 Honeycomb Jun. 2011 1 m.
14 4.0 Ice Cream Sandwich Oct. 2011 4 m.
15 4.0.3 Ice Cream Sandwich Dec 2011 2 m.
16 4.1 Jelly Bean Jun. 2012 6 m.
17 4.2 Jelly Bean Nov. 2012 4 m.

to different domains. We estimated the success of an app
based on the ratings posted by users in the app store (Google
Play'). Then, we identified the APIs used by those apps,
and computed the number of bug fixes that those APIs un-
dergo. In addition to the bug fixes, we computed different
kinds of changes occurring to such APIs, including changes
in the interfaces, implementation, and exception handling.
Finally, we analyzed how the estimated success of an app
is related to APIs fault-proneness and change-proneness,
specifically to different kinds of changes occurring to APIs.

Although there is not always a direct cause-effect relation-
ship between fault- and change-proneness of used APIs and
the app’s success, our conjecture is that fault- and change-
proneness can play an important role in the success, along
with the other internal (e.g., app features and usability) or
external (e.g., availability of alternative similar apps) fac-
tors. That is, a heavy usage of fault-prone APIs can lead to
repeated failures or even crashes of the app, hence encourag-
ing the user to give low ratings and possibly even abandoning
the app. Similarly, the use of unstable APIs that undergo
numerous changes in their interfaces can cause backward
compatibility problems or require frequent updates to the
app. Such updates, in turn, can introduce defects into the
applications using the unstable APIs.

Results of our study demonstrate that Android apps hav-
ing higher success generally use APIs that are less fault- and
change-prone than apps having lower success. For instance,
among 7,097 apps that we analyzed, the 50 least successful
apps use APIs that are 500% more fault-prone and 333%
more change-prone on average than APIs used by the 50
most successful apps.

Structure of the paper. Section 2 defines our empirical
study and the research questions, and provides details about
the data extraction process and analysis method. Section 3
reports the study results, and discusses them from a quanti-
tative and qualitative point of view. Section 4 discusses the
threats that could affect the validity of the results. Section
5 relates this work to the existing literature, while Section 6
concludes the paper and outlines directions for future work.

"http://play.google.com

Table 2: Characteristics of the apps used in our

study.
Category #apps Classes KLOC
Arcade 387 7-566 5-6
Books and reference 153 7-778 1-11
Brain 397 5-572 14-22
Business 170 8-226 4-101
Cards 255 8-633 1-4
Casual 390 6-566 2-6
Comics 14 16-43 1-1
Communication 169 6-11 1-10
Education 366 6-87 1-4
Entertainment 695 2-11 1-20
Finance 197 4-107 2-48
Health and fitness 43 6-104 2-7
Libraries and demo 143 1-310 11-56
Lifestyle 421 2-572 1-3
Media and video 269 5-572 2-8
Medical 5 13-107 2-21
Music and audio 282 2-190 3-53
News and magazines 228 5-280 6-64
Personalization 543 4-29 1-23
Photography 237 7-1,974 35-132
Productivity 162 7-217 4-7
Racing 273 15-280 6-48
Shopping 57 5-114 2-23
Social 58 9-318 6-7
Sports 227 7-280 5-6
Sports games 280 6-572 14-20
Tools 539 3-65 1-11
Transportation 34 12-454 8-16
Travel and local 94 8-251 5-77
Weather 9 5-41 1-40
Total 7,007 1-1,974 1-101

2. EMPIRICAL STUDY DESIGN

The goal of this study is to understand to what extent
the APIs fault- and change-proneness could have affected
the success of the apps using them. The context consists
of 7,097 free apps from the Google Play Market, and the
quality focus is the success of those apps in terms of ratings
expressed by users on the market. We chose Android apps
since Android is the only platform among the top developer-
mindshare platforms (i.e., Apple iOS and Google Android)
with open-source APIs. Moreover, there are two other fac-
tors that make Android APIs a suitable and interesting re-
source for our empirical study. First, the fast evolution of
Android APIs? is represented by 17 major releases over four
years. Table 1 lists the major releases of the Android APITs,
the release times, and the difference in months between each
pair of subsequent releases. Given that release periods of
Android APIs are short, it is possible that breaking changes
appear in packages and classes that are particularly change-
prone; the fast evolution could also be explained due to a
sheer number of needed hot-fixes. Thus, breaking changes
and bugs in APIs could impact the quality of Android apps
as perceived by the consumers. Second, reuse is widespread
in Android apps, especially when compared to desktop open-
source programs; Android API reuse by inheritance is widely

https://developer.android.com/reference/android /os/
Build. VERSION_CODES.html

implemented by Android developers [17], and Android apps
are highly dependent on the APIs [25]. Almost 50% of
classes in Android apps inherit from a base class as shown in
a recent study by Mojica Ruiz et al. [17]. Even though such
studies were done on an small set of apps, they still provide
valuable insights into the magnitude of software reuse in the
Android framework [17, 25].

Table 2 reports characteristics of the apps that we ana-
lyzed. For each category considered in our study (e.g., pho-
tography, medical, games, etc), the table lists (i) the number
of apps analyzed from the category (column #apps), (ii) the
size range of the analyzed apps in terms of number of classes
(column #classes), and bytecode size in terms of thousands
of lines of code (KLOC). As mentioned, we focused on free
apps since information needed to perform our study cannot
be retrieved for commercial apps, because their bytecode is
not publicly available.

2.1 Research Questions

In the context of our study we formulated the following
two research questions:

e RQi: Does the fault-proneness of APIs affect the suc-
cess of Android Apps? This research question aims
at investigating if Android apps having lower success
make heavier use of fault-prone APIs as compared to
apps having higher success. The conjecture is that the
usage of fault-prone APIs can cause annoying failures
and crashes, and for this reason users give low ratings.
Specifically, we test the following null hypothesis:

Hy, : There is no significant difference between the av-
erage fault-proneness of APIs used by successful and
unsuccessful apps.

e RQ2: Does the change-proneness of APIs affect the
success of Android Apps? This research question is

similar to RQ1, however it considers the change-proneness

instead of the fault-proneness as the main factor to an-
alyze. Thus, the null hypothesis being tested is:

Hy, : There is no significant difference between the av-
erage change-proneness of APIs used by successful and
unsuccessful apps.

The dependent variable for both research questions is
represented by the success of the considered apps. It is esti-
mated as the average (mean) rating provided by the users to
those apps. Such ratings are posted by users on the Android
market as a discrete value between one and five stars.

The independent variable considered to answer RQ; is
the number of bugs fixed in the APIs used by the apps dur-
ing the investigated time period. The analysis is restricted
to the period of time going from the date in which the con-
sidered app version was released until the date in which ei-
ther (i) the app has been superseded by a new version or
(ii) the last rating for such app was collected, i.e., the last
observation for our dependent variable.

For RQ2 the independent variables are the number
of changes performed in APIs used by the considered apps.
Specifically, we computed the following variables:

e The overall number of method changes.

e The number of changes in method signatures (method
names, parameters, return types, visibility).

e The number of changes to the set of exceptions thrown
by methods, as detected by analyzing their signatures.
Such kind of change is particularly important to ana-
lyze because a better usage of exception handlers may
improve the apps’ robustness.

Note that for all changes we separately computed data for
all methods and public methods. Changes to public methods
were analyzed apart in our study because these methods
represent the API public interface that is directly called by
the apps. Similarly to RQ1, the analysis of changes was
performed in the same time period considered for bug fixes.

2.2 Data Extraction Process

The data needed to answer our research questions are (i)
the user ratings of the 7,097 considered apps®, (ii) the list of
Android APIs used by each app, and (iii) the bug and change
history of those APIs. The user ratings were downloaded
from Google Play by selecting ratings related to each app
version considered in our study. To prune out unreliable
ratings, we only consider apps having at least ten votes.
With a smaller number of ratings, there is a higher risk
that our results may depend on the subjectiveness of the
ratings themselves. That is, if an app receives only one
or two votes, the fact that they are extremely positive or
negative can depend too much on the subjective reasons of
those particular users.

To identify APIs used by the apps in our study, we down-
loaded their APK (Android PacKage) files using a third
party library*. An APK file is a variant of a JAR archive
containing, among other information, the compiled classes
in the dex (Dalvik EXecutable) format used by the process
virtual machine in Android. For extracting API calls from
the APK files we adopted the following process:

1. we converted the files to jars using the dex2jar® disas-
sembler tool;

2. we extracted calls to API classes from .class files,
using the JClassInfo® tool;

3. we discarded all the API classes outside the android. *
packages.

In this study, we focus only on the official Android APIs,
which are generally used by several applications, whereas
future work will also consider the impact of third-party APIs
used by the apps. The total number of API classes belonging
to the android.* packages is 4,816.

Once we collected the list of APIs for each app, we mined
the APIs entire change history from their Git” repositories®.
We analyzed 35,703 developers’ commits performed in a pe-
riod going from September 2009 to January 2013 for a total
of 4,781 bug-fixing activities and 370,180 method’s changes.

3From the list of apps available in Google Play we selected
randomly a list of apps to download. However, the final
number of apps corresponds to valid apps (i.e., APKs that
were converted to JAR files without errors) with minimum
10 ratings.

“http://code.google.com /p/android-market-api
®http://code.google.com/p/dex2jar
Shttp://jclassinfo.sourceforge.net

"http://git-scm.com

Shttps://android.googlesource.com

We identified bug-fixing commits activities by using an ap-
proach proposed by Fischer et al. [10], i.e., by mining regular
expressions containing issue IDs and the keyword “fix” in the
Git commit notes, e.g., “fized issue #ID” or “issue ID”.

For the changes, we used a code analyzer developed in
the context of the Markos European project® to compare
the APIs before and after each commit at a fine-grain level.
In particular, while the Git logs just report the changes at
file level granularity performed in a commit, we used the
Markos code analyzer to capture changes at method level.
The code analyzer parses source code by relying on srcML
[3], and categorizes changes occurring in methods into three
types: (i) generic change (including all kinds of changes);
(ii) changes applied to the method signature (i.e., visibility
change, return type change, parameter added, parameter re-
moved, parameter type change, method rename); and (iii)
changes applied to the set of exceptions thrown by the meth-
ods. Moreover, we distinguished between changes performed
to public methods directly used by the apps and changes per-
formed to non public methods. To distinguish cases where a
method was removed and a new one added from cases when a
method was renamed (and possibly its source code changed),
we use a heuristic that maps methods with different names
if their source code is similar based on a metric fingerprint
similar to the one used in metric-based clone detection [15].

After having analyzed all the APIs, we used such infor-
mation to compute, for each app, the total number of bugs
fixed in the used APIs and the number of changes along the
three categories mentioned above.

2.3 Analysis Method

To define the analysis method it is important to analyze
the distribution of successful and unsuccessful apps in our
dataset. Figure 1 reports the distribution of the average rat-
ings assigned by users to these apps. Note that the number
of ratings received by each app vary between 10 (the mini-
mum we considered) and 450,889, with a first quartile=33,
median=115, third quartile=697, and mean=3,135. As ex-
pected, user ratings are generally very high for free apps as
those considered in our study. This is likely due to the fact
that user expectations are generally lower for free apps than
for the paid ones, and also that disappointment for lack of
reliability and functionality may be higher when users spend
money. In particular, 3,843 apps (54%) exhibit an average
rating greater than 4 stars. Nevertheless, due to quite large
corpus of apps considered in our study, we also have 538
apps with an average rating lower than 3 stars. Thus, we
can verify a possible relationship between fault- and change-
proneness of used APIs and apps success (in terms of average
user rating).

We grouped the apps in four different groups on the basis
of their average user rating. In particular, given r, the av-
erage user rating, the four sets are: (i) apps having r, > 4
(3,843 apps), (ii) apps having 3 < r, < 4 (2,716), (iii) apps
having 2 < rq < 3 (496), and apps having r, < 2 (42). Note
that we do not consider apps having r, < 1 as a separated
group, since only one app falls in it.

The results of our research questions were analyzed through
box-plots and the Mann-Whitney test [4]. For the latter, we
considered two of the four groups of apps at a time, e.g.,
apps having ro > 4 vs. apps having ro < 2, and we used
the Mann-Whitney test to analyze statistical significance of

http://markosproject.berlios.de

(=]
[R
Yo}
Y
o
o _|
(=]
3Y
>
=)
§ B
=
o
4
w
(=]
o _|
o
o
S |
n
—
o]
[T T T 1
1 2 3 4 5

Average App rating

Figure 1: Average user ratings for the 7,097 ana-
lyzed apps.

the differences between the fault- and change- proneness of
the APIs used by the two groups of apps. The results were
intended as statistically significant at a = 0.05. Since we
performed multiple tests, we adjusted our p-values using the
Holm’s correction procedure [12]. This procedure sorts the
p-values resulting from n tests in ascending order, multiply-
ing the smallest by n, the next by n — 1, and so on.

We also estimated the magnitude of the difference between
fault- and change- proneness of the APIs used by different
groups of apps; we used the Cliff’s Delta (or d), a non-
parametric effect size measure [11] for ordinal data. We
followed the guidelines in [11] to interpret the effect size val-
ues: small for d < 0.33 (positive as well as negative values),
medium for 0.33 < d < 0.474 and large for d > 0.474.

2.4 Replication Package

All the data used in our study are publicly available at
http://www.cs.wm.edu/semeru/data/fse-android-api/.
In particular, we provide: (i) the list (and URLSs) of the stud-
ied 7,097 apps, together with the user ratings distributions;
(ii) the list of Android APIs used by each app; (iii) complete
information on the bugs fixed and changes that occurred in
the Android APIs; (iv) the R scripts and working data sets
used to run the statistical tests and produce the plots and
tables shown in this paper.

3. ANALYSIS OF THE RESULTS

This section reports the results aimed at answering the
two research questions formulated in Section 2.1.

3.1 Fault-Proneness vs. Apps Success

Boxplots in Figure 2 show the distribution of average num-
ber of bug fixes in API classes used by apps having different
average ratings. Note that we set 50 as a limit for the y-
axis (i.e., average number of bug fixes in API classes) for
readability purposes. As explained in Section 2.3, the apps

8 <]
o o -
8 8 ;
o o g 8 ‘
o o o |
o '
] g :
'
: 8 :
%] o | Q '
x 9 : g !
< : ‘
2 2 o ;
) 1
z o i
£ o | ' '
%] (o] ' '
] 1 1
2 .
] '
=3 ! 23.4,
Q 1
(o] o _|
o o '
o | '
o '
z ' 14.7, |
3 '
= ! 85,
. .
“L B
o — B —_ —_ -
T T T T
>4 <3and<=4 <2and<=3 <=2

Average app rating

Figure 2: Boxplots of average number of bug fixes
in API classes used by apps having different average
ratings. The arrow indicates the mean.

Table 3: Use of fault-prone API by apps having dif-
ferent average ratings (r,): Mann-Whitney test (adj.
p-value) and Cliff’s Delta (d).

Test adj. p-value d

(ra >4) vs (3< 714 <4) <0.0001 0.15 (Small)
(ra >4) vs (2<r,<3) <0.0001 0.33 (Medium)
(ra > 4) vs (ra <2) <0.0001 0.59 (Large)
(3< e <4)vs (2<7,<3) <0.0001 0.19 (Small)
(B<ra<4)vs (ra<2) <0.0001 0.49 (Large)
(2 < 1re <3)ws (ra <2) <0.0001 0.29 (Small)

are grouped into four sets on the basis of their average user
ratings (rq).

The boxplots in Figure 2 highlight that apps having higher
user ratings exhibit a lower number of bug fixes in the used
APIs. In particular, apps with an average rating greater
than four use APIs with 6.7 bug fixes on average. This
number increases for apps having lower average ratings: 9.5
(+42%) bug fixes in APIs used by apps with average ratings
between three and four; 14.7 (+119%) bug fixes in the set of
average ratings between two and three; and 23.4 (+249%)
bug fixes in the set of average ratings lower or equal than
two. Also, the distribution of bug fixes (as reported in the
boxplots) confirms the conjecture that there is relation be-
tween high user ratings and low number of bugs in the APIs
that apps use. The difference in terms of API bugs drasti-
cally increases when comparing the 50 most and the 50 least
successful apps (in terms of achieved average user rating).
While for the 50 most successful apps the average number
of bug fixes in the used APIs is 4, for the 50 least successful
apps we measured an average of 24 bug fixes in the used
APIs (+500%).

We also analyzed our data at a finer level of granularity.
That is, we computed the average number of bug fixes in a
single API class used by the four sets of apps. The results

confirm our previous findings: the average number of bug
fixes per API class is 0.53 for the most 50 successful apps,
and it increases to 2.03 (+217%) for the least 50 successful
apps. In particular:

e an API class used by apps having r, > 4 undergoes,
on average, 0.69 bug fixes;

e an API class used by apps having 3 < r, < 4 under-
goes, on average, 0.97 bug fixes (+41%);

e an API class used by apps having 2 < r, < 3 under-
goes, on average, 1.33 bug fixes (+93%);

e an API class used by apps having r, < 2 undergoes,
on average, 1.98 bug fixes (+187%).

Table 3 reports the results of the Mann-Whitney test (p-
value) and the Cliff’s d effect size. We compared each set of
apps (grouped by score) with all other sets having a lower
average user rating (e.g., rq > 4 vs. the other). As we can
notice from the table, apps having a higher average user rat-
ing always exhibit a statistically significant lower number of
bug fixes in the used APIs than apps having a lower aver-
age user rating (p-value always < 0.0001). The Cliff’s d is
small (0.15) when comparing apps having r, > 4 and apps
having 3 < ro < 4, medium (0.33) when the comparison
is performed between apps having r, > 4 and apps having
2 < rq < 3, and large (0.59) when comparing the top rated
apps with those having an average score lower than two. We
also observe a large d (0.49) when comparing apps having
3 < rq < 4 with those having r, < 2. Thus, there is a strong
division between apps having a rating higher than three and
those having a rating less than or equal to two.

Summarizing, we can reject our null hypothesis Hy, i.e.,
APIs used by successful apps are on average significantly less
fault-prone than APIs used by unsuccessful apps.

3.2 Change-Proneness vs. Apps Success

Boxplots in Figure 3 show the change-proneness of APIs
used by the four different sets of apps considered in our
study. In particular, Figures 3-(a) and 3-(b) report the over-
all number of method changes and the overall number of
changes in the method signatures, respectively, while Fig-
ures 3-(c) and 3-(d) show the same data by considering the
APIs’ public methods only.

Figure 3 suggests that apps receiving higher average rat-
ings generally use more stable APIs, i.e., APIs having a lower
change-proneness. In particular, the APIs used by apps hav-
ing r, > 4 underwent, on average, 27 method changes, as
opposed to the 36 changes in the APIs used by apps having
3 < rq <4 (+33%); apps having 2 < r, < 3 use APIs with
53 method changes (+96%), and apps having 7, < 2 use
APIs with 78 method changes (4+189%)—see Figure 3-(a).
Also, the three quartiles show a continuous upward-trend
of the number of changes as the average rating decreases.
The trend is almost the same if considering public methods
only: 16 method changes for APIs used by top rated apps,
21 for the set 3 < ro <4 (+31%), 30 for APIs used in apps
having 2 < 7, < 3 (+88%), and 41 for APIs in apps having
ra < 2 (+156%) (Figure 3-(c)). Again, the analysis of box-
plots confirms that apps having a low average user rating
generally use more change-prone APIs as compared to apps
having a high average user rating.

o o
& 7 8 ° o
o
o
(=] g ° o o
n — o
o
8
g : g 3 .
c 8 8
g g E ° T
o :
'8 g o '
= 84
T =
= 2
)
g 8-
> '
o ! 78,
8 36, | =
27, | -
g H
o - o o+ . -+
T T T T
>4 <3and<=4 <2and<=3 <=2
Average App rating
(a)
o
o - o
@ 8
o]
8 °
2 o 8
%]
g 8 g o
=2 (=]
g g 8
c & S 3
(@] 8 °
8 8 8
.8 3 8 o)
= o - <]
o T E E 8
= 8
o Q
5 8 ; 8 T
] - :
a E :
3 | M“u_r
3 >
X 30,
16, ! AN > g
B = -
o = = =
T T T T
>4 <3and<=4 <2and<=3 <=2

Average App rating

()

g | ® g
o
o 8 °
o
8 o
8 8 3 .
8 o

o 00 0O

@o o o

-

15I Q
T

4 Ommm OO @

Overall Changes in Method Signatures

g
g
8
=

4 W3-

—»
o =
T
>4 <3and<=4 <2and<=3 <=2
Average App rating
(b)
.8— 7 ° o o
1) o
<] S o
2 °
©
c 84 o
2 °
3 2 2 8
o ° 8
<
® 3 8 o o
= 8 8
o
2 § o
Qo
5 ¢ 8 0
% 5 g E ° o
= g
e 8 o g
o) 8 8
C o | E T
© « !
< N .
© 5 7 A ﬂbg
4 —
—»
ol s - = -
T T T T
>4 <3and<=4 <2and<=3 <=2

Average App rating

(d)

Figure 3: Boxplots of change-proneness in API classes used by apps having different average ratings. The

arrow indicates the mean.

Also for changes involving method signatures (Figure 3-
(b,d)), results highlight that successful apps are generally
built using stable APIs. If considering both public and pri-
vate/protected methods (Figure 3-(b)), we observe, on aver-
age, five changes in APIs used by apps having an average rat-
ing greater than four, 7 changes for apps having 3 < r, < 4
(+40%), 10 changes for apps having 2 < r, < 3 (+100%),
and 15 for the least successful apps (+200%). Results are
confirmed if considering public methods only (Figure 3-(d)).

Moreover, by computing the average number of changes
performed in a single API class, the achieved results show
that:

e an API class used by apps having r, > 4 underwent,

on average, 13 method changes (9 when just focusing
on public methods);

e an API class used by apps having 3 < r, < 4 under-

went, on average, 19 method changes, +46% (12 when
just focusing on public methods, +33%);

e an API class used by apps having 2 < r, < 3 un-
derwent, on average, 27 method changes, +108% (16
when just focusing on public methods, +77%);

e an API class used by apps having r, < 2 underwent,
on average, 41 method changes , +215% (23 when just
focusing on public method, +155%).

Similarly to the case of bug fixes, we also compared the 50
most and the 50 least successful apps, and the results for the
three types of changes are: (i) the overall number of method
changes in API methods are, on average, 18 for the most
successful and 78 (+333%) for the least successful apps; (ii)
the number of changes in public methods is 11 for the most
successful, and 41 (4+272%) for the least successful apps;
(iii) changes to method signatures are 3 vs. 15 (4+400%)

Table 4: Change-proneness of APIs for apps having
different average rating (r,): Mann-Whitney test (p-
value) and Cliff’s delta (d).
Test adj. p-value d
Overall Method Changes
(ra >4) vs (B3<714a<4) <0.0001 0.14 (Small)
(ra > 4) vs (2 <71, < 3) <0.0001 0.32 (Small)
(ra > 4) vs (ro <2) <0.0001 0.57 (Large)
B<ra<4)vs (2<r, <3) <0.0001 0.19 (Small)
)
)

(3<ra <4)uvs (ra <2) <0.0001 0.49 (Large
(2 <7ra <3)vs (ra <2) <0.0001 0.28 (Small

Changes to Public Methods
(ra >4) vs (3<714a<4) <0.0001 0.14 (Small)
(ra >4) vs (2<714 <3) <0.0001 0.32 (Small)
(ra > 4) vs (ra <2) <0.0001 0.57 (Large)
)
)
)

B<ra<4)uvs (2<r, <3) <0.0001 0.19 (Small
(3 < ra <4)uvs (ra <2) <0.0001 0.46 (Large
(2 < 7a < 3) s (ra < 2) <0.0001 0.27 (Small

Overall Changes in Method Signatures
(ra >4) vs (B3<714a<4) <0.0001 0.13 (Small)
(ra >4) vs (2<714 <3) <0.0001 0.31 (Small)
(ra > 4) vs (ra <2) <0.0001 0.58 (Large)
)
)
)

B<rae<4)uvs (2<r, <3) <0.0001 0.20 (Small
(3<ra <4)vs (ra <2 <0.0001 0.48 (Large
(2 < ra <3) vs (ra <2) <0.0001 0.28 (Small

Changes in Public Method Signatures
(ra >4) vs (B3<714a<4) <0.0001 0.13 (Small)
(ra >4) vs (2<74 <3) <0.0001 0.31 (Small)
(ra > 4) vs (14 <2) <0.0001 0.58 (Large)
)
)
)

B<ra<4)vs (2<r, <3) <0.0001 0.19 (Small
(B < ra <4) vs (ra <2) <0.0001 0.48 (Large
(2<7ra <3)ws (ra <2) <0.0001 0.28 (Small

considering all methods, and 2 vs. 10 (+400%) if considering
public methods only.

Finally, Table 4 reports the results of the Mann-Whitney
test and the Cliff’s d when comparing the change-proneness
of APIs used by apps belonging to different groups of av-
erage user ratings. The main results from Table 4 can be
summarized as the following:

e there is statistically significant difference (p-value <
0.0001) when comparing apps having a higher average
user rating with those having a lower one.

e we observe a large Cliff’s delta (> 0.474) when compar-
ing the most successful apps (i.e., those having r, > 4)
with the less successful ones (i.e., those having r, < 2).

Then, we analyzed another category of changes that might
occur in the Android APIs, i.e., changes to the set of excep-
tions thrown by methods. In total, we identified 855 changes
to exceptions thrown by methods; 523 (62%) were aimed at
adding new exceptions to a method. Results are reported
in Figures 4-(a) and 4-(b) for all methods and public meth-
ods only, respectively. Differently from the trends observed
for the other kinds of changes shown in Figure 3, for what
concerns changes to exceptions we do not observe (also ac-
cording to Mann-Whitney tests performed) any significant
difference between different levels of rating. This result is
not surprising, since robust Java programs generally make a
massive use of exception handling mechanisms [20].

On summary, we can reject our null hypothesis Ho, i.e.,
APIs used by successful apps are on average less prone to
changes occurred to API signatures and implementation than

20
1

15

1
o
oo o o o

10

Overall Changes in Exceptions Thrown by Methods

T T
<8and<=4 <2and<=3 <=2

;
L - pu}uc_nmmmomm coo o o
EDEDOT00 ©
{ @O comno

Average App rating

(a)

15
o o
oo

o

1.3, ﬁ 1.3 E

T T T
<8and<=4 <2and<=3 <=2

Changes in Exceptions Thrown by Public Methods
10

&

;
¥ 4 +{I]- - mewcmmoceocwo 0 0 0 o ©
{EEDONDADO © O O O
joomooommo @ o
i @

Average App rating
(b)

Figure 4: Boxplots of changes related to method
thrown exceptions in API classes used by apps hav-
ing different average ratings. The arrow indicates
the mean.

APIs used by unsuccessful apps. Instead, there is no sig-
nificant difference when the changes are on the exceptions
thrown by API methods.

3.3 Qualitative Analysis

The quantitative analysis performed to answer our re-
search questions provided us with strong empirical evidence
that Android apps having higher success generally use APIs
that are less fault- and change-prone than apps having lower
success. Although we are aware this is not sufficient to claim
causation we performed a qualitative analysis to (at least
in part) find a rationale of the relation between the use of
“problematic APIs” and the low success of some apps.

First, we performed a coarse grained automatic analysis
of comments left by users to unsuccessful apps (i.e., apps
having an average score lower than three), for a total of
15,944 comments. The goal of this analysis is just to get

wouldbegreatif
needsupdate |acks

annoying tpe;ibleu n | n Stal |

3 y
et | S@|@SS
money
semCrashes

doesnotwork
e | pd at

horrible
g ocaea™
r oring
crap forceclose
blackscreen

notcompatiblewith

notworkonmy

Figure 5: Word cloud of the 30 most common n-
grams in unsuccessful apps user comments.

an idea of the main reasons behind the users dissatisfac-
tion with unsuccessful apps. In particular, we are interested
in understanding if these comments are mostly related to
lack of features in the apps (and thus, no relation with the
use of fault- and change- prone APIs can be hypothesized),
to bugs/malfunctions of apps (and thus, a possible relation
with the use fault- and change- proneness APIs could ex-
ist), or both. To this aim, we extracted from comments
the n-grams composing them, considering n € [1..4]. Figure
5 reports the 30 most common n-grams we found. As we
can notice the most frequent n-grams are related to prob-
lems with the correct working of the app: does not work,
crashes, update/needs update, please fix it, not compatible
with, freezes, can’t even open it, force close. However, there
are also comments that seems linkable to unsatisfactory fea-
tures offered by the app: wuseless, lacks, annoying, boring.
Thus, as expected, bugs/malfunctions of apps represent one
of the main reason behind users dissatisfaction with down-
loaded apps.

The next step to find insights about the relation between
the use of fault- and change-prone APIs and the apps success
is to manually analyze some of the unsuccessful apps on
Google Play trying to understand if APIs’ bugs/frequent
changes directly impacted the apps’ user experience.

We found several user reviews directly related to problems
present in the APIs used by the app that they downloaded
and tried. An interesting case is the official CNN app for
Android tablets. In our study, we analyzed the release 1.3.3
of the CNN app. That version received several low ratings
from users (482 out of 812 votes rated the app with one
star), mostly because the presence of bugs. However, we
found that some of those bugs were related to the Android
APIs. For example, these are two reviews in Google Play
for the CNN app version 1.3.3:

Rating: x

A Google User - July 3, 2012 - Version 1.3.3
Widget?

The widget looks awesome when it doesn’t foul up.
I just don’t understand the invisible widget thing.
please fix.

Rating: * %

A Google User - July 6, 2012 - Version 1.3.3

Needs some MAJOR bug fixes

I was excited to see that the app has finally been up-
dated, and for a few hours it worked great. But then
some of its widgets became invisible, and it froze my
desktop several times. Galaxy Tab 7.7 with ICS.

By analyzing the change log of the APIs used by the CNN
app, we identified a possible cause for the problem described
in the reviews. In particular, with a commit performed on
07/03/2012, the developer Chet H. implemented a bug fix
solving the issue #6773607 in the Android API: Layered
views animating from offscreen sometimes remain invisible.
The layered views are the mechanism used by the CNN app
to implement its widgets.

We also found several user reviews reporting problems re-
lated to functionalities in apps that are provided by Android
problematic APIs. An interesting example is the subsystem
android.speech.tts, providing developers with the possi-
bility of integrating the Text To Speech (TTS) technology
in their apps. More than 200 users of the apps using TTS
complained about problems related to this feature. Exam-
ples of reviews are “Useless. TTS doesn’t work.”, and “Ev-
ery time I restart my phone I have to reinstall it as app
related to TTS.”. By analyzing the change-history of the an-
droid.speech.tts subsystem, we found that the 15 classes
contained in it were subject, in total, to 93 commits by An-
droid developers, distanced on average 13 days from each
other. In these commits, a total of 460 methods have been
changed (of which 289 changes to public methods and 80
changes to signatures) and 69 of these changes have been
performed to fix bugs. This can suggest that, very likely,
it has been difficult, for app developers, to stay tuned with
changes performed in such unstable and fault-prone APIs.

In general, the performed qualitative analysis confirmed
the results of the quantitative one: fault- and change- prone
APIs represent a serious threat for the success of Android

apps.

4. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-
tween theory and observation, and it is essentially due to
the measurements/estimates on which our study is based.
The most important threat is related to using ratings as an
indicator of success. We are aware that such ratings can be
highly subjective and imprecise. To mitigate such a threat
and the randomness/subjectiveness effect, (i) we analyzed a
very large sample of apps, and (ii) we discarded apps having
less than ten ratings. Another imprecision/incompleteness
can be related to how fault-proneness of APIs is estimated.
We chose to consider bug-fixes instead that “number of re-
ported bugs” since the latter could represent false alarms.
Also, we did not consider dead apps in our study, i.e., apps
with inactive development, for which bug-fixes might no be
reported. However, we are aware that the information from
software repositories can be imprecise/incomplete in terms
of the actual number of bug fixes performed on a project [2].

Moreover, our study did not distinguish how the apps used
APIs (by inheritance or invocation), because the JClassInfo
tool lists the references between a JAR file and third party
libraries. However, this would not influence our results, be-
cause our research questions do not emphasize the relation

between change/fault proneness and a specific type of API
usage.

Threats to conclusion validity concern the relationship be-
tween treatment and outcome. QOur conclusions are sup-
ported by appropriate, non-parametric statistics (p-values
were properly adjusted when multiple comparisons were per-
formed). In addition, the practical relevance of the observed
differences is highlighted by effect size measures.

Threats to internal validity concern factors that can affect
our results. Most importantly, this work does not claim a
cause-effect relation between APIs fault- and change- prone-
ness and the success of apps, which can be due to several
other factors. Instead, the purpose of our study is to show
that the availability of stable and reliable APIs is important
for app developers, and without that the success of produced
apps can be seriously hindered. We support such findings
with qualitative analysis for which we manually analyzed
comments related to ratings.

Threats to external validity concern the generalization of
our findings. First, we limited our analysis to free apps. We
are aware that the distribution of ratings can be different for
commercial apps. For example, users could be more disap-
pointed if they payed for an unreliable poor app, while, they
may not care that much if a free app occasionally crashes.
Second, although the set of analyzed apps is a small percent-
age of the existing apps, it is the first time that such number
of Android apps is used in an empirical study. Third, as ex-
plained in Section 2, we focused on Android internal APIs
only; however, the app reliability can also depend on third-
party APIs. Finally, our conclusions may not be valid for
apps developed for other mobile platforms (e.g., i0S).

S. RELATED WORK

The analysis of mobile applications and operating systems
has become a hot research topic in the recent years. For rea-
sons related to its availability, such studies were mainly re-
lated to Android. For example, the Mining Challenge track
at the 10th Working Conference on Mining Software Repos-
itories (MSR’12) [23] was focused on analysis of change and
bug data in the Android OS. However, most of the papers
related to Android are aimed to detect security and privacy
leaks, such as malware detection and permissions analysis.
In this section, we focus our attention to related work con-
cerning bytecode analysis for evolution- and maintenance-
related aspects and analysis of change and bug data in An-
droid applications. We also discuss studies that used changes
in APIs to analyze software evolution and stability.

5.1 Bytecode Analysis in Android

As in our study, several recent works extracted bytecode
from APK files to analyze evolution- and maintenance-related
aspects in Android apps. For instance, categorization of An-
droid applications has been explored using machine-learning
techniques [22, 21]. Shabtai et al. [22] categorized APK files
into two root categories of the Android market (“Games” and
“Applications”), using attributes extracted from dezx files
and XML data in the APK files. Sanz et al. [21] used string
literals in classes, ratings, application sizes, and permissions
to classify 820 applications into several existing categories.

Mojica Ruiz et al. [17] analyzed the extent of code reuse
in Android applications. The bytecode of Android apps was
extracted from APK files to generate class signatures, using
a technique that was previously applied by Davies et al.

Table 5: Recent studies on analysis of Android byte-
code, analyzed aspects or purpose, number of apps,
and number of Android categories covered.

Study Purpose #apps Fcat.
Shabtai et al. [22] Apps categorization 2,285 2
Sanz et al. [21] Apps categorization 820 7

Reuse by inheritance and code

Mojica Ruiz et al. [17] . 4,323 5
cloning

Dresnos [9] Detection of similar apps 2 1

Our study Apps success and API 7,097 30

change/bug proneness

[7, 6] on the Maven Repository. Mojica Ruiz et al. [17]
used signatures to compute usage frequencies via inheritance
and class reuse. The main conclusion of their study is that
almost 50% of the classes in the apps inherit from a base
class, and most of the reused classes are in the Android
APIs. Dresnos [9] also used method signatures to detect
similar Android apps, where the signatures included string
literals, API calls, exceptions, and control flow structures.

Table 5 lists the number of APK files and related cate-
gories, that were used in the studies mentioned above. If
comparing our study to [22, 21, 17, 9], we claim this is the
first time that such a large number of APK files (7,097) has
been analyzed, covering 30 domain categories in the official
Android market. To the best of our knowledge, this is the
first study relating the API fault- and change-proneness to
the success of apps.

5.2 Change and Bug Data Analysis in Android

Martie et al. [14] analyzed discussions in the Android
open source project issue tracker, and derived the discus-
sion topic trend and time distributions. Results indicated
that (i) Android runtime error was a problematic feature
of the Android platform and (ii) the new garbage collector
in Android Gingerbread may have resolved issues with the
Android runtime and graphics applications that use heavy
weight graphics libraries. Sinha et al. [24] analyzed the con-
tributions to the Android core code base (AOSP), measuring
change activity, contributor density, and industry participa-
tion in five AOSP sub-projects (device, kernel, platform,
tool-chain, tools). Assaduzzaman et al. [1] mined changes
and bug reports in Android to identify changes that intro-
duced the bugs. The links between bugs and changes were
identified by looking for keywords in commit messages, and
by comparing the textual similarity between the reports and
the commit messages. Our work is different from [14], [24]
and [1] for the following two reasons: (i) we computed met-
rics on bugs and changes in the Android APIs to correlate
fault/change proneness with the success of apps, and (ii)
we did not analyze textual information in bug reports or
commit messages.

5.3 APIs Instability Analysis

Dig et al. [8] studied the changes between two major re-
leases of four frameworks and one library written in Java;
they found that on average 90% of the API breaking changes'®
are refactorings. Hou et al. [13] analyzed the evolution of

10Changes causing an application built with an older version

of the component to fail under a newer version.

AWT /Swing at the package and class level. Hou et al. [13]
found that, during 11 years of the JDK release history, the
number of changed elements was relatively small as com-
pared to the size of the whole API, and the majority of
them happened in 1.1. Thus, the main conclusion of the
study is that the initial design of the APIs contributes to
the smooth evolution of the AWT/Swing APL

Changes in APIs also were studied by Raemaekers et al.
[18] to measure the stability of the Apache Commons library.
Their findings indicated that a relatively small number of
new methods were added in each snapshot to the “Com-
mons Logging” library, and there is more work going on in
new methods of “Common Codec” than in old ones. Mileva
et al. [16] analyzed 250 Apache projects to identify usage
trends and the popularity of four libraries, and the number
of times the projects migrated back to an older version of
the libraries; although the purpose of the study is not the
analysis of API instability, the findings illustrate how bugs
in newer versions of libraries motivate library consumers to
switch back to earlier versions.

Changes in APIs and frameworks require the adaptation
of clients (apps in our case), that can, sometimes, be auto-
mated. To this aim, Degenais and Robillard [5] proposed
SemDiff, a tool to recommend client adaptation required
when the used framework evolve. The authors evaluated
SemDiff on the evolution of the Eclipse-JDT framework and
three of its clients. Our study does not aim at investigating
how apps can be adapted when APIs change, although the
criticality of such changes further support the need for such
a kind of adaptation.

The impact of breaking changes could be a major factor
for the development of Android apps in Java, because An-
droid produced significant releases as rapidly as every one
to six months. Stability in the Android API is a sensitive
and timely topic, given the frequent releases and the num-
ber of applications that use these APIs. Similarly to [13,
18], we used the number of changes in methods as a proxy
for change-proneness. Our findings suggest that there is a
relation between stability and apps success: the greater the
app rating, the lower the number of changes in methods of
Android classes used in the app. However, a deeper analy-
sis on the evolution of Android APIs and Android apps is
needed to fully explain this phenomenon.

6. CONCLUSION AND FUTURE WORK

There is anecdotal evidence that APT instability (change-
proneness) and fault-proneness may impact the success of
software applications, but there are no rigorous empirical
evaluations of such a relationships. From this point of view,
this paper is a premier. Specifically, we empirically analyzed
the relationship between the success of 7,097 free Android
apps and the stability and fault-proneness of the used An-
droid APIs.

We exploited the apps average ratings in Google Play as
a measure of their success. To measure fault-proneness, we
used the total number of bugs fixed in the used API; for sta-
bility (change-proneness), we used the number of changes at
method level along three categories: (i) generic changes (in-
cluding all kinds of changes), (ii) changes applied to method
signatures, and (iii) changes applied to the exceptions thrown
by methods. Moreover, we performed change-analysis by
considering all the methods as well as by just focusing on

public methods. We restricted the analysis to the period of
time going from the date in which the considered app ver-
sion was released until the date in which either (i) the app
has been dismissed by a new version or (ii) we collected the
last rating for such an app.

Our findings show that APIs used by successful apps are
significantly less fault-prone than APIs used by unsuccess-
ful apps. In addition, APIs used by successful apps are also
significantly less change-prone than APIs used by unsuccess-
ful apps, including when changes affected method signatures
and especially public methods. Instead, changes to the set
of exceptions thrown by methods did not significantly relate
with the app success. Finally, a manual analysis of users
comments and API change logs allowed us to found exam-
ples providing a qualitative support to such empirical find-
ings. In summary, although it must be clear that the lack of
success of an app can depend on several factors, whenever
possible developers should carefully choose the APIs to be
used in their apps: fault-prone APIs can in turn cause mal-
functions or crashes in apps. Also, API changes may trigger
the need for frequent app updates that can in turn introduce
new bugs and in general affect the apps’ functionality.

Our study establishes some foundations for a research line
that could provide developers with elements for replicat-
ing “successful apps recipes” or avoiding “unsuccessful apps
recipes”. It is not only about stable or buggy APIs, but also
about features implemented in APIs and reuse. Therefore,
further studies should analyze the relationship between fea-
tures expressed by textual information (in Apps reviews and
source code) or API calls, and the success of Android apps.
Moreover, sentiment analysis and opinion mining on users’
reviews could provide more indication about the factors con-
tributing to the apps success.

7. ACKNOWLEDGEMENTS
This work is supported in part by the NSF CCF-0916260,

NSF CCF-1016868, and NSF CAREER-1253837 grants. Gabriele

Bavota and Massimiliano Di Penta are partially supported
by the Markos project, funded by the European Commis-
sion under Contract Number FP7-317743. Any opinions,
findings, and conclusions expressed herein are the authors’
and do not necessarily reflect those of the sponsors.

8. REFERENCES

[1] M. Assaduzzaman, M. Bullock, C. Roy, and
K. Schneider. Bug introducing changes: A case study
with Android. In 9th IEEE Working Conference on
Mining Software Repositories (MSR’12), pages
116-119, 2012.

[2] C. Bird, A. Bachmann, E. Aune, J. Duffy,

A. Bernstein, V. Filkov, and P. T. Devanbu. Fair and
balanced?: bias in bug-fix datasets. In Proceedings of
the Tth joint meeting of the Furopean Software
Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, 2009, Amsterdam, The Netherlands,
August 24-28, 2009, pages 121-130. ACM, 2009.

[3] M. L. Collard, H. H. Kagdi, and J. I. Maletic. An
xml-based lightweight c++ fact extractor. In 11th
International Workshop on Program Comprehension
(IWPC 2008), May 10-11, 2003, Portland, Oregon,
USA, pages 134-143. IEEE Computer Society, 2003.

[4]

[5]

[16]

[17]

W. J. Conover. Practical Nonparametric Statistics.
Wiley, 3rd edition edition, 1998.

B. Dagenais and M. P. Robillard. Recommending
adaptive changes for framework evolution. In 30th
International Conference on Software Engineering
(ICSE 2008), Leipzig, Germany, May 10-18, 2008,
pages 481-490. ACM, 2008.

J. Davies, D. M. German, M. W. Godfrey, and

A. Hindle. Software bertillonage determining the
provenance of software development artifacts.
Empirical Software Engineering, 2012.

J. Davies, D. M. German, M. W. Godfrey, and A. J.
Hindle. Software bertillonage: Finding the provenance
of an entity. In IEEE Working Conference on Mining
Software Repositories (MSR’11), 2011.

D. Dig and R. Johnson. How do APIs evolve? a story
of refactoring. Journal of Software Maintenance and
FEvolution: Research and Practice, 18:83-107, 2006.

A. Dresnos. Android : Static analysis using similarity
distance. In 45th Hawaii International Conference on
System Sciences, pages 5394-5403, 2012.

M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In 19th International Conference on
Software Maintenance (ICSM 2003), 22-26 September
2003, Amsterdam, The Netherlands, pages 23—, 2003.
R. J. Grissom and J. J. Kim. Effect sizes for research:
A broad practical approach. Lawrence Earlbaum
Associates, 2nd edition edition, 2005.

S. Holm. A simple sequentially rejective Bonferroni
test procedure. Scandinavian Journal on Statistics,
6:65-70, 1979.

D. Hou and X. Yao. Exploring the intent behind API
evolution: A case study. In 18th Working Conference
on Reverse Engineering (WCRE’11), pages 131-140,
2011.

L. Martie, V. Palepu, H. Sajnani, and C. Lopes.
Trendy bugs: Topic trends in the Android bug
reports. In 9th IEEE Working Conference on Mining
Software Repositories (MSR’12), 2012.

J. Mayrand, C. Leblanc, and E. Merlo. Experiment on
the automatic detection of function clones in a
software system using metrics. In 1996 International
Conference on Software Maintenance (ICSM 96), 4-8
November 1996, Monterey, CA, USA, Proceedings,
pages 244—. IEEE Computer Society, 1996.

Y. Mileva, V. Dallmeier, M. Burger, and A. Zeller.
Mining trends of library usage. In Joint international
and annual ERCIM workshops on Principles of
software evolution (IWPSE) and software evolution
(Evol) workshops, pages 5762, 2009.

I. Mojica Ruiz, M. Nagappan, B. Adams, and

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]

A. Hassan. Understanding reuse in the Android
market. In 20th IEEFE International Conference on
Program Comprehension (ICPC’12), pages 113-122,
2012.

S. Raemaekers, A. van Deursen, and J. Visser.
Measuring software library stability through historical
version analysis. In 8th IEEE International
Conference on Software Maintenance (ICSM’12),
pages 378-387, 2012.

M. Robillard and R. DeLine. A field study of API
learning obstacles. Empirical Software Engineering

(EMSE), 16:703-732, 2012.

M. P. Robillard and G. C. Murphy. Designing robust
java programs with exceptions. In Proceedings of the
8th ACM SIGSOFT international symposium on
Foundations of software engineering: twenty-first
century applications, pages 2—10, 2000.

B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero,
and P. Bringas. On the automatic categorization of
Android applications. In 2012 IEEE Consumer
Communications and Networking Conference
(CCNC), pages 149-153, 2012.

A. Shabtai, Y. Fledel, and Y. Elovici. Automated
static code analysis for classifying Android
applications using machine learning. In 2010
International Conference on Computational
Intelligence and Security (CIS), pages 329-333, 2010.
E. Shihab, Y. Kamei, and P. Bhattacharya. Mining
challenge 2012: The Android platform. In 9th IEEE
Working Conference on Mining Software Repositories
(MSR’12), pages 112-115, 2012.

V. Sinha, S. Mani, and M. Gupta. Mince: Mining
change history of Android project. In 9th IEEE
Working Conference on Mining Software Repositories
(MSR’12), pages 132-135, 2012.

D. Syer, B. Adams, Y. Zou, and A. Hassan. Exploring
the development of micro-apps: A case study on the
blackberry and android platforms. In 11th IEEE
International Working Conference on Source Code
Analysis and Manipulation (SCAM’11), pages 55—64,
2011.

VisionMobile. The new mobile app economy
(developer economics 2012), 2012.

VisionMobile. Developer tools: The foundations of the
app economy (developer economics 2013), 2013.

M. Zibran. What makes APIs difficult to use?
International Journal of Computer Science and
Network Security (IJCSNS), 8(4):255-261, 2008.

M. Zibran, F. Eishita, and C. Roy. Useful, but usable?
factors affecting the usability of APIs. In 18th
Working Conference on Reverse Engineering
(WCRE’11), pages 151-155, 2011.

